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Preface

Often times, people ask some simple questions regarding modal
analysis and how structures vibrate.  Most times, it is impossible
to describe this simply and some of the basic underlying theory
needs to be addressed in order to fully explain some of these
concepts.

However, many times the theory is just a little too much to handle
and some of the concepts can be described without a rigorous
mathematical treatment.  This document will attempt to explain
some concepts about how structures vibrate and the use of some
of the tools to solve structural dynamic problems.  The intent of
this document is to simply identify how structures vibrate from a
non-mathematical perspective.

With this being said. Let's start with the first question that is
usually asked.

Could you explain modal analysis for me?

In a nutshell, we could say that modal analysis is a process
whereby we describe a structure in terms of its natural
characteristics which are the frequency, damping and mode
shapes - it's dynamic properties.  Well that's a mouthful so let's
explain what that means.  Without getting too technical, I often
explain modal analysis in terms of the modes of vibration of a
simple plate.  This explanation is usually useful for engineers
who are new to vibrations and modal analysis.

FORCE

RESPONSE

Fig 1 - Simple Plate Excitation/Response Model

Let’s consider a freely supported flat plate (Fig 1).  Let's apply
a constant force to one corner of the plate.  We usually think of
a force in a static sense which would cause some static
deformation in the plate.  But here what I would like to do is to
apply a force that varies in a sinusoidal fashion.  Let's consider
a fixed frequency of oscillation of the constant force.  We will
change the rate of oscillation of the frequency but the peak
force will always be the same value - only the rate of
oscillation of the force will change.  We will also measure the
response of the plate due to the excitation with an
accelerometer attached to one corner of the plate.

time

increasing rate of oscillation

Fig 2 - Simple Plate Response

Now if we measure the response on the plate we will notice
that the amplitude changes as we change the rate of oscillation
of the input force (Fig 2).  There will be increases as well as
decreases in amplitude at different points as we sweep up in
time.  This seems very odd since we are applying a constant
force to the system yet the amplitude varies depending on the
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rate of oscillation of the input force.  But this is exactly what
happens - the response amplifies as we apply a force with a rate
of oscillation that gets closer and closer to the natural
frequency (or resonant frequency) of the system and reaches a
maximum when the rate of oscillation is at the resonant
frequency of the system.  When you think about it, that's pretty
amazing since I am applying the same peak force all the time -
only the rate of oscillation is changing!

frequency

Fig 3 - Simple Plate Frequency Response Function

This time data provides very useful information.  But if we take
the time data and transform it to the frequency domain using
the Fast Fourier Transform then we can compute something
called the frequency response function (Fig 3). Now there are
some very interesting items to note.  We see that there are
peaks in this function which occur at the resonant frequencies
of the system.  And we notice that these peaks occur at
frequencies where the time response was observed to have
maximum response corresponding to the rate of oscillation of
the input excitation.

Fig 4 - Overlay of Time and Frequency Response Function

Now if we overlay the time trace with the frequency trace what
we will notice is that the frequency of oscillation at the time at
which the time trace reaches it’s maximum value corresponds
to the frequency where peaks in the frequency response
function reach a maximum (Fig 4).  So you can see that we can
use either the time trace to determine the frequency at which
maximum amplitude increases occur or the frequency response
function to determine where these natural frequencies occur.
Clearly the frequency response function is easier to evaluate.

Now most people are amazed at how the structure has these
natural characteristics.  Well, what’s more amazing is that the
deformation patterns at these natural frequencies also take on a
variety of different shapes depending on which frequency is
used for the excitation force.

Now let's see what happens to the deformation pattern on the
structure at each one of these natural frequencies.  Let's place
45 evenly distributed accelerometers on the plate and measure
the amplitude of the response of the plate with different
excitation frequencies.  If we were to dwell at each one of the
frequencies - each one of the natural frequencies - we would
see a deformation pattern that exists in the structure (Fig 5).
The figure shows the deformation patterns that will result when
the excitation coincides with one of the natural frequencies of
the system.  We see that when we dwell at the first natural
frequency, there is a first bending deformation pattern in the
plate shown in blue (mode 1).  When we dwell at the second
natural frequency, there is a first twisting deformation pattern
in the plate shown in red (mode 2).  When we dwell at the third
and fourth natural frequencies, the second bending and second
twisting deformation patterns are seen in green (mode 3) and
magenta (mode 4), respectively.   These deformation patterns
are referred to as the mode shapes of the structure.  (That's not
actually perfectly correct from a pure mathematical standpoint
but for the simple discussion here, these deformation patterns
are very close to the mode shapes, from a practical standpoint.)

MODE 1

MODE 2

MODE3

MODE 4

Fig 5 - Simple Plate Sine Dwell Response

Now these natural frequencies and mode shapes occur in all
structures that we design.  Basically, there are characteristics
that depend on the weight and stiffness of my structure which
determine where these natural frequencies and mode shapes
will exist.  As a design engineer, I need to identify these
frequencies and know how they might affect the response of
my structure when a force excites the structure.  Understanding
the mode shape and how the structure will vibrate when excited
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helps the design engineer to design better structures.  Now
there is much more to it all but this is just a very simple
explanation of modal analysis.

So, basically, modal analysis is the study of the natural
characteristics of structures.  Understanding both the natural
frequency and mode shape helps to design my structural system
for noise and vibration applications. We use modal analysis to
help design all types of structures including automotive
structures, aircraft structures, spacecraft, computers, tennis
rackets, golf clubs, ... the list just goes on and on.

Now we have introduced this measurement called a frequency
response function but exactly what is it?

Just what are these measurements 
that are called FRFs?

 The frequency response function is very simply the ratio of the
output response of a structure due to an applied force.  We measure
both the applied force and the response of the structure due to the
applied force simultaneously.  (The response can be measured as
displacement, velocity or acceleration.)  Now the measured time
data is transformed from the time domain to the frequency domain
using a Fast Fourier Transform algorithm found in any signal
processing analyzer and computer software packages.

Due to this transformation, the functions end up being complex
valued numbers; the functions contain real and imaginary
components or magnitude and phase components to describe
the function.  So let’s take a look at what some of the functions
might look like and try to determine how modal data can be
extracted from these measured functions.

Let's first evaluate a simple beam with only 3 measurement
locations (Fig 6).  We see the beam below with 3 measurement
locations and 3 mode shapes.  There are 3 possible places
forces can be applied and 3 possible places where the response
can be measured.  This means that there are a total of 9
possible complex valued frequency response functions that
could be acquired; the frequency response functions are usually
described with subscripts to denote the input and output
locations as hout,in  (or with respect to typical matrix notation
this would be hrow,column)

The figure shows the magnitude, phase, real and imaginary
parts of the frequency response function matrix.  (Of course, I
am assuming that we remember that a complex number is made
up of a real and imaginary part which can be easily converted
to magnitude and phase.  Since the frequency response is a
complex number, we can look at any and all of the parts that
can describe the frequency response function.)

Now let's take a look at each of the measurements and make
some remarks on some of the individual measurements that
could be made.

First let's drive the beam with a force from an impact at the tip of
the beam at point 3 and measure the response of the beam at the
same location (Fig 7).  This measurement is referred to as h33.
This is a special measurement referred to as a drive point
measurement.  Some important characteristics of a drive point
measurement are

• all resonances (peaks) are separated by anti-resonances
• the phase looses 180 degrees of phase as we pass over a

resonance and gains 180 degrees of phase as we pass over an
anti-resonance

• the peaks in the imaginary part of the frequency response
function must all point in the same direction

So as I continue and take a measurement by moving the impact
force to point 2 and measuring the response at point 3 and then
moving the impact force on to point 1 to acquire two more
measurements as shown.  (And of course I could continue on to
collect any or all of the additional input-output combinations.)

So now we have some idea about the measurements that we could
possibly acquire.  One important item to note is that the frequency
response function matrix is symmetric.  This is due to the fact that
the mass, damping and stiffness matrices that describe the system
are symmetric.  So we can see that hij = h ji - this is called
reciprocity.  So we don't need to actually measure all the terms of
the frequency response function matrix.

One question that always seems to arise is whether or not it is
necessary to measure all of the possible input-output combinations
and why is it possibly to obtain mode shapes from only one row or
column of the frequency response function matrix.

1 2 3
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Fig 6a – Beam 3 DOF Model
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Fig 6b - Magnitude

Fig 6c - Phase
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h33

Fig 7a – Drive Point FRF for Reference 3

Fig 6d - Real
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Fig 6e - Imaginary
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Fig 7 – Cross FRF s for Reference 3
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Why is only one row or column
of the FRF matrix needed?

It is very important for us to understand how we arrive at mode
shapes from the various measurements that are available in the
frequency response function matrix.  Without getting mathematical,
let's discuss this.

Let's just take a look at the third row of the frequency response
function matrix and concentrate on the first mode.  If I look at the
peak amplitude of the imaginary part of the frequency response
function, I can easily see that the first mode shape for mode 1 can
be seen (Fig 8a).  So it seems fairly straightforward to extract the
mode shape from measured data.  A quick and dirty approach is
just to measure the peak amplitude of the frequency response
function for a number of different measurement points.

Fig 8a – Mode 1 from Third Row of FRF Matrix

Now look at the second row of the frequency response function
matrix and concentrate on the first mode (Fig 8b).  If I look at the
peak amplitude of the imaginary part of the frequency response
function, I can easily see that the first mode shape for mode 1 can
be seen from this row also.

Fig 8a – Mode 1 from Second Row of FRF Matrix

We could also look at the first row of the frequency response
function matrix and see the same shape.  This is a very simple
pictorial representation of what the theory indicates.  We can
use any row to describe the mode shape of the system.  So it is
very obvious that the measurements contain information
pertaining to the mode shapes of the system.

Let's now take a look at the third row again and concentrate on
mode 2 now (Fig 8c).  Again if I look at the peak amplitude of
the imaginary part of the frequency response function, I can
easily see the second mode shape for mode 2 can be seen.

Fig 8a – Mode 2 from Third Row of FRF Matrix

And if I look at the second row of the frequency response
function matrix and concentrate on the second mode, I will be a
little surprised because there is no amplitude for the second
mode (Fig 8d).  I wasn't expecting this but if we look at the
mode shape for the second mode then we can quickly see that
this is a node point for mode 2.  The reference point is located
at the node of the mode.

??

Fig 8d – Mode 2 from Second Row of FRF Matrix

So this points out one very important aspect of modal analysis
and experimental measurements.  The reference point cannot
be located at the node of a mode otherwise that mode will not
be seen in the frequency response function measurements and
the mode cannot be obtained.

Now we have only used 3 measurement points to describe the
modes for this simple beam.  If we add more input-output
measurement locations then the mode shapes can be seen more
clearly as shown in Figure 9.  The figure shows 15 measured
frequency response functions and the 3 measurement points
used in the discussion above are highlighted.  This figure
shows the 15 frequency response functions in a waterfall style
plot.  Using this type of plot, it is much easier to see that the
mode shapes can be determined by looking at the peaks of the
imaginary part of the frequency response function.

DOF # 1

DOF #2

DOF # 3

MODE # 1

MODE # 2

MODE # 3

Fig 9 - Waterfall Plot of Beam Frequency Response Functions
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Now the measurements that we have discussed thus far have been
obtained from an impact testing consideration.  What if the
measured frequency response functions come from a shaker test?

What's the difference between a
shaker test and an impact test?

From a theoretical standpoint, it doesn't matter whether the
measured frequency response functions come from a shaker test or
an impact test.  Figures 10a and 10b show the measurements that
are obtained from an impact test and a shaker test.  An impact test
generally results in measuring one of the rows of the frequency
response function matrix whereas the shaker test generally results
in measuring one of the columns of the frequency response
function matrix.  Since the system matrices describing the system
are square symmetric, then reciprocity is true.  For the case shown,
the third row is exactly the same as the third column, for instance.

Theoretically, there is no difference between a shaker test and
an impact test.  That is, from a theoretical standpoint!  If I can
apply pure forces to a structure without any interaction between
the applied force and the structure and I can measure response
with a massless transducer that has no effect on the structure -
then this is true.  But what if this is not the case?

Now let's think about performing the test from a practical
standpoint.  The point is that shakers and response transducers
generally do have an effect on the structure during the modal
test.  The main item to remember is that the structure under test
is not just the structure for which you would like to obtain
modal data.  It is the structure plus everything involved in the
acquisition of the data - the structure suspension, the mass of
the mounted transducers, the potential stiffening effects of the
shaker/stinger arrangement, etc.  So while theory tells me that
there shouldn't be any difference between the impact test
results and the shaker test results, often there will be
differences due to the practical aspects of collecting data.

The most obvious difference will occur from the roving of
accelerometers during a shaker test.  The weight of the
accelerometer may be extremely small relative to the total
weight of the whole structure, but its weight may be quite large
relative to the effective weight of different parts of the
structure.  This is accentuated in multi-channel systems where
many accelerometers are moved around the structure in order
to acquire all the measurements.  This can be a problem
especially on light-weight structures.  One way to correct this
problem is to mount all of the accelerometers on the structure
even though only a few are measured at a time.  Another way is
to add dummy accelerometer masses at locations not being
measured; this will eliminate the roving mass effect.

Another difference that can result is due to the shaker/stinger
effects.  Basically, the modes of the structure may be affected
by the mass and stiffness effects of the shaker attachment.
While we try to minimize these effects, they may exist.  The
purpose of the stinger is to uncouple the effects of the shaker
from the structure.  However, on many structures, the effects of
the shaker attachment may be significant.  Since an impact test
does not suffer from these problems, different results may be
obtained.  So while theory says that there is no difference
between a shaker test and an impact test, there are some very
basic practical aspects that may cause some differences.

h32

1 2 3

1

2

3

h33h31

Fig 10a - Roving Impact Test Scenario
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Fig 10b - Roving Response Test Scenario
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What measurements do I actually
make to compute the FRF?

The most important measurement that is needed for experimental
modal analysis is the frequency response function.  Very simply
stated, this is the ratio of the output response to the input excitation
force.  This measurement is typically acquired using a dedicated
instrument such as an FFT (Fast Fourier Transform) analyzer or a
data acquisition system with software that performs the FFT.

Let’s briefly discuss some of the basic steps that occur in the
acquisition of data to obtain the FRF.  First, there are analog
signals that are obtained from our measuring devices.  These
analog signals must be filtered to assure that there is no aliasing of
higher frequencies into the analysis frequency range.   This is
usually done through the use of a set of analog filters on the front-
end of the analyzer called anti-aliasing filters.  Their function is to
remove any high frequency signals that may exist in the signal.

The next step is to digitize the analog signal to form a digital
representation of the actual signal.  This is done by the analog to
digital converter that is called the ADC.  Typically this digitization
process will use 10, 12 or 16 bit converters; the more bits available,
the better the resolution possible in the digitized signal.  Some of
the major concerns lie in the sampling and quantization errors that
could potentially creep into the digitized approximation.  Sampling
rate controls the resolution in the time and frequency representation
of the signals.  Quantization is associated with the accuracy of
magnitude of the captured signal.  Both sampling and quantization
can cause some errors in the measured data but are not nearly as
significant and devastating as the worst of all the signal processing
errors – leakage!

Leakage occurs from the transformation of time data to the
frequency domain using the Fast Fourier Transform (FFT).
The Fourier Transform process requires that the sampled data
consist of a complete representation of the data for all time or
contain a periodic repetition of the measured data.  When this
is satisfied, then the Fourier Transform produces a proper
representation of the data in the frequency domain.  However,
when this is not the case, then leakage will cause a serious
distortion of the data in the frequency domain.  In order to
minimize the distortion due to leakage, weighting functions
called windows are used to cause the sampled data to appear to
better satisfy the periodicity requirement of the FFT.  While
windows greatly reduces the leakage effect, it cannot be
completely removed.

Once the data is sampled, then the FFT is computed to form
linear spectra of the input excitation and output response.
Typically, averaging is performed on power spectra obtained
from the linear spectra.  The main averaged spectra computed

are the input power spectrum, the output power spectrum and
the cross spectrum between the output and input signals.

These functions are averaged and used to compute two
important functions that are used for modal data acquisition –
the frequency response function (FRF) and the coherence.  The
coherence function is used as a data quality assessment tool
which identifies how much of the output signal is related to the
measured input signal.  The FRF contains information
regarding the system frequency and damping and a collection
of  FRFs contain information regarding the mode shape of the
system at the measured locations.  This is the most important
measurement related to experimental modal analysis.  An
overview of these steps described is shown in Figure 11.

INPUT OUTPUT

OUTPUT
INPUT

FREQUENCY RESPONSE FUNCTION COHERENCE FUNCTION

ANTIALIASING FILTERS

ADC DIGITIZES SIGNALS

INPUT OUTPUT

ANALOG SIGNALS

APPLY WINDOWS

COMPUTE FFT
LINEAR SPECTRA

AUTORANGE ANALYZER

AVERAGING OF SAMPLES

 INPUT/OUTPUT/CROSS POWER SPECTRA
COMPUTATION OF AVERAGED

 INPUT
SPECTRUM

LINEAR
OUTPUT

SPECTRUM

LINEAR

 INPUT

SPECTRUM
POWER

OUTPUT

SPECTRUM
POWER

CROSS

SPECTRUM
POWER

COMPUTATION OF FRF AND COHERENCE

Fig 11 - Anatomy of an FFT Analyzer

Of course, there are many important aspects of measurement
acquisition, averaging techniques to reduce noise and so on,
that are beyond the scope of this presentation.  Any good
reference on digital signal processing will provide assistance in
this area.  Now the input excitation needs to be discussed next.
Basically, there are two commonly used types of excitation for
experimental modal analysis – impact excitation and shaker
excitation.
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Now let’s consider some of the testing considerations when
performing an impact test.

What are the biggest things to think
about when impact testing?

There are many important considerations when performing impact
testing.  Only two of the most critical items will be mentioned here;
a detailed explanation of all the aspects pertaining to impact testing
is far beyond the scope of this paper.

First, the selection of the hammer tip can have a significant effect
on the measurement acquired.  The input excitation frequency
range is controlled mainly by the hardness of the tip selected.  The
harder the tip, the wider the frequency range that is excited by the
excitation force.  The tip needs to be selected such that all the
modes of interest are excited by the impact force over the
frequency range to be considered.  If too soft a tip is selected, then
all the modes will not be excited adequately in order to obtain a
good measurement as seen Figure 12a.  The input power spectrum
does not excite all of the frequency range shown as evidenced by
the rolloff of the power spectrum; the coherence is also seen to
deteriorate as well as the frequency response function over the
second half of the frequency range.

40

-60

dB Mag

0Hz 800Hz

COHERENCE

INPUT POWER SPECTRUM

FRF

Fig 12a - Hammer Tip Not Sufficient to Excite All Modes

Typically, we strive to have a fairly good and relatively flat input
excitation forcing function.  The frequency response function is
measured much better as evidenced by the much improved
coherence function.  When performing impact testing, care must be
exercised to select the proper tip so that all the modes are excited
well and a good frequency response measurement is obtained.

40

-60
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0Hz 200Hz

COHERENCE

INPUT POWER SPECTRUM

FRF

Fig 12b - Hammer Tip Adequate to Excite All Modes

The second most important aspect of impact testing relates to
the use of an impact window for the response transducer.
Generally for lightly damped structures, the response of the
structure due to the impact excitation will not die down to zero
by the end of the sample interval.  When this is the case, the
transformed data will suffer significantly from a digital signal
processing effect referred to as leakage.

In order to minimize leakage, a weighting function referred to
as a window is applied to the measured data.  This window is
used to force the data to better satisfy the periodicity
requirements of the Fourier Transform process, thereby
minimizing the distortion effects of leakage.  For impact
excitation, the most common window used on the response
transducer measurement is the exponentially decaying window.
The implementation of the window to minimize leakage is
shown in Figure 13.

ACTUAL TIME SIGNAL

SAMPLED SIGNAL

WINDOW WEIGHTING

WINDOWED TIME SIGNAL

Fig 13 - Exponential Window to Minimize Leakage Effects

Windows cause some distortion of the data themselves and should
be avoided whenever possible.  For impact measurements, two
possible items to always consider are the selection of a narrower
bandwidth for measurements and to increase the number of spectral
lines of resolution.  Both of these signal processing parameters
have the effect of increasing the amount of time required to acquire
a measurement.  These will both tend to reduce the need for the use
of an exponential window and should always be considered to
reduce the effects of leakage.

Now let’s consider some of the testing considerations when
performing a shaker test.

What are the biggest things to think
about when shaker testing?

Again, there are many important items to consider when
performing shaker testing but the most important of those center
around the effects of excitation signals that minimize the need for
windows or eliminate the need for windows altogether.  There are
many other considerations when performing shaker testing but a
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detailed explanation of all of these is far beyond the scope of this
presentation.

One of the more common excitation techniques still used today is
random excitation due to its ease of implementation.  However, due
to the nature of this excitation signal, leakage is a critical concern
and the use of a Hanning window is commonly employed. This
leakage effect is serious and causes distortion of the measured
frequency response function even when windows are used.  A
typical random excitation signal with a Hanning window is shown
in Figure 14.  As seen in the figure, the Hanning window weighting
function helps to make the sampled signal appear to better satisfy
the periodicity requirement of the FFT process, thereby minimizing
the potential distortion effects of leakage.

While this improves the distortion of the FRF due to leakage, the
window will never totally remove these effects; the measurements
will still contain some distortion effects due to leakage.

AUTORANGING AVERAGING WITH WINDOW

1 2 3 4

Fig 14 - Shaker Testing – Excitation Considerations
Random Excitation with Hanning window

Two very common excitation signals widely used today are burst
random and sine chirp.  Both of these excitations have a special
characteristic that do not require the need for windows to be
applied to the data since the signal are inherently leakage free in
almost all testing situations.  These excitations are relatively simple
to employ and are commonly found on most signal analyzers
available today.  These two signals are shown schematically in
Figure 15 and 16.

AUTORANGING AVERAGING

1 2 3 4

Fig 15 - Burst Random Excitation Without a Window

AUTORANGING AVERAGING

1 2 3 4

Fig 16 - Sine Chirp Excitation Without a Window

In the case of burst random, the periodicity requirement of the FFT
process is satisfied due to the fact that the entire transient excitation
and response are captured in one sample interval of the FFT.  For
the sine chirp excitation, the repetition of the signal over the
sample interval satisfies the periodicity requirement of the FFT
process.  While other excitation signals also exist, these are the
most common excitation signals used in modal testing today.

So now we have a better idea how to make some measurements.

Tell me more about windows
They seem pretty important !

Windows are, in many measurement situations, a necessary
evil.  While I would rather not have to use any windows at all,
the alternative of leakage is definitely not acceptable either.  As
discussed above, there are a variety of excitation methods that
can be successfully employed which will provide leakage free
measurements and do not require the use of any window.
However, there are many times, especially when performing
field testing and collecting operating data, where the use of
windows is necessary.  So what are the most common windows
typically used.

Basically, in a nutshell, the most common widows used today
are the Uniform, Hanning, Flat Top and Force/Exponential
windows.  Rather than detail all the windows, let’s just simply
state when each are used for experimental modal testing.

The Uniform Window (which is also referred to as the
Rectangular Window, Boxcar or No Window) is basically a
unity gain weighting function that is applied to all the digitized
data points in one sample or record of data.  This window is
applied to data where the entire signal is captured in one
sample or record of data or when the data is guaranteed to
satisfy the periodicity requirement of the FFT process.  This
window can be used for impact testing where the input and
response signals are totally observed in one sample of collected
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data.  This window is also used when performing shaker
excitation tests with signals such as burst random, sine chirp,
pseudo-random and digital stepped sine; all of these signals
generally satisfy the periodicity requirement of the FFT
process.

The Hanning window is basically a cosine shaped weighting
function (bell shaped) that forces the beginning and end of the
sample interval to be heavily weighted to zero.  This is useful
for signals that generally do not satisfy the periodicity
requirement of the FFT process.  Random excitations and
general field signals usually fall into this category and require
the use of a window such as the Hanning window.

The Flat Top window is most useful for sinusoidal signals that
do not satisfy the periodicity requirement of the FFT process.
Most often this window is used for calibration purposes more
than anything else in experimental modal analysis.

The force and exponential windows are typically used when
performing impact excitation for acquiring FRFs.  Basically,
the force window is a unity gain window that acts over a
portion of the sample interval where the impulsive excitation
occurs.  The exponential window is used when the response
signal does not die out within the sample interval.  The
exponential window is applied to force the response to better
satisfy the periodicity requirement of the FFT process.

Each of the windows has an effect of the frequency
representation of the data.  In general, the windows will cause a
degradation in the accuracy of the peak amplitude of the
function and will appear to have more damping than what
really exists in the actual measurement.  While these errors are
not totally desirable, they are far more acceptable than the
significant distortion that can result from leakage.

So how do I get mode shapes
from the plate FRFs?

So now that we have discussed various aspects of acquiring
measurements, let’s go back to the plate structure previously
discussed and take several measurements on the structure.
Let's consider 6 measurement locations on the plate.  Now
there are 6 possible places where forces can be applied to the
plate and 6 possible places where we can measure the response
on the plate.  This means that there are a total of 36 possible
input output measurements that could be made.  The frequency
response function describes how the force applied to the plate
causes the plate to respond. If we applied a force to point 1 and
measured the response at point 6, then the transfer relation

between 1 and 6 describes how the system will behave (Figure
17).
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Fig 17 - Input-Output Measurement Locations
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While the technique shown above is adequate for very simple
structures, mathematical algorithms are typically used to
estimate the modal characteristics from measured data.  The
modal parameter estimation phase, which is often referred to as
curvefitting, is implemented using computer software to
simplify the extraction process.  The basic parameters that are
extracted from the measurements are the frequency, damping
and mode shapes – the dynamic characteristics.  The measured
FRF is basically broken down into many single DOF systems
as shown in Figure 20.
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Fig 20 - Breakdown of a Frequency Response Function

These curvefitting techniques use a variety of different
methods to extract data.  Some techniques employ time domain
data while others use frequency domain data.  The most
common methods employ multiple mode analytical models but
at times very simple single mode methods will produce
reasonably good results for most engineering analyses (Figure
21).  Basically, all of the estimation algorithms attempt to
break down measured data into the principal components that
make up the measured data – namely the frequency, damping
and mode shapes.

 

SDOF

MDOF

Fig 21 - Curvefitting Different Bands using Different Methods

The key inputs that the analyst must specify are the band over
which data is extracted, the number of modes contained in the
data and the inclusion of residual compensation terms for the
estimation algorithm.  This is schematically shown in Figure
22.

Much more could be said concerning the estimation of modal
parameters from measured data, the tools available for
deciphering data and the validation of the extracted model but
a detailed explanation is far beyond the scope of this paper.

HOW MANY POINTS ???

RESIDUAL
EFFECTS RESIDUAL

EFFECTS

HOW MANY MODES ???

Fig 22 - Curvefitting a Typical FRF

All structures respond to externally applied forces.  But many times
the forces are not known or cannot be measured easily.  We could
still measure the response of a structural system even though the
forces may not be measured.  So the next question that is often
asked concerns operating data.

What is operating data?

We first need to recognize that the system responds to the forces
that are applied to the system (whether or not I can measure them).
So for explanation purposes, let's assume for now that we know
what the forces are.  While the forces are actually applied in the
time domain, there are some important mathematical advantages to
describing the forces and response in the frequency domain.  For a
structure which is exposed to an arbitrary input excitation, the
response can be computed using the frequency response function
multiplied by the input forcing function.  This is very simply shown
in Figure 23.

The excitation shown is a random excitation that excites all
frequencies.  The most important thing to note is that the frequency
response function acts as a filter on the input force which results in
some output response.  The excitation shown causes all the modes
to be activated and therefore, the response is, in general, the linear
superposition of all the modes that are activated by the input
excitation.  Now what would happen if the excitation did not
contain all frequencies but rather only excited one particular
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frequency (which is normally what we are concerned about when
evaluating most operating conditions).

INPUT TIME FORCE

INPUT SPECTRUM

OUTPUT TIME RESPONSE

OUTPUT SPECTRUM

f(t)

FFT

y(t)

IFT

f(j   )ωω y(j   )ωωh(j   )ωω

FREQUENCY RESPONSE FUNCTION

Fig 23 - Schematic Overviewing the Input-Output
Structural Response Problem

To illustrate this, let's use the simple plate that we just discussed.
Let's assume that there is some operating condition that exists for
the system; a fixed frequency operating unbalance will be
considered to be the excitation.  It seems reasonable to use the
same set of accelerometers that were on the plate to measure the
response of the system.  If we acquire data, we may see something
that looks like the deformation pattern shown in Figure 24.
Looking at this deformation, it is not very clear why the structure
responds this way or what to do to change the response.  Why does
the plate behave in such a  complicated fashion anyway???  This
doesn’t appear to be anything like any of the mode shapes that we
measured before.

Fig 24 - Measured Operating Displacements

In order to understand this, let's take that plate and apply a
simple sinusoidal input at one corner of the plate.  For the
example here, we are only going to consider the response of the
plate assuming that there are only 2 modes that are activated by
the input excitation.  (Of course there are more modes, but let's
keep it simple to start.)  Now we realize that the key to
determining the response is the frequency response function
between the input and output locations.  Also, we need to
remember that when we collect operating data, we don't
measure the input force on the system and we don't measure the

system frequency response function - we only measure the
response of the system.

First let's excite the system with a sinusoid that is right at the first
natural frequency of the plate structure.  The response of the system
for one frequency response function is shown in Figure 25.  So
even though we excite the system at only one frequency, we know
that the frequency response function is the filter that determines
how the structure will respond.  We can see that the frequency
response function is made up of a contribution of both mode 1 and
mode 2.  We can also see that the majority of the response, whether
it be in the time or frequency domain, is dominated by mode 1.
Now if we were to measure the response only at that one frequency
and measure the response at many points on the structure, then the
operating deflection pattern would look very much like mode 1 -
but there is a small contribution due to mode 2.  Remember that
with operating data, we never measure the input force or the
frequency response function - we only measure the output response.
So that the deformations that are measured are the actual response
of the structure due to the input excitation - whatever it may be.

MODE 1 CONTRIBUTION MODE 2 CONTRIBUTION

Fig 25 - Excitation Close to Mode 1

When we measure frequency response functions and estimate
modal parameters, we actually determine the contribution to
the total frequency response function solely due to the effects
of mode 1 acting alone, as shown in blue, and mode 2 acting
alone, as shown in red, and so on for all the other modes of the
system.  Notice that with operating data, we only look at the
response of the structure at one particular frequency - which is
the linear combination of all the modes that contribute to the
total response of the system.  So we can now see that the
operating deflection pattern will look very much like the first
mode shape if the excitation primarily excites mode one.
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Now let's excite the system right at the second natural
frequency.  Figure 26 below shows the same information as
just discussed for mode 1.  But now we see that we primarily
excite the second mode of the system.  Again, we must realize
that the response looks like mode 2 - but there is a small
contribution due to mode 1.

Fig 26 - Excitation Close to Mode 2

But what happens when we excite the system away from a
resonant frequency.  Let's excite the system at a frequency
midway between mode 1 and mode 2.  Now here is where we
see the real difference between modal data and operating data.
The next figure shows the deformation shape of the structure.

Fig 27 - Excitation Somewhere Between Mode 1 and Mode 2

At first glance, it appears that the deformation doesn't look like
anything that we recognize.  But if we look at the deformation
pattern long enough, we can actually see a little bit of first
bending and a little bit of first torsion in the deformation.  So
the operating data is primarily some combination of the first
and second mode shapes.  (Yes, there will actually be other
modes but primarily mode 1 and 2 will be the major
participants in the response of the system.)

Now, we have discussed all of this by understanding the
frequency response function contribution on a mode by mode
basis.  When we actually collect operating data, we don't
collect frequency response functions but rather we collect

output spectrums.  If we looked at those, it would not have
been very clear at to why the operating data looked like mode
shapes.  Figure 28 shows a resulting output spectrum that
would be measured at one location on the plate structure.  Now
the input applied to the structure is much broader in frequency
and many modes are excited.  But, by understanding how each
of the modes contributes to the operating data, it is much easier
to see how the modes all contribute to the total response of the
system.

INPUT SPECTRUM

OUTPUT SPECTRUM

f(j   )ωω

y(j   )ωω

FREQUENCY RESPONSE FUNCTION

Fig 28 - Broadband Plate Excitation

So actually, there is a big difference between operating
deflections and mode shapes - we can now see that the modes
shapes are summed together in some linear fashion to form the
operating deflection patterns.  But typically we are interested
in the total deformation or response of the system.  Why do I
even want to bother to collect modal data?  It seems like a lot
of work to acquire measurements and extract data.

So what good is modal data?

Modal data is an extremely useful piece of information that can
assist in the design of almost any structure.  The understanding and
visualization of mode shapes is invaluable in the design process.  It
helps to identify areas of weakness in the design or areas where
improvement is needed.  The development of a modal model is
useful for simulation and design studies.  One of these studies is
structural dynamic modification.

This is a mathematical process which uses modal data (frequency,
damping and mode shapes) to determine the effects of changes in
the system characteristics due to physical structural changes.  These
calculations can be performed without actually having to physically
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modify the actual structure until a suitable set of design changes is
achieved.  A schematic of this is shown in Figure 29.  There is
much more that could be discussed concerning structural dynamic
modification but space limitations restrict this.
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Fig 29 – Schematic of the SDM Process

In addition to structural dynamic modification studies, other
simulations can be performed such as force response
simulation to predict system response due to applied forces.
And another very important aspect of modal testing is the
correlation and correction of an analytical model such as a
finite element model.  These are a few of the more important
aspects relating to the use of a modal model which are
schematically shown in Figure 30.
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Fig 30 – Overall Dynamic Modeling Process

And one of the final questions that is often asked is which test is
best to perform

So should I collect modal data
or operating data?

Of course with tight schedules and budgets, do I really need to
collect both modal data and operating data?  This is always
difficult to answer but it is always better to have both whenever
possible.  If only one of the two is available, then many times some
engineering decisions may be made without full knowledge of the
system characteristics.  To summarize, let’s point out the
differences between each of the data sets.

Modal data requires that the force is measured in order to
determine the frequency response function and resulting modal
parameters.  Only modal data will give the true principal
characteristics of the system.  In addition, structural dynamic
modifications  and forced response can only be studied using
modal data (operating data cannot be used for these types of
studies).  Also correlation with a finite element model is best
performed using modal data.  But of course it needs to be clearly
stated that modal data alone does not identify whether a structure is
adequate for an intended service or application since modal data is
independent of the forces on the system.
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STRUCTURALSTIFFNER DYNAMIC
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Fig 31 - Modal Model Characteristics
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Operating data on the other hand is an actual depiction of how the
structure behaves in service.  This is extremely useful information.
However, many times the operating shapes are confusing and do
not necessarily provide clear guidance as to how to solve or correct
an operating problem (and modification and response tools cannot
be utilized on operating data).

Fig 32 - Operating Data Characteristics

The best situation exists when both operating data and modal data
are used in conjunction to solve structural dynamic problems.

Summary

Some simple explanations were used to describe structural vibration
and the use of some of the available tools for the solution of
structural dynamic problems.  This was all achieved without the use
of any detailed mathematical relationships.  In order to better
understand more of the details of the data presented here, a
theoretical treatment of this material is necessary.
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MODAL SPACE - IN OUR OWN LITTLE WORLD by Pete Avitabile
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Illustration by Mike Avitabile

Could you explain modal analysis for me?
Well...it will take a little bit but here's one that anyone can understand.

You're not the first one to ask me to explain modal analysis is
simple terms so anyone can understand it.  In a nutshell, we
could say that modal analysis is a process whereby we describe
a structure in terms of it's natural characteristics which are the
frequency, damping and mode shapes - it's dynamic properties.
Well that's a mouthful so let's explain what that means.  Without
getting too technical, I often explain modal analysis in terms of
the modes of vibration of a simple plate.  This explanation is
usually useful for engineers who are new to vibrations and
modal analysis.

FORCE

RESPONSE

Let’s consider a freely supported flat plate.  Let's apply a
constant force to one corner of the plate.  We usually think of a
force in a static sense which would cause some static
deformation in the plate.  But here what I would like to do is to
apply a force that varies in a sinusoidal fashion.  Let's consider a
fixed frequency of oscillation of the constant force.  We will
change the rate of oscillation of the frequency but the peak force
will always be the same value - only the rate of oscillation of the
force will change.  We will also measure the response of the
plate due to the excitation with an accelerometer attached to one
corner of the plate.

time

increasing rate of oscillation

Now if we measure the response on the plate we will notice that
the amplitude changes as we change the rate of oscillation of the
input force.  There will be increases as well as decreases in
amplitude at different points as we sweep up in time.  This
seems very odd since we are applying a constant force to the
system yet the amplitude varies depending on the rate of
oscillation of the input force.  But this is exactly what happens -
the response amplifies as we apply a force with a rate of
oscillation that gets closer and closer to the natural frequency
(or resonant frequency) of the system and reaches a maximum
when the rate of oscillation is at the resonant frequency of the
system.  When you think about it, that's pretty amazing since I
am applying the same peak force all the time - only the rate of
oscillation is changing!

frequency
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This time data provides very useful information.  But if we take
the time data and transform it to the frequency domain using the
Fast Fourier Transform then we can compute something called
the frequency response function. Now there are some very
interesting items to note.  We see that there are peaks in this
function which occur at the resonant frequencies of the system.
Now we notice that these peaks occur at frequencies where the
time response was observed to have maximum response
corresponding to the rate of oscillation of the input excitation.

Now if we overlay the time trace with the frequency trace what
we will notice is that the frequency of oscillation at the time at
which the time trace reaches it’s maximum value corresponds to
the frequency where peaks in the frequency response function
reach a maximum.  So you can see that we can use either the
time trace to determine the frequency at which maximum
amplitude increases occur or the frequency response function to
determine where these natural frequencies occur.  Clearly the
frequency response function is easier to evaluate.

You thought it was pretty amazing how the structure has these
natural characteristics.  Well, the deformation patterns at these
natural frequencies also take on a variety of different shapes
depending on which frequency is used for the excitation force.

MODE 1

MODE 2

MODE3

MODE 4

Now let's see what happens to the deformation pattern on the
structure at each one of these natural frequencies.  Let's place 45
evenly distributed accelerometers on the plate and measure the
amplitude of the response of the plate with different excitation
frequencies.  If we were to dwell at each one of the frequencies
- each one of the natural frequencies - we would see a
deformation pattern that exists in the structure.  The figure
shows the deformation patterns that will result when the
excitation coincides with one of the natural frequencies of the
system.  We see that when we dwell at the first natural
frequency, there is a first bending deformation pattern in the
plate shown in blue.  When we dwell at the second natural
frequency, there is a first twisting deformation pattern in the
plate shown in red.  When we dwell at the third and fourth
natural frequencies, the second bending and second twisting
deformation patterns are seen in green and magenta,
respectively.   These deformation patterns are referred to as the
mode shapes of the structure.  (That's not actually perfectly
correct from a pure mathematical standpoint but for the simple
discussion here, these deformation patterns are very close to the
mode shapes, for all practical purposes.)

Now these natural frequencies and mode shapes occur in all
structures that we design.  Basically, there are characteristics
that depend on the weight and stiffness of my structure which
determine where these natural frequencies and mode shapes will
exist.  As a design engineer, I need to identify these frequencies
and know how they might affect the response of my structure
when a force excites the structure.  Understanding the mode
shape and how the structure will vibrate when excited helps the
design engineer to design better structures.  Now there is much
more to it all but this is just a very simple explanation of modal
analysis.

Now we can better understand what modal analysis is all about -
it is the study of the natural characteristics of structures. Both
the natural frequency and mode shape (which depends on the
mass and stiffness distributions in my structure)  are used to
help design my structural system for noise and vibration
applications. We use modal analysis to help design all types of
structures including automotive structures, aircraft structures,
spacecraft, computers, tennis rackets, golf clubs, ... the list just
goes on and on.

I hope this very brief introduction helps to explain what modal
analysis is all about.  I know I explained modal analysis to my
Mom using the example above and I think for the first time she
actually understood what I actually do.  Since then, she has been
heard explaining it to her friends using a variety of words
closely resembling modal analysis, of which the best one was
the time she referred to it as noodle analysis ... but that's another
story!
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MODAL SPACE - IN OUR OWN LITTLE WORLD by Pete Avitabile
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Illustration by Mike Avitabile

Could you explain the difference between time domain, frequency domain and modal space?
I hear it all the time but I'm not sure what's the difference.
There's a lot to explain but let's start with something simple.

This question gets asked often.  There's a lot of different aspects
relating to this so let's start with a simple explanation without
using too much math and explain all of this with a simple
schematic.  Let's use the figure to discuss all these different
aspects of the time domain, frequency domain, modal space and
physical space.  Now there are a lot of parts to discuss in the
figure, so let's take them in pieces - one at a time - and then
summarize everything at the end.  You might also want to
remember the discussion we had before when you asked me
about what modal analysis was all about ("Could you explain
modal analysis for me?") to help with the discussion here.
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First, let's consider a simple cantilever beam and imagine that
the beam is excited by a pulse at the tip of the beam.  The

response at the tip of the beam will contain the response of all
the modes of the system (shown in the black time response
plot); notice that there appears to be response at several
different frequencies.  This time response at the tip of the beam
can be converted to the frequency domain by performing a
Fourier Transform of the time signal.  There is a significant
amount of math that goes along with this process but it is a
common transformation that we perform all the time.  The
frequency domain representation of this converted time signal is
often referred to as the frequency response function, or FRF for
short (shown in the black frequency plot); notice that there are
peaks in this plot which correspond to the natural frequencies of
the system.

Before we discuss the time and frequency plots any further, let's
talk about the physical model in the upper left part of the figure.
We know that the cantilever beam will have many natural
frequencies of vibration.  At each of these natural frequencies,
the structural deformation will take on a very definite pattern,
called a mode shape, as described previously [1].  For this
beam, we see that there is a first bending mode shown in blue, a
second bending mode shown in red and a third bending mode
shown in green.  Of course, there are also other higher modes
not shown and we will only discuss the first three modes here
but it could easily be extended to higher modes.

Now the physical beam could also be evaluated using an
analytical lumped mass model or finite element model (shown
in black) in the upper right part of the figure.  This model will
generally be evaluated using some set of equations where there
is an interrelationship, or coupling, between the different points,
or degrees of freedom (dof), used to model the structure.  This
means that if you pull on one of the dofs in the model, the other
dofs are also affected and also move.  This coupling means that
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the equations are more complicated in order to determine how
the system behaves.  As the number of equations used to
describe the system get larger and larger, the complication in the
equations becomes more involved.  We often use matrices to
help organize all of the equations of motion describing how the
system behaves which looks like

[ ] { } [ ] { } [ ] { } { }M x C x K x F t&& & ( )+ + =

where [M], [C], [K] are the mass, damping and stiffness
matrices respectively, along with the corresponding
acceleration, velocity and displacement and the force applied to
the system.  Usually the mass is a diagonal matrix and the
damping and stiffness matrices are symmetric with off-diagonal
terms indicating the degree of coupling between the different
equations or dofs describing the system.  The size of the
matrices is dependent on the number of equations that we use to
describe our system.  Mathematically, we perform something
called an eigensolution and use the modal transformation
equation to convert these coupled equations into a set of
uncoupled single dof systems described by diagonal matrices of
modal mass, modal damping and modal stiffness in a new
coordinate system called modal space described as
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So we can see that the transformation from physical space to
modal space using the modal transformation equation is a
process whereby we convert a complicated set of coupled
physical equations into a set of simple uncoupled single dof
systems.  And we see in the figure that the analytical model can
be broken down into a set of single dof systems where the
single dof describing mode 1 is shown in blue, mode 2 is shown
in red and mode 3 is shown in green.  Modal space allows us to
describe the system easily using simple single dof systems.

Now let's go back to the time and frequency responses shown in
black.  We know that the total response can be obtained from
the contribution of each of the modes.  The total response
shown in black comes from the summation of the effects of the
response of the model shown in blue for mode 1, red for mode 2
and green for mode 3.  This applies whether I describe the
system in the time domain or the frequency domain.  Each
domain is equivalent and just presents the data from a different

viewpoint.  It's a lot like money - as I go from country to
country, the money in each country looks different but it's really
the same thing.  So we can see that the total time response is
made up of the part of the time response due to the contribution
of the time response of mode 1 shown in blue, mode 2 in red
and mode 3 in green.  We can also see that the total FRF is
made up of the part of the FRF due to the contribution of the
FRF of mode 1 shown in blue, mode 2 in red and mode 3 in
green.  (We have only shown the magnitude part of the FRF
here; this function is actually complex which is correctly
displayed using both magnitude and phase or real and imaginary
parts of the FRF).

Since we can break the analytical model up into a set of single
dof systems, we could determine the FRF for each of the single
dof systems as shown with mode 1 in blue, mode 2 in red, and
mode 3 in green.  We could also determine the time response
for each of these single dof systems through a closed form
solution for the response of a single dof system due to the pulse
input or we could simply inverse Fourier Transform the FRF for
each of the single dof systems.  We could also measure the
response of the beam at the tip due to the pulse and filter the
response of each of the modes of the system, and we would see
the response of each of the modes of the system with mode 1
shown in blue, mode 2 in red and mode 3 in green.  (Of course,
I'm simplifying a lot of theory here so we can understand the
concepts.)

Now that we have pulled apart all the pieces of the figure, I
think it should be much clearer that there is really no difference
between the time domain, frequency domain, modal space and
physical space.  Each domain is just a convenient way for
presenting or viewing data.  However, sometimes one domain is
much easier to see things than another domain.  For instance,
the total time response does not clearly identify how many
modes there are contributing to the response of the beam.  But
the total FRF in the frequency domain is much clearer in
showing how many modes are activated and the frequency of
each of the modes.  So often we transform from one domain to
another domain simply because the data is much easier to
interpret.

While there is a lot more to it all, I hope this simple schematic
and explanation helps to put everything in better perspective.
Think about it and if you have any more questions about modal
analysis, just ask me.
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Is there any difference between a modal test with a shaker excitation or impact excitation?
Well ... that's a good question.
The answer is yes and no.

This is another question that gets asked often.  There's a lot of
different aspects relating to this.  Let's start with some basics to
understand why it is so difficult to answer this question as either
yes or no.  A few simple equations are needed to help explain
this.

First, we have to remember that any system can be described by
it's equation of motion.  Basically, the equation is simply the
force balance of mass times acceleration plus damping times
velocity plus stiffness times displacement which is equal to the
applied force.   For a number of reasons, it is easier to work
with this equation in the Laplace domain.  By taking the
Laplace transform of the equation of motion, we can write

[ ] [ ] [ ][ ]{ } { } [ ]{ } { }M s C s K X s F s B s X s F s2 + + = ⇒ =( ) ( ) ( ) ( ) ( )

We use matrices to help organize all of the equations.
Remember that [M], [C], [K] are the mass, damping and
stiffness matrices respectively.  It is very important to note that
these matrices are symmetric.  Therefore, the system matrix,
[B(s)], is also symmetric.  The system transfer function is the
inverse of the system matrix given by
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And, of course, you remember that the frequency response
function that we measure during a modal test is nothing more
than the system transfer function evaluated along the frequency
axis.  Most of the time, we write the frequency response

function in partial fraction form, for convenience, as
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So why did I bother writing out all these equations?  That's
because there are some very important things to note in these
equations relative to your question.  Remember that [B(s)] and
[H(s)] are symmetric since [M], [C], and [K] are symmetric.
That means that  [H(jω)] is also symmetric.  This implies that
hij=hji which is called reciprocity.  This means that you can
measure the FRF by impacting point 'i' and measuring the
response at point 'j' and get exactly the same FRF as impacting
point 'j' and measuring the response at point 'i'.  This is what is
meant by reciprocity.

Now, let's consider an impact test situation for a simple beam
with three measurement locations.  There are a total of nine
possible input-output FRFs that could be measured.  But for this
case, let's put our accelerometer at point 3 and make FRF
measurements by impacting the beam at point 1, 2, and 3.  We
call point 3 the reference location since it is the same response
point for each of the measurements that I make.  Since the
hammer is roving from one point to another point, the FRFs that
are measured come from one row of the FRF matrix, the last
row of the matrix.
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Impact Test Measurements
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Before we talk about anything else, let's discuss the same set of
measurements from a shaker test.  Let's place our shaker at point
3 and make FRF measurements by roving the accelerometer to
point 1, 2, and 3 on the beam; note that point 3 is still the
reference location since the force is applied to the same point
for each measurement.  Now that the force is stationary, the
FRFs that are measured come from one column of the FRF
matrix, the last column of the matrix.

If I look at the measurements taken, I'll notice that h13 from the
shaker test is exactly the same as h31 from the impact test.  Also
notice that h23 from the shaker test is exactly the same as h32
from the impact test.  Well, this is what reciprocity is all about.
So, from a theoretical standpoint, it doesn't matter whether I
collect data from a shaker test or an impact test.  The data is
exactly the same - from a theoretical standpoint.  If fact, there is
no reason why the impact test can't be performed by impacting
the same point on the structure and roving the accelerometer
around to all the different measurement locations.  I could draw
the same analogy for the shaker test also.  We could keep the
response accelerometer at the same location and move the
shaker from point to point (but I don't know anyone who wants
to run a test that way!)  The point is that from a theoretical
standpoint, it doesn't matter how the data is collected as long as
the input-output characteristics are obtained.

So the answer is that there is no difference between a shaker test
and an impact test.  That is, from a theoretical standpoint!  If I
can apply pure forces to a structure without any interaction
between the applied force and the structure and I can measure
response with a massless transducer that has no effect on the
structure - then this is true.  But what if this is not the case.

Now let's think about performing the test from a practical
standpoint.  The point is that shakers and response transducers
generally do have an effect on the structure during the modal
test.  The main item to remember is that the structure under test

Shaker Test Measurements

1 2 3
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h33

h13

is not just the structure that you would like to obtain modal
data.  It is the structure plus everything involved in the
acquisition of the data - the structure suspension, the mass of the
mounted transducers, the potential stiffening effects of the
shaker/stinger arrangement, etc.  So while theory tells me that
there shouldn't be any difference between the impact test results
and the shaker test results, often there will be differences due to
the practical aspects of collecting data.

The most obvious difference will occur from the roving of
accelerometers during a shaker test.  The weight of the
accelerometer may be extremely small relative to the total
weight of the whole structure, but it's weight may be quite large
relative to the effective weight of different parts of the structure.
This is accentuated in multi-channel systems where many
accelerometers are moved around the structure in order to
acquire all the measurements.  This can be a problem especially
on light weight structures.  One way to correct this problem is to
mount all of the accelerometers on the structure even though
only a few are measured at a time.  Another way is to add
dummy accelerometer masses at locations not being measured;
this will eliminate the roving mass effect.

Another difference that can result is due to the shaker/stinger
effects.  Basically, the modes of the structure may be affected
by the mass and stiffness effects of the shaker attachment.
While we try to minimize these effects, they may exist.  The
purpose of the stinger is to divorce the effects of the shaker
from the structure.  However, on many structures, the effects of
the shaker attachment may be significant.  Since an in impact
test does not suffer from these problems, different results may
be obtained.

So while theory says that there is no difference between a
shaker test and an impact test, there are some very basic
practical aspects that may cause some differences.  I hope this
clears up this question.   
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Is there a difference between a roving hammer and roving accelerometer test?
Well ... it depends
Let's explain what the differences could be.

Basically, there is no difference between a roving hammer and
roving accelerometer modal test.  This is true providing the
same measurements are collected.  Let me explain by discussing
this seemingly simple but tricky fine point about a modal test.

Back when we performed a modal test with a 2 channel
analyzer, it was fairly straightforward to perform an impact test.
Usually, the hammer roved around the structure with a
stationary accelerometer.  Typically, we impacted the structure
at every point in the x, y, and z directions to obtain FRFs
relative to the reference location of the stationary accelerometer.
But when we started using multichannel analyzers to perform
the same test, there are some slight differences that need to be
addressed.  Let's consider an impact test for the 9 points shown
on the structure.  Let's also assume that I have an impact
hammer and a tri-axial accelerometer with a 4 channel FFT
analyzer or acquisition system.
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STRUCTURE

One way to run the test is to place the tri-axial accelerometer at
a fixed location and impact, in one direction, at all 9 points.  We
would then obtain 27 FRFs for the structure.  Another way to
run the test is to impact at one point, in one direction, and have
the tri-axial accelerometer rove to all 9 points.  Again we would
collect 27 FRFs.  So in both cases, we measure 27 FRFs by
impacting in only one direction.

But are the two tests the same?   At first glance, you would
think that both test setups should produce the same results.  In
order to confirm whether this is true or not, let's step through the
measurement process and list out what measurements are
actually being made for each test setup.

Test Setup #1

Let's say that we want to run a modal test shown in setup #1.  In
this test, the tri-axial accelerometer is stationary at point 9 and
measures x, y, and z outputs.  The input hammer force is
applied in the z direction only and roves to each of the 9 points
shown.

Now let's list each of the FRFs that will be collected from this
test setup.  When we impact point 1 in the z direction, the
response is measured at 9x, 9y, and 9z.  So the FRFs measured
are 9x/1z, 9y/1z, 9z/1z for the first measurement made.  Next
we impact point 2 in the z direction and the response is
measured at 9x, 9y, and 9z.  This set of FRFs are 9x/2z, 9y/2z,
9z/2z.  We can continue on here but I think you get the hang of
it.  But what did we actually measure?  Let's arrange all of these
measurements in the FRF matrix to see what we have.
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When we take a close look at the FRF matrix, we notice that we
have measured only parts of three different rows of this matrix.
So we only have three partial descriptions of the characteristic
of the system.  But in each of the partial descriptions, we can
only see the characteristic information in the z direction.  This
would be fine if there was only motion in the z direction.  But
what if there was significant motion in the z direction when the
structure is excited in the x direction?  We have only measured
response due to excitation in the z direction!

Test Setup #2

Now let's say that we also want to run the modal test shown in
setup #2.  In this test, the hammer impacts only in the z
direction at point 9.  The tri-axial accelerometer roves to each of
the 9 points shown for this test, measuring the x, y, and z
directions.

Let's list each of the FRFs that will be collected from this test
setup.  When we impact point 9 in the z direction, the response
is measured at 1x, 1y, and 1z.  So the FRFs measured are 1x/9z,
1y/9z, 1z/9z for the first measurement made.  Next we move the
accelerometer to point 2 and the response is measured at 2x, 2y,
and 2z.  This set of FRFs are 2x/9z, 2y/9z, 2z/9z.  So what did
we actually measure?  Again, let's arrange all of these
measurements in the FRF matrix to see what we have.

Now we notice that we have measured one complete column of
the FRF matrix.  Now we can describe the response of the
system in a more complete sense.  We have now measured
enough FRFs that we can describe the response of the system
for all points.  Of course, I'm assuming that the reference
location at point 9 in the z direction is not the node of a mode!
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So what should I do?

So while it appeared on the surface that both tests were the
same, there actually is a difference!!!  So how could I change
these test setups so that the same data is measured.  Well, there
are two ways.  First, Setup #1 could be changed as follows.
Instead of using a tri-axial accelerometer, we could use a single
uniaxial accelerometer to acquire data at 9z, for instance.  But
the difference would be that the impact excitation needs to be
applied in the x, y and z directions.  Then the data collected
would be a row of the FRF matrix with 9z as the reference.
This is exactly the same data as collected in Setup#2 provided
that reciprocity holds true.

The other way to make sure that the same data is collected is as
follows.  In Setup #1, the impact hammer needs to be used to
excite the x, y, and z direction.  So the roving hammer needs to
impact in all three directions.  In Setup #2, the stationary impact
at point 9 would need to be used to excite the structure in all
three directions.  Both tests would then produce 3 complete
rows or columns of the FRF matrix.

Now you still may be a little confused by this.  I know it's not
easy to comprehend the first time you hear it.  The best way to
convince yourself is to write out all the FRF measurements that
you intend to collect to assure that at least one complete row or
one complete column of the FRF matrix is acquired.

I hope this simple explanation helps to clear up your question.
You need to carefully think about the measurements you are
going to make.  Remember what I always say: "Thinking is not
optional!"  If you have any more questions about modal
analysis, just ask me.
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Should I always use a hard tip for impact testing . . .
so the input spectrum is flat over all frequencies?
Well . . . too hard a tip may cause problems.

For some reason, everyone thinks that the input spectrum should
be flat over the whole frequency range of interest when
performing an impact test.  But what do we mean by "flat"
anyway.  Well, it would be better to say that the input spectrum
should be "reasonably flat" over all frequencies with "no
significant drop-outs or zeros" in the frequency spectrum.  So
what does that mean.

Basically, we want the input spectrum to have sufficient, fairly
even excitation over the frequency range of concern.  If the
input spectrum were to completely drop off to zero, then the
structure would not be excited at that frequency which is not
desirable.  I use the words "reasonably flat" to allow for some
engineering judgment as to what is acceptable.

Of course, many times people don't like engineers to use
judgment, so they identify specific criteria or limits to force the
situation to be controlled.  At times, specifications have been
written with specific criteria such as "the input spectrum should
roll-off no more than 3 dB over the FFT analysis frequency
range".  This is a very specific requirement which does not
allow the engineer to think.  It just forces him to follow a rule
without thinking.  A criteria like this one may force a poor
measurement to be made.  But if we don't have to think (or are
not allowed to think) then inappropriate measurements could be
acquired.

Now you asked about using a hard tip for all your impact tests.
I'll answer that in a minute but first let's discuss some basics
about the selection of hammer tips for an impact test.  First of
all, let's remember that the input force spectrum exerted on the
structure is a combination of the stiffness of the hammer/tip as
well as the stiffness of the structure.  Basically the input power
spectrum is controlled by the length of time of the impact pulse.

A long pulse in the time domain, results in a short or narrow
frequency spectrum.  A short pulse in the time domain, results
in a wide frequency spectrum.

Let's look at some cases and see what this means from a
measurement standpoint.  (In all the following figures, black is
the FRF, blue is the input spectrum and red is the coherence).

Now let's use a very soft tip to excite a structure over an 800 Hz
frequency range.  As shown in Figure 1, we see that the input
power spectrum (blue) has some significant roll-off of the
spectrum past 400 Hz.  We also notice that the coherence (red)
starts to drop off significantly after 400 Hz and the FRF (black)
does not look particularly good past 400 Hz.  The problem here
is that there is not enough excitation at higher frequencies to
cause the structure to respond.  If there is not much input, then
there is not much output.  Then none of the measured output is
due to the measured input and the FRF as well as the coherence
are not acceptable.

40

-60

dB Mag

0Hz 800Hz

Figure 1 - Very Soft Tip

Now let's use a very hard tip to excite a structure over a 200 Hz
frequency range.  As shown in Figure 2, we see that the input
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power spectrum (blue) is extremely flat over all frequencies of
interest.  We also notice that the coherence (red) is not
particularly good for this measurement.  The problem here is
that there is too much excitation at higher frequencies causing
all the modes of the structure to respond.  (We'll discuss this
further in a moment.)

50

-50

dB Mag

0Hz 200Hz

Figure 2 - Very Hard Tip

Now let's use a medium hardness tip to excite a structure over
an 200 Hz frequency range such that the input force spectrum
does not drop off significantly by the end of the frequency range
of interest.  As shown in Figure 3, we see that the input power
spectrum (blue) rolls off by 10 to 20 dB by 200 Hz.  We also
notice that the coherence (red) looks especially good at all
frequencies over the 200 Hz band with the exception of anti-
resonances.  The drop off of the coherence is fully acceptable at
these frequencies since the structure is non-resonant (anti-
resonant) at these frequencies.  This means that there is no
response to measure so the coherence is expected to drop here.
This is a good measurement.
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Figure 3 - The Right Tip

Notice that the input spectrum is not perfectly flat as you
suggested it should be.  In fact, when the input is almost
perfectly flat as shown in Figure 2, the measurement is not as
good.  Let's explain why this happens.  Consider the
measurement shown in Figure 4.  This measurement was taken
over a 400 Hz bandwidth.  The hammer tip used had
approximately 20 dB rolloff over the 400 Hz band which is
probably acceptable for this measurement.

Now let's say that I wanted to only measure to 128 Hz and that I
wanted to impose a restriction that the input spectrum could not
roll off more than 3 dB.  Well look at Figure 4 with the 128 Hz
bandwidth specified.  The input force spectrum rolls off

approximately 2 to 3 dB over this 128 frequency band.  So the
measurement should be acceptable.  But what you have to
realize is that while the analysis frequency band is only 128 Hz,
the response of the structure is based on the energy imparted to
the structure.  So the structure responds well past 128 Hz
because the input force excites all of those modes - even though
I might not be interested in those frequencies.
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EXCITES MODES
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OF INTEREST

Figure 4 - Exciting Modes Outside the Band of Interest

The accelerometer, mounted on the structure, measures all that
response and outputs a voltage which is input to the analyzer.
Just doing a quick eyeball of the total area under the curve of
the FRF, it appears that only one-third of the energy is
associated with the bandwidth of interest.  The rest of the
energy is associated with something that I'm not interested in
measuring.  But the accelerometer senses that energy!  The
ADC on your analyzer may need to be setup such that an
overload does not occur due to the total response of the
structure.

If the signal is not analog filtered before it reaches the analyzer,
then the ADC may need to set excessively high to avoid a
potential overload.  Remember, most of the energy of the signal
is probably outside the 128 Hz bandwidth of interest!!!  This
results in a quantization problem in the ADC.  This can easily
be corrected through the use of an impact tip that does not
needlessly excite modes outside the bandwidth of interest.

So now you can see why I don't like to use a hard tip all the time
for impact testing.  Sure it gives a good flat input force
spectrum.  The problem is that it excites more modes than
desired and may cause a poor measurement.  Think about it and
if you have any more questions about modal analysis, just ask
me.
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Which shaker excitation is best?  Is there any difference?
Well ... that's a good question
Let's talk about the different techniques.

Let's discuss the most commonly used excitation techniques for
modal analysis today.  These are random, burst random, sine
chirp and digital stepped sine.  But before we discuss the
excitation techniques themselves, there are a few basics that we
need to discuss first.  Let's try to categorize the different
techniques and explain when to use which technique.  First of
all, let's break up the excitations into deterministic and non-
deterministic (or random) excitations.

Deterministic signals are those that can be described at any
point in time by a mathematical function - they can be
determined.  Typical signals of this type are sinusoidal in
nature, such as sine chirp and digital stepped sine.  Random
signals, on the other hand, can not be described by a
mathematical function but are rather described by their
statistical characteristics.  Typical signals of this type are
random and burst random.

In general, we use deterministic signals on linear systems.  We
also use deterministic signals to determine if a system is linear
by performing a linearity check.  We use random signals to
average slight nonlinearities in a system due to things such as
rattles.  If we have a structure that has gross nonlinearities, then
we need to stop and think just how useful the results of a linear
modal analysis will be.  But understanding the difference
between these two categories helps in deciding which technique
will provide the best measurement.  Depending on the system
being tested, you may want to document the linearity of the
system under test, or you may want to linearize any slight
nonlinearities that exist..

Now first, let's consider a random excitation.  Random is used
quite widely for general vibration testing today.  But it is not
considered one of the best techniques for acquiring FRF

measurements for modal testing (although it is still often used).
The random nature of the signal excites the structure with
varying amplitude and phase as averages are collected.  This
tends to average any slight nonlinearities that may exist in the
structure.  While this is a benefit, the signal nevers satisfies the
periodicity requirement of the FFT process.  Therefore, leakage
is a tremendous problem.  Even with a Hanning window
applied, the resulting FRFs will always suffer from leakage; the
peak amplitude will be affected and there will be an appearance
of more damping in the structure due to the leakage and
windowing effects.  A typical measurement sequence is shown
in Figure 1.  The resulting FRF and COH are shown in Figure 2.
Notice how the coherence dips at the resonances of the system;
this is a characteristic of random excitation.

AUTORANGING AVERAGING WITH WINDOW

1 2 3 4

INPUT 

OUTPUT 

FRF

Figure 1 - Typical Random Measurement Sequence

Now, let's consider a burst random excitation.  The only
difference is that the random signal is only used during a
portion of the data capture.  If a pretrigger delay is also used,
then the signal is totally observed within one sample interval.
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Figure 2 - Random Excitation w/Hanning
0Hz 400HzAVG:   10

COHERENCE

FREQUENCY RESPONSE FUNCTION

Figure 4 - Burst Random Excitation
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Figure 5 - Sine Chirp Excitation

Therefore, the signal satisfies the periodicity requirement of the
FFT process.  This means that no leakage will occur and no
window is needed.  Of course, both the input and
responsesignals need to satisfy this requirement.  This is easily
done for most structures.  This signal is well suited for
averaging out slight nonlinearities that may be found in the
measurement.  A typical time measurement is shown in Figure
3.  Notice that the excitation is terminated such that the response
signal also decays to zero within the sample interval.  The
resulting FRF and COH are shown in Figure 4.  Notice the
improvement in the measurement and coherence when
compared to Figure 2.  The peaks are much sharper and better
defined; the coherence is especially good at the resonances.

END OF BURST

SHAKER OFF

INPUT EXCITATION

   

SHAKER OFF

RESPONSE
EXPONENTIALLY
DECAYS

STRUCTURAL

OUTPUT RESPONSE

Figure 3 - Typical Random Measurement Sequence

Now, the sine chirp is a fast sweep from low to high frequency
within one sample interval of the analyzer.  The signal repeats
and therefore satisfies the periodicity requirement of the FFT
process.  This means that no leakage will occur and no window
is needed.  Of course, the signal must be played continuously so
that the structure steady state response is achieved.  The
resulting FRF and COH are shown in Figure 5.  The
measurement is very similar to the results from the burst random
test.  By changing the input force level applied to the system,
linearity checks can be easily made using this excitation
technique.

Finally, the digital stepped sine technique requires that a single
frequency, coincident with an analyzer spectral line, is used to
excite the system.  Since the signal is guaranteed to be periodic
with regards to the FFT process, no leakage occurs and no

windows are necessary.  Since it is not broadband in nature, this
technique is the slowest of all techniques because each spectral
line is evaluated individually.  However, it is excellent for
documenting nonlinearities and is likely to produce the best
measurement of all the excitation techniques above.

When comparing the techniques, the burst random and sine
chirp will produce similar results if the system is linear.  In
general, the random measurement will always suffer from
leakage and the quality of the measurement will suffer when
using this technique.  To illustrate the degradation of the
measurement when using random excitation,  Figure 6 compares
random and burst random with an expanded look around the
first resonant peak of the system.  The random signal contains
alot of variance and the peak is distorted at resonance (where
the coherence is known to dip).  In fact, there almost appears to
be two modes at that frequency; this is due to the distortion of
leakage.  The burst random measurement is clean and sharp.
Clearly, the burst random measurement is the better of the two
measurements.

117Hz 143Hz

RANDOM

BURST RANDOM

Figure 6 - FRF for Burst Random and Random

We could spend alot more time discussing all the details of each
of the techniques (as well as others not mentioned) but there
isn't enough time right now to cover everything.  Maybe another
time we can discuss each of the techniques in more detail.  But
this quick overview should give you what you need to know.  If
you have any more questions on modal analysis, just ask me.
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Curvefitting is so confusing to me!
What do all the different techniques mean?
There's a lot to it all ...

Curvefitting is probably the most difficult part of the whole
experimental modal analysis process for most people.  Actually,
its better to refer to it as modal parameter estimation.  But that's
a mouthful - so we usually just call it curvefitting.  But we are
actually trying to extract modal parameters (frequency, damping
and mode shapes) from measured data.  Let's discuss a few
general items first.

Basically, we need to describe the system in terms of it's modes
of vibration.  For example, the three mode system shown in Fig
1 can be described by the following frequency domain
representation of the system as
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Now as you start to look at this measurement, some quick
thoughts come to mind.  How many data points should I use?
What should the order of the model be?  Are there any effects
from modes outside the band of the curvefitter?  Does the same
technique need to be applied to all the modes?  When do I use a
SDOF vs. a MDOF technique?  Should I use a time or
frequency domain curvefitter?  (And the most important thing
that should come to mind is - Oh how I wished I listened in
modal class that day instead of going out to party!)
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ω ω ω
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Figure 1 - Three mode system
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Force data to pass thru zero
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Allow for compensation
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y = m x + b

Use only part of the data
Figure 3b
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Figure 4a Figure 4b Figure 4c Figure 4d

First let's consider the some simple force gage calibration data
in Fig 2.  Now if the force gage should read zero at zero load,
then Fig 2a represents the best straight line fit of the data - but
that fit doesn't look very good.  But what if the force gage had a
preload.  Then it may be necessary to allow for some
compensation as shown in Fig 2b.  And what if some of the
measured data was outside the useful range of the force
transducer.  Possibly only a portion of the data should be used
as shown in Fig 2c.  And who said that the force gage was linear
with a first order approximation of y=mx+b?  I could possibly
envision a cubic function that would better describe the
measured data.  For some reason everyone understands this
force gage example but have a hard time realizing that my
measured FRF has the same characteristics.  Basically the
analyst must decide on the order of the model, the amount of
data to use and the need for residual compensation as shown in
Fig 3.  The basic equation to address this measurement is
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Basically, I select a band of modes to fit, specify the order of
the model and decide on inclusion of residual terms.

Now I need to know when to use a SDOF or MDOF technique.
What I need to know is how much modal overlap exists from
one mode to the next.  Fig 4 shows a variety of different
situations for a two DOF system.  Fig 2a shows modes that are
well separate with very light damping.  These types of modes
can be approximated with a SDOF fit.  Fig 2b shows modes that
are closely spaced with very light damping.

HOW MANY POINTS ???

RESIDUAL
EFFECTS RESIDUAL

EFFECTS

HOW MANY MODES ???

Figure 3 - Schematic of Analyst Curvefitting Decisions

There is some overlap from one mode to the next which may
not be correctly compensated with a SDOF fit.  It is likely that a
MDOF fit may need to be employed for these two modes.  Fig
4c shows well separated modes but damping causes some
overlap which may also require a MDOF fit.  But for both of
these last two cases, you may try a SDOF fit for comparison
with the MDOF fit.  Fig 4d shows modes that are closely spaced
with heavy damping.  A MDOF fit would be needed for this
case.

The last thing to consider is whether to use a time or frequency
domain technique.  The mathematical relationship is basically
the same - it just looks different.  Many times we write a
relationship in a given form because there is some mathematical
gimmick that makes the equation easier to solve or more
efficient from a computational standpoint.  But, in essence, both
domains are equivalent.  However, many times we tend to use
the time domain techniques for lightly damped systems and the
frequency domain techniques for heavily damped systems.

If I now look at Fig 5, what would I think would be appropriate
for estimating parameters for this measurement.  Well it is
probably allright to use a SDOF for that first peak.  But modes 2
and 3 are too closely spaced to use a SDOF, so most likely a
MDOF technique would be used for these modes.  Another
thing to realize is that the cursors don't need to overlap or cover
the whole frequency band.  Remember that we are trying to
extract parameters that identify the frequency, damping and
residue for the system for each of the modes.

SDOF

MDOF

Figure 5 - Possible Curvefit Bands

We really need to spend a lot more time discussing all the
details of each of the techniques but there isn't enough time
right now to cover everything.  But this quick overview should
give you an idea of some of the concepts involved.  Think about
what we have discussed and maybe another time we can discuss
each of the techniques in more detail.  If you have any more
questions on modal analysis, just ask me.
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I still don't understand curvefitting ...
How do you get mode shapes from FRFs?
Well . . . let's see if we can clear this up.

Modal parameter estimation (commonly referred to as
curvefitting) is probably, by far, the hardest part of experimental
modal analysis for most people to understand.  I know I can
write out all the equations to explain this.  But I will probably
bore you to death.  Not only do I have to write out all the
equations relating to the modal parameter estimation process, I
also have to show the equations relating the residue to the mode
shape.  And, of course, the concept of a residue is another
abstract concept.  (Oh, how I wished they had called it a mode
shape rather than a residue since this only confuses everyone.)

Last time (Feb 1999), we talked about the curvefitting model
and the basic equation we use for estimating parameters, of
which one form is
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Now those terms in the matrix, [A], are the residues which are
obtained from the curvefitting process; we also get the poles, or
frequency and damping, from the denominator of the equation.
Now these residues can be shown to be related to the mode
shapes.  Without going through all the steps, the resulting
relationship is shown below (with some terms expanded)

( )[ ] { } { }A s q u u
k k k k

T=

a a a
a a a
a a a

q

u u u u u u
u u u u u u
u u u u u u

k k k

k k k

k k k
k

k k k k k k

k k k k k k

k k k k k k

11 12 13

21 22 23

31 32 33

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

L

L

L

M M M O

L

L

L

M M M O



















=



















And if we were to look at each of the columns we would see the
mode shape is contained in the column with some scalar
multipliers; we would also see that due to reciprocity, the rows
also contain the mode shapes.  If we were to look at one
column, such as the first column, then we would see
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The residues are, therefore, nothing more than the mode shape
multiplied by a scalar which is the value of the mode shape at
the reference location, u, and the scaling constant, q.  (The q
scale constant allows for mode shapes to be represented with
different scale constants (unit modal mass, unit length, etc.)

Great, so here are some equations that you may or may not fully
understand or appreciate.  Maybe a better way to explain the
concept is through some simple pictures.  Let's go back to that
simple plate that we discussed some time ago (Feb 1998) and
explain very simply how we can get mode shapes from
measurements (then maybe you'll appreciate what the math is
doing for us).
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MODE 1

Now let's take some measurements on the plate so that we get a
total of 6 FRFs - at the 4 corners and at the 2 mid-points.  We
want to be able to determine what the first two mode shapes
look like from these measurements.  Now we could look at the
log magnitude of the FRFs but this is not very useful since all
the peaks would be positive in this plot.

A more informative plot is the imaginary part of the FRF.  This
shows both amplitude and, most importantly, the direction of
the response.  Without getting into all of the technical math, we
know that the peak amplitude of the imaginary part of the FRF
is directly related to the residue (and the residue is related to the
mode shape).  This approximate equation is shown below
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This very simplistic approach to determining mode shapes is
commonly referred to as peak picking since we are picking the
peak of the FRF.  Now let's look at some of the peaks for each
of the measurements at each of the points.  (In all of the plots
shown, the amplitude of the scale ranges from minus one to plus
one and the dashed line is one-half.  In addition, the frequency
axis has been removed.)  Now let's just concentrate on mode 1
first and then go on to mode 2.

Look at the FRF for mode 1 for point 1.  Notice that this
amplitude is 0.5 and it is negative.  If we look at point 2, then
we see that the amplitude is also 0.5 and it is also negative.
This means that point 1 and 2 are moving with the same
amplitude and in the same direction for mode 1.  If we look at
point 5 and 6, we see the same thing as point 1 and 2.  So we
can see that points 1, 2, 5, and 6 are all moving with the same
amplitude in the same direction.
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6

MODE 2

A important point to make here is that if I only measure these
four points, then it would appear to me that the mode shape of
the plate would be a rigid body mode (all four points moving
together with equal amplitude).  This is a common problem
encountered when too few points are used to describe the mode
shape of a system.

Now look at point 3 for mode 1.  Notice that since amplitude is
0.5 but that it is positive.  Then same can be said for point 4.  So
we see that point 3 and 4 have the same amplitude and move in
the same direction together.  But we also notice that points 3
and 4 are moving in the opposite direction from the rest of the
points.  Now, while we haven't measured more than 6 points,
we start to see that the plate is deflecting into a pattern that is
plate bending in characteristic.  If we measured more points,
then we would see a much better defined mode shape.

Now if we look at mode 2 we can step through and look at all
the points and what we will see is that point 1 and 2 have the
same amplitude but now they are moving in opposite directions.
The same is true for points 5 and 6.  But we notice that points 1
and 5 are also moving in opposite directions; the same is true
for points 2 and 6.  So we see that there is some type of twisting
or torsional type deformation pattern for mode 2.  If we look at
points 3 and 4, we notice that these points have zero value.  This
is because points 3 and 4 are node points for the torsional mode
of the plate.  Again, adding more points better defines the shape.

So now we can see that the peaks of the imaginary part of the
FRF are directly related to the mode shape of the plate for each
of the modal peaks.  Without going through all the math, the
residues are terms that are extracted from the curvefitting
process and these residues are directly related to the modes
shapes of the plate.  This was shown pictorially to keep things
simple.

I hope that this helps to clear up the mystery as to how we get
mode shapes from FRFs.  Think about it and if you have any
more questions about modal analysis, just ask me.
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What's the difference between operating deflection shapes
 and mode shapes?  sometimes they look the same to me!
Well . . . let's describe the differences.

This is a common stumbling point for many people.  This is
partly due to the words that we use.  I would much rather call
the data we receive from an operating condition, an operating
deflection pattern, rather than use the word shape.  But
unfortunately, I can't change the nomenclature at this point.

Let's first recall how a structure responds, in general, due to any
excitation

h j f j y j( ) ( ) ( )ω ω ω× =                    (1)
Of course, we realize that the input forcing function is actually
applied in the time domain but we represent it in the frequency
domain; also the response actually occurs in the time domain
but it can also be represented it in the frequency domain.

So for a structure which is exposed to an arbitrary input
excitation, the response can be computed using the frequency
response function multiplied by the input forcing function.  This
is very simply shown in the schematic in Figure 1.

INPUT TIME FORCE

INPUT SPECTRUM

OUTPUT TIME RESPONSE

OUTPUT SPECTRUM

f(t)

FFT

y(t)

IFT

f(j   )ω y(j   )ωh(j   )ω

INPUT FORCE

RESPONSE

FREQUENCY RESPONSE FUNCTION

Figure 1 - Schematic Overviewing the Input-Output Structural
Response Problem

The excitation shown is a random excitation that excites all
frequencies.  The most important thing to note is that the
frequency response function acts as a filter on the input force
which results in some output response.  The excitation shown
causes all the modes to be activated and therefore, the response
is, in general, the linear superposition of all the modes that are
activated by the input excitation.  Now what would happen if
the excitation did not contain all frequencies but rather only
excited one particular frequency (which is normally what we are
concerned about when evaluating operating conditions).

Let's consider a simple plate that is excited by an input force
that is sinusoidal in nature.  And let's also assume that the force
is applied at one corner of the plate.  For the example here, we
are only going to consider the response of the plate assuming
that there are only 2 modes that are activated by the input
excitation.  (Of course there are more modes, but let's keep it
simple to start.)  Now from figure 1 and equation 1 we realize
that the key to determining the response is the FRF between the
input and output locations.  Also, we need to remember that
when we collect operating data, we don't measure the input
force on the system and we don't measure the system FRF - we
only measure the response of the system.

First let's excite the system with a sinusoid that is right at the
first natural frequency of the plate structure.  The response of
the system for one FRF is shown in Figure 2.  So even though
we excite the system at only one frequency, we know that the
FRF is the filter that determines how the structure will respond.
We can see that the FRF is made up of a contribution of both
mode 1 and mode 2.  We can also see that the majority of the
response, whether it be in the time or frequency domain, is
dominated by mode 1.  Now if we were to measure the response
only at that one frequency and measure the response at many
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points on the structure, then the operating deflection pattern
would look very much like mode 1 - but there is a small
contribution due to mode 2.  Remember that with operating
data, we never measure the input force or the FRF - we only
measure the output response.  So that the deformations that are
measured are the actual response of the structure due to the
input excitation - whatever it may be.

MODE 1 CONTRIBUTION MODE 2 CONTRIBUTION

Figure 2 -  Excitation Close to Mode 1

When we measure FRFs and estimate modal parameters, we
actually determine the contribution to the total FRF soley due to
the effects of mode 1 acting alone, as shown in blue, and mode
2 acting alone, as shown in red, and so on for all the other
modes of the system.  Notice that with operating data, we only
look at the response of the structure at one particular frequency
- which is the linear combination of all the modes that
contribute to the total response of the system.  So we can now
see that the operating deflection pattern will look very much
like the first mode shape if the excitation primarily excites mode
one.

Now let's excite the system right at the second natural
frequency.  Figure 3 shows the same information as just
discussed for mode 1.  But now we see that we primarily excite
the second mode of the system.  Again, we must realize that the
response looks like mode 2 - but there is a small contribution
due to mode 1.

Figure 3 - Excitation Close to Mode 2

But what happens when we excite the system away from a
resonant frequency.  Let's excite the system at a frequency
midway between mode 1 and mode 2.  Now here is where we
see the real difference between modal data and operating data.
Figure 4 shows the deformation shape of the structure.  At first

glance, it appears that the deformation doesn't look like
anything that we recognize.  But if we look at the deformation
pattern long enough, we can actually see a little bit of first
bending and a little bit of first torsion in the deformation.  So
the operating data is primarily some combination of the first and
second mode shapes.  (Yes, there will actually be other modes
but primarily mode 1 and 2 will be the major participants in the
response of the system.)

Figure 4 - Excitation Somewhere Between Mode 1 and Mode 2

Now, we have discussed all of this by understanding the FRF
contribution on a mode by mode basis.  When we actually
collect operating data, we don't collect FRFs but rather we
collect output spectrums.  If we looked at those, it would not
have been very clear at to why the operating data looked like
mode shapes.  Figure 5 shows a resulting output spectrum that
would be measured at one location on the plate structure.  Now
the input applied to the structure is much broader in frequency
and many modes are excited.  But, by understanding how each
of the modes contributes to the operating data, it is much easier
to see how the modes all contribute to the total response of the
system.   So actually, there is a big difference between operating
deflections and mode shapes - we can now see that the modes
shapes are summed together in some linear fashion to form the
operating deflection patterns.  I hope that this helps to clear up
the mystery as to the differences between operating deflection
patterns and mode shapes.

INPUT SPECTRUM

OUTPUT SPECTRUM

f(j   )ω

y(j   )ω

FREQUENCY RESPONSE FUNCTION

Figure 5  - Broadband Plate Excitation

Think about it and if you have any more questions about modal
analysis, just ask me.
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Are you sure you can get mode shapes from one row or column of the H matrix?
Sure!   Let's walk through an example.

Let's use the beam that we have discussed before as an example.
For this beam, we considered three measurement points.  There
are a total of nine possible input-output FRFs that can be
measured.  Remember we discussed that these measurements
can be obtained from either shaker or impact testing.  So that we
have some numbers to discuss, the beam mode shape values are
shown in Figure 1.  (The values will be kept simple for
discussion purposes.)
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8
-7

6

Figure 1

Awhile ago we described how the peak amplitude of the
imaginary part of the FRF is directly related to the residue
(which is directly related to the mode shape).    In fact, we said
that the residue was approximated by

a h j
n

1 = →σ ω ω ω( )

and that the individual values of the mode shape can be
obtained from

a q u uijk k ik jk=

Now let's plot the FRF matrix for this beam with three
measurement points.  I could show any one of the different parts
of the FRF, but it turns out that the imaginary part of the FRF is
most informative for this discussion since it shows both
magnitude and direction; all the plots have the same -10 to +10
scale.  This is shown in Figure 2.

Now let's use the third row of measurements to determine the
mode shape for mode 1; this implies that point three is the
reference location.  Now if I were to pick the peak of the FRF
for mode 1, the amplitudes are proportional to the shape of the
cantilever beam first mode as seen in Figure 3.

Figure 2
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Figure 3

Figure 4

If you look at the values of the amplitude for mode 1 for points
1, 2 and 3, you will see that they are -2, -5, -8, respectively.
These values are the values of the mode shape shown in Figure
1.  (Notice that I have arbitrarily scaled the values to maintain
an easy interpretation of the data.  Also notice that the shape
could be either plus or minus since the "shape" is the same.)

Now let's use the second row of the FRF matrix.  If I pick the
peak of the FRF for mode 1, the amplitudes are again
proportional to the shape of the cantilever beam first mode as
seen in Figure 4.

If you look at the values of the amplitude for mode 1 for points
1, 2 and 3, you will see that they are approximately -1.2, -3.13,
-5, respectively.  At first glance, these values look different but
we can notice that the "ratio" or "shape" is exactly the same as
the previous case.

In fact, if I scale the values of the mode shape from the third
row by the ratio of the value of the mode shape at reference
point 2 (5.0) to the value of the mode shape at reference 3 (8.0),
then I will get the mode shape listed above for the 2nd row of
the FRF matrix [ 2 (5/8)=1.2, 5 (5/8)=3.13, 8 (5/8)=5 ].  This is
exactly what I expect to get based on the theory relating mode
shapes to residues, so I'm actually not surprised.  (We could also
look at the first row of the FRF matrix and arrive at the same
results.)

So we can see that we can get the mode shape of the beam from
any row of the FRF matrix.  If we remember that the reciprocity
holds true, then we know that the rows and columns contain the
same information.  So now I can also see that the mode shape in
every column of the FRF matrix.  So this is why we say that you
can use any row or column of the FRF matrix to estimate the
mode shape.  Of course, I can write out all the equations to
show this but the pictorial description is sufficient (and I know
how you hate it when I start writing equations!)

Now let's look at mode 2 and use the third row of the FRF
matrix.  If I pick the peak of the FRF for mode 2, the amplitudes
are proportional to the shapes of the cantilever beam second
mode as seen in Figure 5.

Figure 4

??

Figure 6

If you look at the values of the amplitude for points 1, 2 and 3,
you will see that they are 3, 0, -8, respectively.  They are the
values of the mode shape shown in Figure 1.

But when I look at the second row of the FRF matrix for mode
2, there is no information pertaining to mode 2.  How could this
happen?  Well, the value of the mode shape for mode 2 at point
2 is zero - its the node of the mode.  Anytime we use an input
location or response location that is located at a node point (zero
shape value) then we will not be able to see the mode from that
reference location.

One last picture may help to put it all together for you.  Figure 7
shows a waterfall plot of the imaginary part of 15 measurements
taken on the beam; the three measurements corresponding to the
ones in Figure 2 are shown in color.  In this plot, the
information pertaining to mode 1 is shown in blue, mode 2 in
red and mode 3 in green.  We see that the mode shapes can be
obtained from the peak of the imaginary part of the FRF.  From
these plots we can see the first, second and third bending shapes
for the cantilever beam.

Figure 7

So, in conclusion, we can say that you can use any row or any
column of the FRF matrix to estimate any mode of the system,
provided that the reference is not located at the node of a mode.
I hope this answers your question.  If you have any other
questions about modal analysis, just ask me.   
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I heard someone say Pete doesn't do windows!
What's the scoop?

Well ... that's right.  But you have to let me qualify that
statement.  Of course there are many data acquisition situations
where it is a necessity to use windows.  But almost all of the
time when performing a modal test, the input excitation can be
selected such that the use of windows can be eliminated.  Let's
first understand why acquisition of certain types of data can be
distorted by the digitization and sampling process, what needs
to be done to minimize the distortion, and how to work around
the acquisition problem through the selection of specialized test
excitation techniques.

First let's remember that the Fourier Transform is defined from
−∞  to +∞ but that we only acquire data over a very short time
interval.  As long as we can reconstruct the data, for all time,
from the very small sample we measure, then there is no
problem.

Figure 1 shows a simple sine wave, sampled for one time
record, with the reconstruction of the time signal from the
sample.  Figure 1 also shows the FFT of this sampled signal.
The time signal is expressed in the frequency domain as one
discrete spectral line as expected.  This happened because we
captured an integer number of cycles of the sine wave in one
record or sample of the data - in which case we say that the
signal is periodic with respect to the sample interval.

But what if this is not the case.  Figure 2 shows this situation.
As before, we see the signal, the sample, the reconstructed
signal and the FFT of the signal.  Notice that the reconstructed
signal contains a discontinuity that clearly did not exist in the
original signal.  The FFT of this signal is far from being a single
spectral line as expected.  Due to the sampling distortion, the
frequency representation is smeared over the whole frequency
bandwidth.  This very serious error is called leakage and is by

far the most serious digital signal processing error that is
encountered.
But why does this happen?  The original signal was a simple
sine wave.  How did the frequency representation get so
distorted?   There's an easy explanation for this.  The sampled
data does not contain an integer number of cycles or repetitions
of the signal.

Let's stop and recall some simple things we learned about
Fourier series.  If we start with a simple sine wave, we know
that it is a trivial task to describe that signal with a Fourier
series.  It is basically just one term of the Fourier series which is
a sine wave at ω with some amplitude A0.  But do you
remember what the series expansion was for a signal such as a
rectangular series of pulses?  Well, I don't want to expand on all
of this right now but I think you would remember that it was a
series of sinusoids at different frequencies with different
amplitudes.   In fact for the rectangular pulse, there were many
terms in the series required in order to approximate that signal.
That happened because the shape of the discontinuous
rectangular pulse doesn't look like a nice smooth sine wave.

Now if I look back at the sampled sine wave in Figure 2, I can
now see that by not capturing an integer number of cycles of the
signal I have distorted the signal such that it appears to have a
discontinuous nature at the end of the sample interval.  This
explains why the FFT is smeared over the frequency bandwidth.
Basically, there are many terms needed in order to approximate
this apparently discontinuous signal.
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In order to minimize this error (and notice that I said minimize
and not eliminate), we use weighting functions called windows.
Basically we apply a weighting function to make the signal
appear to better satisfy the periodicity requirements of the FFT
process.  Figure 3 shows a windowed time history.
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TIME DATA

Figure 3

The most common windows for modal testing today are the
Rectangular window, the Hanning window, and the Flat Top
window for shaker testing and the Force/Exponential window
for impact testing.  The main thing to understand right from the
start is that all windows distort data!  Without going into all the
detail, windows always distort the peak amplitude measured and
always give the appearance of more damping then what actually
exists in the measured FRF - two very important properties that
we try to estimate from measured functions.  The amplitudes are
distorted as much as 36% for the Rectangular window and 16%
for the Hanning window.  The effects of these windows is best
seen in the Frequency domain representation of the weighting
function.  All windows have a characteristic shape that
identifies the amount of amplitude distortion possible, the
damping effects introduced and the amount of smearing of
information possible.
Figure 4 shows the Rectangular, Hanning and Flat Top
windows frequency representation.  Sometime soon we will
discuss what
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these curve more but for right now, I'm happy if you just
understand that the windows, while a necessary evil in some
measurement situations, distort data.
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Figure 4

So how do I get around not using windows on measured FRFs
for a modal test?  Basically, I try to satisfy Fourier's request -
"either sample a repetition of the data or completely observe the
signal in one sample of data".  If you think about it, signals such
as pseudo-random, burst random, sine chirp, and digital stepped
sine all satisfy this requirement under most conditions and
therefore are leakage free and do not require the use of a
window.  Maybe we can discuss the particulars about each of
the windows another time, but this short explanation should
suffice for now.

Now I hope you understand why I don't like to use windows and
I will avoid the use of windows at all costs - but every once and
a while, I have no other choice.  (Especially at home, where I
can never get out of "doing windows"!)  If you have any other
questions about modal analysis, just ask me.
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I'm still overwhelmed by all this modal stuff
Laplace, Fourier, FRFs, and all that!
Can you put the big picture together for me?

Sure ...  sometimes it helps to stand back and look at everything
from a complete picture.  I have a figure that I have used for
many years now to help people see things more clearly.  I call it
"The Big Picture".  Let's just look at this picture and discuss all
the pieces individually.

First let's start with an analytical representation such as the
finite element model shown.  Basically, we use the FEM to
approximate a lumped mass system that is interconnected by
springs to represent the physical system.  Since the analytical
approximation is described in terms of a force balance for each
mass that is described in the system, we end up with one
equation for each mass (or degree of freedom) used to
approximate the system.  Since we need many small little finite
elements to accurately describe the system, I end up with many
equation and unknowns.  Right away, it becomes convenient to
describe all these equations using matrices.  Now once I have
assembled all these equations, a mathematical routine called an
eigensolution is used to represent the system in simpler terms -
the system's frequencies and mode shapes.  This is what we do
in the finite element process.

Well, without getting into all the details, I can take those same
equations and transform them into the Laplace domain.  (No -
we don't convert to the Laplace domain to make your life
miserable - we do it to make some of the equations easier to
handle.  Please believe me on this one!)  Now in the Laplace
domain, we have, [B(s)], the system equation and its inverse,
[Hs)], the system transfer function.  Now we know that this
inverse is the adjoint of the system matrix (or the cofactors of
the system matrix) divided by the determinant of the system
matrix.  This inverse is described in all vibrations text books
(usually in Appendix A).

So big deal!  What's that mean to you!  Well, it turns out that
the adjoint matrix contains the modal vectors and we call this
the Residue Matrix.. The determinant of [B(s)] contains the
roots, or poles of the system.  Well, this is the same basic
information that is obtained from the analytical model.  So we
could determine the system dynamic characteristics from either
the analytical model or from the Laplace domain representation
- they both will give the same results.

Now another important relationship is the Frequency Response
Function, FRF.  This is the system transfer function evaluated
along the jω axis.  The FRF is actually a matrix of terms,
[H(jω)].  Well, since we are dealing with a matrix, it is
convenient to identify input-output measurements with a
subscript.  So a particular output response at point 'i' due to an
input force at point 'j' is called hij(jω).

Now remember that the system transfer function has been
defined up to this point from mass, damping and stiffness
quantities.  This function can be computed or synthesized for
any input-output combination over any frequency band desired.
So if we wanted, we could synthesize several FRFs that make
up either one full row or one full column of the FRF matrix if
needed or desired as shown in the figure.

Now what we need to realize is that those FRFs that were
generated (synthesized) contain information relative to the
system characteristics.  Remember that the FRFs can be
generated from residues and poles.  And that the residues are
directly related to the mode shapes and the poles are the
frequency and damping of the system.
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So the parameters that make up the FRFs, are the parameters
that we wish to extract from the FRFs.  This is what modal
parameter estimation is all about.  Basically, we use the FRFs in
a mathematical algorithm to extract the generic information that
makes up the FRFs - the frequency, damping and mode shapes.
We often refer to this process as curvefitting.  The basic
information that is extracted is the mode shapes which are
related to information contained in the adjoint matrix or residue
matrix and the poles which relate to information in the
determinant of the system matrix.

This pretty much summarizes the process - except one important
thing needs to be addressed.  Up until now we have only
discussed using the mass, damping and stiffness approximations
to compute system characteristics from the finite element model
or from the Laplace domain representation of the system.  Both
these approaches use approximations of the physical parameters
of mass, damping and stiffness to describe the system and so
they will both provide the same basic information.  If there were
some other way to estimate those FRFs without assuming
physical properties then I could employ the modal parameter
estimation techniques to extract the desired information.

This is where modal testing comes in.  Basically, my structure is
excited with some measured force.  The response of the system

due to the applied force is measured along with the force.  Now
this time data is transformed to the frequency domain using the
FFT and basically a ratio of output response to input force is
computed to form an approximation of the FRF.

There are many implications of making these measurements
which involve digital signal processing concepts which are
much too involved to discuss in detail right now (but I think you
get the idea where I'm going with all this).

So we could measure one input-output FRF based on this
approach.  If we used a shaker to excite the structure and move
the accelerometer to many points then we could measure a
column of the FRF matrix.  (If we collected the data using
impact techniques then we would measure on row of the FRF
matrix).  So the big advantage of making measurements is that I
measure the response of the system due to the applied force - I
don't ever make any assumptions as to the mass, damping and
stiffness of the system - and I avoid any erroneous
approximations I may make.  Of course, I need to make sure
that I make very good measurements otherwise I will distort my
system characteristics.

So I hope this clears some things up for you.  If you have any
other questions about modal analysis, just ask me.
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I showed some mode shapes to someone
They asked me if the structural design was ok
What should I tell them ?

If I could have a dollar for every time I have heard that
question, I'd be rich!  The basic answer is you just don't have
enough information to answer that question.  People who ask
that question have no idea what they are asking about.  You
have to be very diplomatic in telling them that the question is a
silly one to ask.

One of the reasons why they are apt to ask the question is
because you probably showed them an animation and their
impression is that the structure is deforming (since they see the
deflections on the computer screen).  Of course, you know that
this is only a characteristic shape that the structure will undergo
when subjected to a force that excites that mode.  Sometimes
I've been known to say "well let's increase the amplitude of the
animation and see if we get the structure to break on the
screen".  (Of course, this is ridiculous!!!  This can't happen.)  I
use this statement to start to explain what shapes are all about.
Animation is only a mechanism to understand how the structure
may deform if that mode is excited by the forcing function.

One of the key points here is that we need to know the applied
force.  For some reason, people forget that we need a force
applied to the system to get a response.  The physical equation
of motion is
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Notice that there is a force on the right hand side of this
equation.  When we solve for the characteristic equation of the
system, we assume that there is no force on the right hand side.

This is how we obtain the dynamic characteristics of the system.
One way to look at it is that the modes of the system are nothing
more than a very elaborate set of filters which have the ability to
amplify and attenuate an input signal on a frequency basis.  If
we just look at the filters themselves, can we make any
assessment whether the filters are good or bad for a particular
application?  Of course not!  All we can say is that the filters
have some characteristics which relate to a center frequency,
rolloff and some gain settings as seen in Figure 1.
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Figure 1

Well ... the dynamic characteristics of a structural system are
quite the same.  We can identify each mode (each filter) as
having a natural frequency (center frequency), damping (rolloff)
and residue/mode shape (gain).  We need to very clearly
understand that the mode shapes are only characteristics and we
cannot determine the goodness or badness of a mode unless we
know the forcing function - that is, the right hand side of the
equation.

As another example, let's say we wanted to determine the
stiffness of a cantilever beam.  Well, we could go out in the lab
and apply a force to the tip of the cantilever beam and measure
the resulting displacement.  We know that we could determine
the stiffness as K = F / X.  Now this stiffness is an important
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parameter or characteristic of the beam.  But once I determine
the stiffness, do I know if the beam will fail or not?  Of course
not!  I would need to know the actual force that was applied to
the beam - wouldn't I?  You see, in the test lab we applied an
arbitrary force and measured the displacement due to that force
in order to determine the character of the beam.  Someone needs
to identify the actual real world force before I can compute the
actual displacement.  And then I need to have some
specification defined as to how to assess the acceptability of the
structure due to the design or real world forces - which brings
me to another important point.

One thing that people often forget is that once the mode shapes
are obtained and a dynamic design force is specified, the
response can be computed, but someone needs to identify a
specification defining what is acceptable and unacceptable for
the response.  This, at times, can be one of the most frustrating
parts of the structural dynamic response modeling process.  The
responses can be computed but no one has defined what the
level of acceptance is.  Many times this very important detail is
overlooked in the process of extracting pretty animated mode
shapes.  Then everyone asks... how much deflection is
acceptable, how long will the component life be, does it "feel"
good, is the response too noisy, etc.

INPUT TIME FORCE

INPUT SPECTRUM

OUTPUT TIME RESPONSE

OUTPUT SPECTRUM
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Figure 2

So now that we have discussed a few of these things, let's go
back to our plate example that we have discussed before
concerning different aspects of modal analysis.  Figure 2 shows
a schematic of a typical forced vibration problem.  There is
some force which is applied in the time domain.  Well, this time
signal is very confusing so it helps to identify some important
characteristics of this force if it is transformed to the frequency
domain using the FFT process.  Now I know that this force is
multiplied times the frequency response function in order to get
the output of the system.  That output could then be transformed

back to the time domain if desired.  Well, the important point to
make here is that the FRF is multiplied by the force spectrum.

That means that the input force spectrum is amplified and
attenuated by this multiplication.  The FRF controls how this
force is amplified and attenuated on a frequency basis.  In the
figure above, the FRF appears to have contribution for all four
modes shown.  That assumes that the applied force and response
location exists at a point where there is participation of each of
the four modes of the system.

But what if the force was applied at a location of a node of a
mode.  Let's say that the force was applied along the symmetry
line along the length of the plate.  Then, the applied force would
not excite any of the torsional modes from that location; then we
say that those modes don't participate in the response of the
plate due to that force.  The same is true for the response
location.  So we can see that both the input and output locations
will have an effect on the response of the system.  (In fact, the
mode shape amplitudes have a strong influence on how much a
particular mode contributes to the overall response.)

While we could say that certain modes may not participate in
the response of the system, that does not imply that those modes
don't exist - they just are not needed to compute the response of
the system.  But the modes still exist - they define the dynamic
characteristics of the system.  Depending on the location of the
applied force and the point where response needs to be
measured (as well as the frequency content of the signal), will
determine how the structure responds.  Some modes may be
more dominant in the level of response and others may be less
dominant in the response - again depending on the particular
input-output location selected.  But all the modes exist - they
just may not all be activated on a uniform basis.

So what we need to remember is that a modal test only defines
the character of the system.  We apply an arbitrary force which
is measured along with the response of the system due to the
applied force.  This enables us to determine the dynamic
characteristics of the system - the frequency, damping and mode
shapes.  These are only characteristics of the system. We
display the mode shape (animate them) to better understand how
the structure may deform if a force is applied to the system that
excites one or more modes of the system.  Remember, modal
analysis doesn't use the force on the right hand side of the
equation - the mode shapes are independent of the force.

Now I hope you understand why you can't answer the question
that you asked.  If you have any other questions about modal
analysis, just ask me.
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I ran one test with an x-excitation and can see some modes
and another test with a  y-excitation and see some different modes
could I use an oblique angle instead ?

Well, that's a very good question.  Its one that comes up often in
terms of running modal tests with a shaker excitation.  Of
course it is totally acceptable to run one test with a shaker at
some oblique angle to the structure.  But the only thing we need
to be careful about is to assure that we don't select the reference
point at the node of a mode.  Let's talk about this a little more.

Let's start this discussion with a simple structure that has mode
shapes that are very directional in nature.  Now just what do I
mean by that.  That means that the response of the structure is
primarily in one direction with very little or no response in the
other directions for a given mode of the structure.  Yet another
mode of the structure may have response in a different direction
than the first mode with little or no response in the other
directions.

MODE 1 MODE 2 MODE 3

MODE 4 MODE 5 MODE 6
Figure 1

To illustrate this, let's consider the very simple frame shown in
figure 1.  We see that mode 1 of the structure has motion
primarily in the horizontal direction with very little response in
the vertical direction.  However, mode 2 of the structure has

motion primarily in the vertical direction with very little motion
in the horizontal direction.  We can also see that mode 3 and
mode 4 follow the same trend.  Mode 5 and mode 6 have
motion in both the horizontal and vertical directions with the
vertical direction being slightly more predominant.

If we look at a drive point measurement in the vertical direction
(as shown in figure 2) over the bandwidth of the first six modes
of the structure, we notice that there are only 2 peaks that are
visible in the measured frequency response function.  Yet we
know that there are 6 modes in this frequency range.  And if we
took a drive point measurement in the horizontal direction we
would also notice only 4 peaks.  But upon closer examination of
the measurement, we would notice that the first two frequencies
of each of the measurements is different.

FORCE

RESPONSE

FORCE RESPONSE

Figure 2



_________________________________________________________________________________________________________________________
I ran a test with x-excitation and theny-excitation ... Copyright 2000
SEM Experimental Techniques - April 2000 Page   2 Pete Avitabile

So now we can see that the modes cannot be seen in every
measurement.  That directly implies that if we were to select
either one of the two measurement points shown as a reference
point then clearly we would not see all the modes of the
structure.  But just why does that happen.

Let's recall the equation for the frequency response function
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This equation is described by the residues (in the numerator)
and the poles (in the denominator) for each of the modes of the
system in the formation of the frequency response function.  We
also need to remember that the residues are directly related to
the mode shapes (and a scaling factor) as

a q u uijk k ik jk=

so that the frequency response function can be written either in
terms of residues or mode shapes.  When written as a mode
shape, then it becomes very clear that if the value of the mode
shape at the reference point is zero (or almost zero) then that
mode will not be seen in the frequency response function.  So
the trick to performing a good modal test setup is to always
select a reference point where all of the modes can be seen all
the time from that reference point.  But sometimes this is easier
said than done, especially when I am not sure what the expected
modes of the system are going to be.  (Its always easy being a
Monday morning quarterback.)

MODE 1   MODE 2

MODE 3    MODE 4

So now let's look at the first 4 modes separately.  Then the
optimum reference location is easily seen to be the point on the

structure where the mode shape value is largest.  But I quickly
realize that the point is different for each of the modes.  The
trick is to select one point where each of the modes can be
observed "reasonably well".  The point where most people get
hung up is in trying to think in terms of our simple rectangular
coordinate system - with x, y and z directions.

What would happen if I tried to apply a force to the structure at
a point that has a 45 degree angle to my global rectangular
coordinate system.  Would the reference point shown be
suitable to be able to measure all the modes of interest?

The best way to answer that question is to look at the equation
that forms the frequency response function.  We quickly notice
that the equation can be written in terms of mode shapes.  When
we consider the first 4 modes of the system, we notice that each
mode has a component of response in this 45 degree angle.
This means that this reference point would be suitable for
measuring the first 4 modes of the system.  However, if I take a
closer look and consider modes 5 and 6, then I will quickly
discover that these two higher modes will not be measured at all
from this reference point.  This is because, the center point on
the cross member is a node point for both modes 5 and 6 of the
structure.

So we could pick any point on the structure including an angle
relative to the global coordinate system.  The only requirement
is that the mode shape should have a significant value in
relation to its mode shape; if the reference point selected is a
node of a mode then I will not see that mode in the measured
response.  One last thing to quickly mention is that in order to
obtain valid "scaled mode shapes", a drive point measurement is
necessary.  (We will talk about mode shape scaling in a future
article.)  This means that the response must be measured at the
same point and in the same direction as the applied force - this
also applies to a reference measurement which is taken at an
angle to the global coordinate system.

I hope this explanation helps you to understand that you can
pick any angle for the reference - just as long as its not the node
of a mode.  If you have any other questions about modal
analysis, just ask me.
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How many points are enough
when running a modal test ?
Let's discuss this

I expected that eventually you would get around to asking me
that question.  Its another one that I get asked all the time.
Basically the simplest answer is that you need to measure a
sufficient number of points so that you can uniquely describe
the mode shape.  This answer may not be completely obvious.
We need to talk about this a little more.

Let's start with a simple structure that we have discussed before.
The simple plate structure.

MODE 1

MODE 2

MODE3

MODE 4

Now from the mode shapes shown we can see that there are
sufficient number of points to describe the mode shape for each
mode.  But there are a total of 45 measurement locations on this
plate.

Now let's consider only 5 points along one edge of the plate to
illustrate some important points.  If I look at mode 1 and mode
3, I quickly realize that there are not enough points to
adequately describe the differences between the two modes.
And also considering mode 2 and mode 4, the same conclusion
can be drawn.

MODE 1  MODE 3

MODE 2 MODE 4

But I think we would all realize that only 5 points will not be
sufficient to adequately describe the mode shape.  Would it be
possible to measure the mode reasonably well with only 15
measurement points?  Well, most likely - but it is heavily
dependent on where the 15 points are located.  Let's consider 15
points - but I am going to pick the points to illustrate a point.

MODE 1  MODE 3
If I look at these 15 points then it is very hard to distinguish
between mode 1 and mode 3.  For all practical purposes, the
mode shapes look almost exactly the same.

Now let's consider that we only took measurements along the
front and back edges of the plate.  You would be very hard
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pressed to tell the difference between the first rigid body mode
and the first flexural mode.

RBM 1    MODE 1

So from all of these simple examples above, it becomes obvious
that we need a distribution of points located appropriately such
that each mode shape can be uniquely distinguished.  If I am
only interested in characterizing mode 1 and mode 2, then
possibly I could get a fairly good description with only 6 points
as shown but fewer points than that would be difficult especially
if we needed to distinguish the flexible modes from the rigid
body modes.

MODE 2
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MODE 1

Now let's consider another example - the simple frame shown.
Suppose that the only surfaces that are accessible are the three
exterior surfaces.  If I only collected measurements on those
surfaces and did not have any measurements on the interior
surface, then the description of the mode shapes may not be
sufficient to uniquely describe the mode shapes.  Just consider
mode 2 and mode 4.  In one mode, the two cross beams are out
of phase with each other and for the other mode they are in
phase with each other.  The same is true for mode 5 and mode 6.
If there are no measurements available on the interior surface
then it is very difficult to distinguish the mode shapes for these
modes.  This is a common testing problem that occurs in many
modal tests.  Too few points are used to describe the mode
shape due to inaccessibility of all the significant modally active
portions of the structure.

Another common problem encountered in performing a modal
test is the reluctance to measure adjacent portions of a structure.
A typical comment that will be made is that we are only
interested in a portion of a structure that we have responsibility
for.  We are not interested in the rest of the structure because it
doesn't fall under our jurisdiction.  To illustrate the problem
with this statement we can also use the simple frame again.

MODE 1 MODE 2 MODE 3

MODE 4 MODE 5 MODE 6

But this time measurements and modal data are only collected
for the interior surface of the structure.  We can quickly see that
some of the mode shape information is strongly controlled by
the exterior of the structure.  If we don't measure enough
information to fully describe the mode shape, then it may be
very difficult to determine what the cause of the problem is
when we blindly limit the data we look at.

MODE 1 MODE 2 MODE 3

MODE 4 MODE 5 MODE 6

A good example of this brings to mind a recent modal test on a
troublesome torsional vibration shaker system.  The folks
interested in solving their problem were only interested in the
fixture and test article that came under their responsibility.
Their impression of the shaker system and supporting structure
was that they really didn't care what the outside world was
doing.  But in fact, the rest of the structure was actually
responsible for the trouble that they were experiencing.  The
local response on the fixture and test article was largely due to
some major global modes of the system.  Without measuring
this information, you would not have sufficient data to correct
or understand the problem.

Now I hope you have a better understanding of how many
points are needed for a modal test - a sufficient number to
uniquely identify the mode.  If you have any other questions
about modal analysis, just ask me.
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Someone told me SDM will never work
Because you don't have all the mode shapes of the system
Well, let’s talk about this.

Structural Dynamic Modification (SDM) became a popular tool
in the early 80's.   Due to some misunderstandings of the
technique, some erroneous results could be obtained.  But given
the right circumstances, SDM is a very powerful tool to help the
design engineer make very good design decisions.  First, let's
briefly recall the technique and show how the technique can be
sensitive to its biggest problem - modal truncation.

Basically, SDM is an analytical tool that uses modal data (either
analytical or experimental) to estimate how the system dynamic
characteristics will change when basic changes in the mass
damping, stiffness of the system are investigated.   Note that
only modal data (frequency, damping and mode shapes) are
used for the prediction - the original FEM or test data need not
be modified to explore these changes.  However, once a set of
desired changes are obtained, then it is strongly recommended
to re-run the modified FEM or re-test the modified test article.

The physical system equations can be developed and the
eigensolution obtained.  The modal representation can be
obtained from either an analytical model or from test data.  The
modal representation of a physical system in modal space is
given by

Now changes to the physical system mass, ∆M, damping, ∆C,
and stiffness, ∆K, can be represented in modal space (through
the modal transformation equation) as

Assuming a proportionally damped system, an eigensolution
can be obtained for the modified system.  One important part of
this solution is the computation of the final physical modes of
the system from

[ ] [ ][ ]1122 UUU =

which implies that the final modified modes of the modified
system are made up from linear combinations of the unmodified
modes of the original system.  It is this important equation that
we will use to show the effects of truncation of the predicted
results.

Let's consider a simple example of a free free beam which we
will use to make two simple structural changes - a simple
support and a cantilever beam.  We will modify the structure
using two springs to ground and perform the SDM equations to
obtain the modified frequencies and mode shapes.  The original
unmodified frequencies and resulting modified frequencies are
shown in the Table 1 (Note: The frequencies identified in italics
are an approximation of the constraint modes of the system and
are beyond the scope of this discussion).

Notice that the simple support produces very accurate modified
modes using only the first 5 modes of the original unmodified
system whereas the cantilever beam does not.  Why does the
simple support do so well and the cantilever does not?  The
answer lies in how the mode shapes are formed from the
original system modes.
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Fig 1 - Models Evaluated

Σ

Fig 2 - First Simple Support Mode

Σ

Fig 3 - First Simple Support Mode

Σ

Fig 4 - Second Cantilever Support Mode

Simple Support Cantilever
# Free Ref. SDM Ref. SDM

1 0. 71.9 72.0 21.6 24.8
2 0. 285.7 288.4 139.3 162.8
3 128. 636.5 646.0 396.1 476.0
4 367. 1114.9 9108.3 781.8 1274.5
5 738. 1706.3 9593.6 1292.0 9437.8

Table 1 - Frequencies of Different Systems

The simple support modified modes are easily made up from
linear combinations of the unmodified modes of the original
system.  When we look at Figure 2, we notice that mode 1 and 3
are the most significant contributors to the first final modified
mode for the simple support beam.  And when we look at
Figure 3, we notice that modes 2 and 4 are the most significant
contributors to the second final modified mode for the simple
support beam.

But when I consider the modes of the cantilever beam
modification, there is a significant contribution from all 5
modes of the unmodified system.  In fact, many more modes are
needed to improve the accuracy of this cantilever predicted
modes.  (Note: Mode 2 is shown in Figure 4 for the cantilever)

It turns out that the simple support can be easily made from the
available linear combinations of the 5 free-free modes of the
original system whereas the cantilever can not!  So that fact that
all the modes are not available (modal truncation) is not always
a problem.  The real problem is that the final modified modes
must be able to be formulated from the original unmodified
modes.

Another important item to note is that the rigid body modes of
the free-free beam are very important to the accurate prediction
of the modified modes.   If the rigid body modes are not
available, then the predicted modes will be in error.  This is an
important consideration for the development of the experimental
modal database since, often times, rigid body modes are not
acquired as part of the test.  However, it can be easily seen that
the rigid body modes are very important to the success of the
modification, even for the case of the simple support
modification.

The bottom line is that in order to compute an accurate modified
model using SDM, the final modes must always be made up of
linear combinations of the unmodified modes.  If this is
possible, then good results can be obtained.  If not, then errors
will result due to modal truncation.

Without getting into all the detailed equations, some simple
graphics were used to illustrate how SDM uses the unmodified
modes of the system to obtain estimates of the modified modes
of the system.  I hope that this helps you to understand how
SDM could be affected by modal truncation.  If you have any
other questions about modal analysis, just ask me.
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Why is mass loading and data consistency
important for modal parameter estimation?
Let me explain

This is other good example where people can get confused
when performing modal parameter estimation.  All too often
when the curvefitting results are confusing or appear distorted,
the effects will be blamed on noise or nonlinearities.  This is
often a blanket statement that many people use when they don't
understand or can't explain something easily.  Let's look at why
data consistency is important and what effects mass loading will
have.

The first thing to recall is that the model we use to fit data
comes from a linear, symmetric set of equations where the poles
(frequency and damping) are defined in terms of global
quantities and reciprocity is assumed to be inherent in the
formulation of the equations.  Now as long as our data fits that
model then everything is OK.  But how does my testing and
data acquisition have an effect.

Fig 1 - MIMO Test Setup with 2 Sets of Points

Let's consider a simple plate test setup that is driven by two
shakers for a MIMO test with an 8 channel data acquisition
system.  Now I'll acquire FRFs using good measurement
techniques to assure the best possible measurements are

obtained for the 6 accelerometers mounted on the plate shown
in Figure 1 (the solid fill points are for the first test and the
other points are associated with the second test and are obtained
by roving the accelerometers on the structure).

The mode indicator function is shown in Figure 2 and the
stability diagram is shown in Figure 3.  The poles are extracted
for the first two modes only (for illustration purposes).  The
stability diagram shows these two poles very clearly.  Notice
that as the order of the model increases, the poles are clearly
identified (overlaid on the summation function).  Once the poles
are extracted, then the residues or mode shapes are obtained to
provide modal data associated with these 6 measurement points;
a typical curvefit is shown in Figure 4.

However, this first set of data only consists of 6 measurement
points.  In order to better define the mode shapes, more
measurement points are needed.

MIF

Fig 2 - MIF for Data from First Test



_________________________________________________________________________________________________________________________
Why is mass loading and data consistency so important ... Copyright 2000
SEM Experimental Techniques - October 2000 Page   2 Pete Avitabile

SUM BLOCKS & STABILITY DIAGRAM

Fig 3 - Stability Diagram for Data from First Test

FRF
FIT

Fig 4 - Typical Curvefit from First Test

For the additional points, the accelerometers are relocated to the
measurement points shown (non-filled points) and a second set
of MIMO measurements were collected.  Again, poles are
extracted using just this second set of measurement points and a
stability diagram obtained.  Again the poles are clearly
identified and mode shapes associated with these 6 points
identified.  (These results are not shown here but are similar to
the first case.)  But the two sets of data were evaluated
separately to estimate the poles and residues.

Now let's combine the two data sets together and evaluate the
data.  The mode indicator function and  stability diagram are
computed again.  Now instead of 2 distinct peaks as we saw
earlier in the MIF, there are now 4 distinct peaks over the same
band (Figure 5).  The estimation of the poles for the same
frequency band (Figure 6) used earlier now shows 4 modes
instead of 2!!!  How could this possibly be? The plate didn't
change - did it?

Well, the plate didn't change - but the test setup sure did!  The
roving accelerometers have a mass effect that caused the modes
to shift slightly.  So when all the data is processed
simultaneously, some of the measurements indicate the poles at
a certain frequency and the other measurements indicate the
poles at a different frequency.

MIF

Fig 5 - MIF for Test 1 & 2 Combined

SUM BLOCKS & STABILITY DIAGRAM

Fig 6 - Stability Diagram for Test 1 & 2 Combined

So which is correct?  It is likely that neither is correct.  That's
because the test setup had an effect on the measured modes of
the system.  The question is which poles are the correct ones to
be used for the modal parameter estimation process.  Well, you
really can't identify a global set of poles for all the
measurements since they are not "global" for all the
measurements.  Actually, the correct way to extract parameters
in this case is to collect a "consistent" set of data by eliminating
the mass loading effect by mounting all the instrumentation on
the structure (or adding dummy masses) for the duration of the
test.  This will provide more "consistent" data which conforms
to the model being used to fit the data.  Of course, it is very
important to point out that we have modified the structure due
to the addition of all of the masses.  But at least all the data will
be consistent and will not distort the modal parameter
estimation process due to mass loading effects.

Of course, real world structures have all kinds of measurement
problems with respect to noise, linearity, time variability, etc.
The modal parameter estimation process is complicated enough.
Don't complicate the process further by letting simple items
such as mass loading distort your data.  I hope this helps to
answer your question as to why mass loading and data
consistency is so important.  If you have any other questions
about modal analysis, just ask me.
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I hear about SVD all the time
Could you explain it simply to me?
Sure ...

I'm surprised you haven't asked this question sooner.  SVD,
singular valued decomposition, is probably one of the most
important linear algebra tools that we use today to solve many
of our structural dynamic problems.  First let's present the
mathematical formulation of SVD and some of its variations
and then describe where it is commonly used in experimental
modal analysis.  Of course, I will try to explain the use of
SVD and its use rather than give a detailed mathematical
development.

First we have to realize that we are going to be dealing with
matrices here.  ( I know you all shudder when we say matrices
- but as I have said before "Matrices are your friends!".)  So
let's assume that we have some matrix [A] that is a n x n
square matrix.  The basic SVD equation is

[ ] [ ][ ][ ]TVSUA =

Now this formulation looks pretty simple but let's expand out
some of these terms to see the real power of SVD
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The expansion of this gives
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Now that's pretty incredible because it implies that the matrix
A is made up of a set of vectors and singular values that
describe the matrix.

We could also say that there are parts of the matrix A that are
comprised of other matrices who are very simply described as
one vector and a corresponding eigenvalue.  So the SVD
really has the ability to determine the "principal pieces" that
comprise the matrix.  This also implies that the rank of the
matrix can be determined.  So let's try a few numbers here to
see what this means.

Let's start with a simple vector with an eigenvalue to illustrate
the basic SVD equation.  Let's define a vector with a singular
value as
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So the matrix A can be found by simply multiplying out these
terms to be
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A 1

So this is pretty neat because I started with a vector and I
formed a matrix.  Now this matrix is clearly a 3x3 matrix in
size, but what can I say about its rank?  Well, if I look at the
different rows of the matrix, I can very quickly see that row
two and three are linearly related to row 1.  That means that
while I have a 3x3 matrix, there is only one linearly
independent piece of information that makes up this matrix.
(Of course, we know that this is true since we made the matrix
from one vector).  We would then say that this matrix has a
rank of 1 - because there is only one linearly independent
piece of information that makes up this matrix.
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Now let's consider another simple vector with an eigenvalue
as
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So the matrix A can be found by simply multiplying out these
terms to be
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Again I make all the same comments about this matrix as I did
for the first matrix we looked at.  The rank of this matrix is 1
because it is made up from one linearly independent piece of
information.

Now let's consider a general matrix as
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Now this matrix is a 3x3 but it is not clear to me what its rank
is.  The simpliest way to determine this is to do an SVD on
this matrix.  The resulting decomposition is
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So the beauty of SVD is that I can write the matrix A in terms
of the linearly independent pieces that make up the matrix.
This can be expressed in summation form as
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So I think this helps to explain the basic principles of SVD.
But now I need to discuss some of the applications where
SVD is commonly used.  (There are many different
applications for SVD but only a few specific ones related to
experimental testing issues are addressed.)

One application of SVD is for the collection of MIMO data
for an experimental modal test.  While the data acquisition
system may generate forcing functions for all of the MIMO
shakers that are uncorrelated (linearly unrelated), the actual
shaker force excitation may not be completely uncorrelated
for each of the shakers due to the interaction of the shakers
with the structure.

The linear independence of the input spectrum matrix needs to
be checked.  During the acquisition of MIMO data, the Gxx
matrix of the shakers can be used to perform what is
commonly called a principal component analysis.  This
technique decomposes the Gxx matrix using SVD and then
plots the singular values for each of the inputs on a frequency
basis.  If the shakers are all linearly independent, then there
will be a significant singular value at all frequencies for each
of the independent inputs.  This is shown in Figure 1.

Figure 1 - 2 Shaker MIMO SVD

Another application is used in modal parameter estimation.
The FRF matrix from several different references can be
decomposed using SVD to determine where there are roots (or
modes) of the system.  This decomposition is the basis of the
CMIF modal parameter estimation approach.  A plot of the
significant singular values of this SVD will provide plots
which will indicate where the modes of the system are located.
A typical plots of  this is shown in Figure 2 for a system that
has repeated roots.

0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz)

Figure 2

While there are many more applications of SVD, I hope that
these few examples help you better understand the technique.
If you have any other questions about modal analysis, just ask
me.
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Does it make any sense to use the actual operating loads
as the excitation force for a modal test
if the force is a random signal ?

The answer to this question is not an easy one.  There are many
aspects related to this question that we need to discuss in order
to fully understand the answer.

The use of a random operating excitation may seem to be an
excellent idea, but the bottom line is that the modal parameters
that are extracted are not likely to be nearly as good as those
obtained from a  modal test where the excitation is one of the
more traditional excitation techniques.  Let's discuss this to see
where some of the pitfalls exist.  In order to understand all of
the implications, there have been some other modal questions
that have been asked and answered that will help shed light on
this question (SEM ET V23 No1, V23 No4, V23 No6 ).

Let's recall that an experimental modal test is typically
performed to extract the underlying modal parameters of the
structure - that is, the frequency, damping and mode shapes.
Accurate measured frequency response functions are needed in
order to extract these parameters.  Typically, we go to extreme
lengths to excite the structure with very specialized excitations
to minimize, and ultimately eliminate, leakage and other signal
processing errors that can possibly result.  Remember that any
signal processing errors that do result, distort the measured
frequency response and manifest themselves as less accurate
modal parameters.

As a general rule, random signals do not provide the best
excitation for the development of accurate frequency response
functions.  Random excitation techniques are notorious for
causing leakage in the measured spectra.  Even with the use of
windows, the measured frequency response functions are
distorted when compared to other leakage-free measurement
techniques (ie, burst random, sine chirp, digital stepped sine).

A comparison of a frequency response function from a random
excitation and a burst random excitation is shown in Figure 1.
It is very clear in the measurement that the burst random,
leakage free measurement is far superior to the random
measurement.  (While not shown, the coherence is also far
superior.)

To go one step further, the extracted modal parameters from the
random excitation will  also be distorted, and in many cases,
there actually appears to be two peaks as seen in the
measurement.  This is a typical effect seen in frequency
response functions measured using random excitation.  Leakage
is a serious concern and windows are necessary to minimize
leakage.  The whole purpose for the development of specialized
functions for modal testing is to provide highly accurate
frequency response functions which do not require the use of
any windows and provide leakage free measurements for the
accurate extraction of modal parameters.

117Hz 143Hz

BURST RANDOM

RANDOM

Figure 1 - FRF for Burst Random and Random
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So what would ever posses anyone to perform a modal test
using an operating random excitation.  Well, if the actual force
was used to excite the structure, then the response will be
similar to the actual response in service.  This response will be
an accurate depiction of the actual in-service deformations that
will be seen in the structure.  But then the response that is
measured is more appropriate for use in an operating deflection
analysis - but not an experimental modal survey!

Figure 2 shows a schematic of the response of a structure due to
an arbitrary input excitation.  There are several aspects of this
figure that will give greater insight into the question at hand.
The forcing function is broadband, but has a very distinct
profile which is not flat, thereby exciting all of the modes with
different excitation levels.

First, and foremost, notice that the frequency response function
is nothing more than an bandpass filter which amplifies and
attenuates the input force excitation as a function of frequency.
What would happen if the estimation of this frequency response
was tainted or distorted by the digital signal processing
procedure (ie, digitization, quantization, leakage, windows, FRF
method, etc.) ???  Well, of course, there would be an effect on
the computed response!  The goal of a modal test is to extract
the accurate dynamic system characteristics.

INPUT SPECTRUM

OUTPUT SPECTRUM

f(j   )ω

y(j   )ω

FREQUENCY RESPONSE FUNCTIONFRF

Figure 2  - Typical Input-Output Situation

Second, the level of the force spectrum over the frequency band
has a direct effect on the response of the system.  Figure 3 very
clearly shows that the response has significant variation over the
frequency band.  Since the ADC maximum setting is
determined by the total spectrum, there will be a wide variation
in the accuracy of the measured function.  In fact, the lower
response spectral components will have a much larger effect
due to quantization errors associated with the analog to digital
conversion process.  This is particularly true when looking at
the response of mode 1 and mode 3.  Notice that mode 1 shows
very little response due to the extremely low input excitation;
mode 1 response will be very small and may be affected by
noise.

OUTPUT SPECTRUM

INPUT SPECTRUM

f(j   )ω

y(j   )ω

MODE 1 MODE 3

Figure 3  - Signal Level Differences

Third, remember that if a random signal is used, then a Hanning
window must be applied otherwise the measured signals will
contain significant leakage.  In any event, the measured
frequency response function will be affected by the window and
leakage that does result.  The measured function will not be of
the best quality and the extracted modal parameters will suffer
from these signal processing effects.

Fourth, the measured frequency response function will have
errors associated with poor excitation signal strength over some
frequency regions, leakage and window errors due to the
random nature of the signal type, frequency response function
errors as seen in the coherence associated with leakage
especially at the resonant peaks, and modal parameter
estimation errors due to poor estimated frequency response
functions used for the modal parameter estimation process.

So in the big picture of the development of a modal model from
measured functions, the best excitation techniques will provide
the best representation of the modal parameters of the structure.
This will not necessarily occur using an operating random
spectrum.  Once a modal model is developed, then the actual
response of the structure can be determined, if necessary, using
the measured frequency response function as pictorially shown
in Figure 2.  But in order for accurate response to be computed,
an accurate modal model from accurate frequency response
functions is of paramount importance.

Now, there is tremendous merit in performing an operating test
using operating excitations.  However, this is not necessarily the
best way to estimate frequency response functions for use in the
development of a modal model.  Now I hope you understand the
problems associated with running an experimental modal test
with an operating excitation.  If you have any other questions
about modal analysis, just ask me.
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When impact testing, can the use of the exponential window cause any problems?
Let's discuss this

The exponential window can cause some problems if not used
properly.  If an excessive amount of damping is needed to
minimize the effects of leakage, then you run the risk of missing
closely spaced modes.  There are a few examples to show the
relative to the use of the window and what can happen if care is
not exercised in using the exponential window.

First of all, let me clearly state that in many impact testing
situations the use of an exponential window is necessary.
However, before any window is applied, it is advisable to try
alternate approaches to minimize the leakage in the
measurement.  Increasing the number of spectral lines or
halving the bandwidth are two things that should always be
investigated prior to using a damping window.  Both of these
items will essentially increase the total time for the collected
data.  This can often help by allowing the response of the
system to naturally decay before the end of the sample period.
If this can be accomplished, then the use of the exponential
window may not be necessary.

However, if the response still does not decay by the end of the
sample period, then an exponential window may be necessary.
The use of the window should not be employed until these first
two items (mentioned above) are checked as possible ways to
minimize the leakage problem.  The arbitrary use of the
exponential window without first looking at the time response is
not recommended as the first step in the measurement process.
Let's look at this through the use of a simple example.

A very simple, lightly damped structure was subjected to an
impact test.  The signal processing parameters were selected for
a 400 Hz bandwidth which resulted in a 1.0 second time
window.  Since the structure was expected to have a response
that would not decay by the end of the sample interval, an
exponential window was applied such that the windowed

response would decay to a reasonably small value by the end of
the sample interval thereby minimizing the effects of leakage.
The impact excitation, windowed exponential response and the
FRF are shown in Figure 1.  On the surface, this measurement
looks acceptable.  [Note that the input spectrum (not shown)
was reasonably flat over the entire frequency range thereby
allowing sufficient excitation of the structure.  Also note that
the coherence (not shown) was also considered very
acceptable.]
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Figure 1 - FRF with slightly too much damping
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From all aspects, this measurement appears very acceptable.
But we need to look at this measurement in more depth.  First,
let's consider the same measurement but add significantly more
damping to the response signal.  Figure 2 shows the same data
but with a significantly larger value of damping used for the
exponential window.  The FRF that results from the impact
measurement of this signal clearly has significantly more
damping than that shown in the FRF of Figure 1.  The peaks of
the FRF show this effect; notice that the peaks are much wider
due to the excessive use of the damping window.
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Figure 2 - FRF with too much damping

Now let's look yet a little deeper into this measurement and try
some alternate signal processing parameters.  In order to
minimize the use of the damping window, either the bandwidth
can be shortened or the number of spectral/time lines of
resolution can be increased.  Both of these changes result in an
increase in the total time necessary to collect the sample of data.
If the total time is increased, then there is less need for a
significant amount of damping window to be applied to the
collected time data.

Figure 3 shows a doubling of the number of spectral/time lines
of resolution.  The time sample was increased from 1.0 second
to 2.0 seconds.  While an exponential window was still
necessary to minimize leakage, the overall damping effect that
was added to the measurement is far less than that used for the
measurements shown in Figure 1 and Figure 2 above.
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Figure 3 - FRF with increased time/spectral resolution

The most important item to notice in Figure 3 is that what
appeared to be one mode at the first peak in the FRF actually
turns out to be two very closely spaced modes of the structure.
The use of the damping window in Figure 1 and 2 resulted in an
FRF that appeared to have only one mode at the first peak in the
FRF.  The use of the damping window caused these two distinct
modes to appear as only one peak in the FRF.

While the damping window was necessary to minimize the
leakage, the window distorted the actual FRF in Figure 1 and 2
such that it was difficult to observe that two peaks existed at this
frequency.  The use of the exponential window, while necessary
for digital signal processing considerations, can cause some
significant difficulties when evaluating structures with light
damping and closely spaced modes as seem in this example.

Now, I hope you can see some of the effects of the exponential
window in this example.  While an exponential window may be
necessary to minimize the effects of leakage, the use of the
window may also hide or distort the modes in the measurement.
It is extremely important to be very careful when using the
exponential window when performing an impact test.  If you
have any other questions about modal analysis, just ask me.
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Is there any benefit to using multiple references?
I thought only one reference was needed
Let's discuss this.

This is a very good question.  Its one that comes up often in
terms of  estimating modal parameters from test data.  From
modal analysis theory, we can easily show that only one
reference is necessary in order to determine all of the modes of
a system - at least from a theoretical standpoint!  While
theoretically this is true, from a practical standpoint, there is a
strong need to have multiple references in many cases.  Before
we can understand this, let's take a look at some basic concepts
that will help illustrate some of the problems that we might
encounter.

Let's start this discussion with a simple structure that has mode
shapes that are very directional in nature.  We have used this
structure before in other discussions (May/Jun 2000, Vol. 24,
No. 3).  The structure is shown in Figure 1 along with the first
several modes.

MODE 1 MODE 2 MODE 3

MODE 4 MODE 5 MODE 6
Figure 1

If we look at a reference point in the vertical direction (as
shown in figure 2) over the bandwidth of the first six modes of
the structure, we notice that there are only 2 peaks that are
visible in the measured frequency response function.  Yet we
know that there are 6 modes in this frequency range.  And if we
took a reference point in the horizontal direction, we would also
notice only 4 peaks.  But upon closer examination of the
measurement, we would notice that the first two frequencies of
each of the measurements is different.

VERTICAL

HORIZONTAL

Figure 2

Let's recall the equation for the frequency response function
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Basically, this equation is described by the residues (in the
numerator) and the poles (in the denominator) for each of the
modes of the system.  We must remember that this frequency
response function can be written for any one of the input-output
combinations of interest.  Now the interesting part of this
equation is that while the residues change depending on which
input-output combination is acquired, the poles do not change.
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This implies that the poles of the system are global.  They are
independent of the particular input-output point.  However, the
residues do, in fact, change.

Now when a modal test is performed, typically all of the
measurements are acquired relative to a particular reference.
The reference location is typically either the fixed excitation
location when performing a shaker excitation or the stationary
accelerometer location when performing an impact test.  So the
measurements acquired will contain residues, relative to a
particular reference as

  k131211 aaa L

In this case, the reference is "1" since all of the residues are
related to that DOF.  The residues are a11, a12, a13 and so on.
(Note that the "k" subscript is used to denote a particular mode
of the system.)

We also need to remember that the residues are directly related
to the mode shapes (and a scaling factor) as
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This means that the residues are actually directly related to the
mode shapes of the system as
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Notice that the reference DOF at point 1 can be factored out
since it is common to all of the measurements.  In doing this, it
becomes very clear that the reference DOF carries a tremendous
amount of weight regarding the magnitude of the residue; this is
directly related to the magnitude of the frequency response
function.  If the reference point is associated with a very small
mode shape response location on the structure for a particular
mode, then the magnitude of the frequency response function
will also be very small for that mode.  On the other hand, if the
reference point is associated with a very large mode shape
response location then the magnitude of the frequency response
function will be very large.

Of course, we can then also see that if the reference location is
located at a DOF where the mode shape value is very large for
one mode and very small for another mode, then the amplitude
of the frequency response function will have the same attributes.
This is a common problem in performing any modal test.  We
always try to locate the accelerometer at a location where all of
the modes can be observed with the same strength across the

desired frequencies of interest.  However, this is often very
difficult and, in many cases, almost impossible.

However, we can use some of the redundancy in the frequency
response matrix to help with this situation.  If we look at some
of the terms of this matrix, then there are some interesting
things to note.  The residue matrix is shown along with some of
the terms expanded for reference.
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Notice that there is redundancy in this matrix.  Each column
contains information that is related to the kth mode shape of the
system times the reference DOF.  (Also note that due to
symmetry, the rows contain the same information.)  This very
important fact is the reason why many modal parameter
estimation algorithms utilize multiple reference data from a
modal test.  Each of the references contains the same basic
information that is only scaled by the reference DOF for a
particular mode.  Therefore, this redundant information can be
extracted and used in the curvefitting process.

More importantly, if there is one reference that does not excite a
particular mode very well (ie, the reference is located close to
the node of a mode for that mode), then there are other
references that may be much better reference locations for the
determination of that mode.  So using multiple references
minimizes the need to be absolutely certain that all of the modes
of the system can be reasonably well excited from only one
reference location.  The modal parameter estimation process
uses weighting terms, called modal participation factors, in
order to utilize all of the referenced data to extract valid modal
parameters.  So the use of multiple referenced data is a
tremendous help in determining modal parameters.  The use of
redundant data allows for the selection of several references,
each of which may be very good for several modes, but not all
the modes, of the system.  However, using multiple references
allows the adequate description of all the modes from the
combination of references.  This way, many references gives the
best possible chance to adequately determine all of the modes of
the system.  This may not be totally possible using only one
reference - even though theoretically, it is possible!

I hope this explanation helps you to understand why multiple
references are useful even though they are not theoretically
necessary.  If you have any other questions about modal
analysis, just ask me.
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What are some of the most important things to consider when impact testing?
Let's discuss this.

This is a very good question.  The most important
considerations can be broken down into those that are impact
related and those that are response related.  The excitation
concerns are numerous.  Only issues pertaining to hammer tip,
trigger delay and double impacts are discussed here.  However,
other issues related to overload/underload of the analog to
digital converter, poor utilization of the digitizer, and
difficulties with testing nonlinear structures, are some additional
concerns (but are not addressed in this article).  The response
concerns lie with the signal decay and the need for windows to
minimize leakage.  Let's first discuss the excitation issues and
then the response issues.

First of all, the hammer tip is largely responsible for the
frequency spectrum that is excited.   In general, the harder the
tip, the wider the frequency range that is exicted.  The hammer
tips typically used range from rubber to metal on the extremes
with various intermediate tips such as the soft plastic, hard
plastic, eraser, etc.  Each of these tips are designed to have a
certain amount of elastic deformation during impact.  The total
time duration of the tip impact is directly related to the
corresponding frequency range that is excited.  Generally, the
shorter the length of the time pulse, the wider the frequency
range that is excited (Figure 1 shows some typical tips).

While this is generally the case, often the local flexibility of the
structure can play an important part of the total time of the
impact and therefore can have an effect on the force spectrum
imparted to the structure.  You may have noticed this when
testing structures that have dramatically varying stiffnesses
throughout the structure.  When impacting a stiff region, one
input frequency spectrum is observed and a much different,
narrower frequency range is excited when impacting more
flexible regions.  (The published impact tip frequency spectrum

provided by the hammer manufacturer does not include any of
the local structure flexibility effects.)  Be careful !!!
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Figure 1

Another somewhat important test consideration for impact
testing relates to the need for pretrigger delay.  Since the
measurement initiation is controlled by the leading slope of the
pulse, part of the pulse is lost and the resulting spectrum is
distorted unless some pretrigger delay is specified.  The effects
of spectrum distortion is shown in Figure 2.  The red pulse and
resulting frequency spectrum are clearly different than the
correct blue pulse and resulting frequency spectrum with
pretrigger delay.  This can cause some input frequency spectrum
distortion which will have an effect on the computed FRF.
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Figure 2

Typically, a pretrigger delay of 1% to 5% of the time window is
sufficient to eliminate this effect.  Care must be exercised when
specifying this delay since some FFT analyzers use a plus (+)
delay for pretrigger delay while others use a minus (-) delay for
pretrigger delay.  This causes a totally incorrect frequency
spectrum if not applied correctly.  Check your time pulse to
assure that the entire pulse is captured in the time signal.  In
addition, some analyzers use a percentage of the block whereas
others use an absolute time value in seconds.  If absolute time is
used then this can cause problems especially when changing
bandwidths during test setup.  Be careful !!!

Another annoying impact testing problem is the double impact.
The double impact generally causes a non-uniform, non-flat
input force spectrum.  Two typical double impacts are shown in
Figure 3.  The "ripple" in the spectrum is not desirable
especially if the force spectrum dips substantially. A drop of 30
dB or more is cause for concern especially if it occurs at a
resonant peak - and it often does.
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Figure 3

The reason for the double impact is generally from two
possibilities.  First, many double impacts occur due to new or
inexperienced impact testers.  It takes some time to get
accustomed to swinging the hammer - it is a much different
technique than driving nails!  But even with experience,
sometimes a double impact is unavoidable.  Often, with lightly
damped structures, the response of the structure is so fast that
the hammer can not move away from the structure due to the
response of the structure.  In these cases, double impacts are
unavoidable.  The problem is that often the impact spectrum
will have significant drop out at the major resonances of the
structure.  This can produce undesirable effects and must be

avoided.  One possible technique to overcome the double
impact problem is to use the principle of reciprocity.  The
impact and response locations can be swapped thereby
eliminating the double impact problem.  This can often solve the
problem but many times mass loading effects can become an
separate issue.

The last major concern relates to the response and the need for
the exponential window.  The response of the system may not
decay to zero within the sample interval of the FFT.  When this
is the case, then leakage can occur unless a window is used.
The most appropriate window is the exponential window but
should only be used when necessary.  Many times the window
is not necessary if the signal naturally decays within the sample
interval.

Often, the data acquisition system can be setup to allow this to
happen.  Two signal processing parameters should always be
explored before using the window.  The bandwidth selection
can be changed which has a direct effect on the total time
required to capture data.  If you halve the bandwidth, you
double the time sample.  Another approach to increase the total
time of the sample interval is to change the total number of
samples for the acquisition.  Both of these two signal processing
parameters allow more time data to be collected and should
always be explored prior to the use of the window.  However, a
window may still be required to minimize the effects of leakage
if the signal does not die out by the end of the sample interval.
Figure 4 shows one time signal in blue that requires an
exponential window whereas the red time signal and sample
interval does not require a window (or at least substantially
reduces the need for the window).

T = N      t∆

T = N      t∆

Figure 4

I hope this helps to explain some of the more important
concerns when impact testing.  If you have any other questions
about modal analysis, just ask me.
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Should I use all collected measurements when estimating modal parameters?
Let's discuss this.

This is a very good question.  There is no reason to not include
all the data collected providing that the data is well measured
and consistently related.  Providing that there is good dynamic
range, with accurate sensitive transducers and all modes are
well excited from all reference points and at all the response
locations, then, of course, all the data can be used for estimating
modal parameters.

But as I said that mouthful of requirements, I could tell from the
expression on your face that it is highly unlikely that all your
measurements meet that requirement.  In the past quarter
century, I know that I have never had that happen in any test I
have conducted or been associated with - so join the club!
What I just described is a measurement situation that will likely
only occur with an analytical model with infinite dynamic range
and infinite frequency resolution.  The real fact is that from a
practical standpoint, this will probably never happen.  So let's
discuss the reality of the situation and discuss some practical
approaches to minimize some of the measurement
shortcomings.
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Z

Z
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FRF - MANY MODES

FRF - DIRECTIONAL MODES

Figure 1 - Aerospace Structure with FRFs and Several Modes

As an example of a common measurement problem, I will use a
test that was run many years ago on an aerospace structure that
had very directional modes as well as numerous local modes.
The structure is shown in Figure 1 along with some typical
FRFs.  Notice that the lower FRF only shows a few modes but
the upper FRF shows all the modes of the structure.  Actually,
the problem isn't just an aerospace problem but a general
problem that can be seen in many structures we test.  In fact, the
measurements shown are typical of those that could be from
almost any structure subjected to modal testing.

The particular structure shown had several bending and
torsional lower order modes followed by many local modes with
bending, torsion, in-phase, out-of-phase types of modes for the
panels and peripheral equipment on the structure.  The actual
structure was tested using 5 independent shaker excitations
(three vertical and two separate horizontal directions).

The first mode of the structure consisted of bending in the x-
direction with almost no response in the y-direction.  Obviously,
the shaker in the x-direction can do a very good job of exciting
the x-direction modes but the shaker in the y-direction does not
excite the structure in the x-direction very well at all.  So the
measurements obtained from the y shaker are obviously going
to be very poor due to the lack of participation of the first mode
in the y-direction.

On the other hand, the second mode of the structure consisted of
bending in the y-direction with almost no response in the x-
direction.  Here the opposite is true from that just discussed.
The y shaker can do a very good job of exciting the structure in
the y-direction but the shaker in the x-direction cannot excite
the structure in the y-direction.  But both shakers can do a very
good job of exciting the torsional mode from both shaker
locations.  This directly implies that all of the measurements
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will not be measured with the same degree of accuracy for each
mode.

During the MIMO excitation with 5 shakers, all of the FRFs are
collected simultaneously but clearly not all of the modes are
excited equally from each of the shaker locations.  This is a
physical reality of most test structures that is typically
impossible to overcome.  So how can all of this data be
efficiently and accurately processed.

Most modal parameter estimation performed today, generally
utilizes a two step process.  First, the poles are estimated and
then the residues or mode shapes are computed (once global
poles have been extracted).  With this in mind, the poles of the
system do not need to be estimated using all the measurements
collected.  The poles can be estimated using only a subset of
measured functions that best describe the poles of interest.
Once the global poles have been estimated, then the residues or
mode shapes can be extracted using all the measurement DOFs.
(It is also not necessary to estimated residues for all references,
especially if the references do not sufficiently excite all the
modes).  The selection of particular FRFs for the extraction of
poles is schematically shown in Figure 2.
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Z

Z
Ref#1

X

Figure 2 - Schematic Depiction of Measurement Selection

In the example discussed, the first x-bending mode was
estimated using only the x-response location from the x-
excitation location.  Only the y-response locations were used for
the y-excitation location for the y bending modes.  But both x
and y excitations with the x and y responses were used for the
torsional mode.  Notice that the z-direction excitation and
response were not used for the estimation of any of these poles.
This is because the z-excitation locations have a very hard time
exciting either the x or y direction modes efficiently.  While
these references/excitations are necessary for the excitation of
some of the higher frequency modes, these vertical excitations
are not very good for the excitation of the lower order x and y
direction modes.  But, of course, once the poles are estimated,
then the residues or mode shapes are estimated using all the

measurements in the x, y and z directions - but only using the x
and y shaker excitations for the x and y lower order modes.

During the modal parameter estimation process, extreme care
needs to be exercised to extract the best possible poles to
describe the system characteristics.  However, many of the
measurements and often times all of the references are not
optimum for all the modes of the system.  As an example, a
large telescope structure was recently tested with 4 reference
excitation locations.  Clearly, the references were not all
optimum for all the lower order directional modes of the
structure.  As a first pass on evaluating the data, all the FRFs
from all the reference locations were used to extract poles and
residues for the structure.  Once parameters were selected, a
synthesized FRF was generated and compared to the actual
acquired measurement as part of the validation process.  The
synthesized and measured FRF are shown in Figure 3a.  Please
carefully note that this is not a good comparison of the
measured and synthesized FRFs.  However, after a very careful
evaluation of the data and careful selection of measurements to
extract the poles of the system (followed by residue extraction),
a far better model was obtained.  This is confirmed by the
comparison of the synthesize and measured FRF shown in
Figure 3b.  Of course, this approach requires significant effort
but the modal parameters are generally greatly improved.

  Figure 3a - Poor Extraction and Synthesis of FRFs

  Figure 3b - Good Extraction and Synthesis of FRFs

I hope this explanation helps you to understand why it may not
be necessary (or actually detrimental) to use all of the measured
FRFs when extracting modal parameters.  A careful selection of
the best measured FRFs will generally produce much better
global poles of the system for the modal parameter estimation
process.  If you have any other questions about modal analysis,
just ask me.
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Can the test setup have an effect on the measured modal data ?
Do the setup boundary conditions and accelerometers have an effect?
Most definitely !!!!!   Let's discuss this

There is no doubt that the test setup and instrumentation may
have an effect on the measured data.  This is especially true
when testing items such as disk drives, turbine blades, cabinets,
computer boards and other small lightweight structures.

While it may be obvious to a seasoned test engineer that the test
setup and instrumentation may have an effect on the results of a
modal test, this may not necessarily be obvious to the new test
engineer to modal testing.  (I recently read a report of an
experimental modal test on a light weight structure where, after
many different tests and analyses were performed, it was
"revealed" that the accelerometer mass had an effect on the
natural frequency measured on the test article.  So it is definitely
worthwhile to discuss this further.)

From a practical standpoint, it is straightforward to realize that
the instrumentation that is applied to the structure during the test
is a direct addition of mass to the structure.  However, many
times I am shocked that most test engineers new to modal
testing just don't realize this fact.   For some reason, the
instrumentation is perceived as non-intrusive.  But, in fact, the
instrumentation that is mounted on the structure can, in many
instances, have an effect on the measured frequency response
functions.  From a theoretical standpoint, the natural frequency
is related to the square root of the ratio of stiffness to mass.  So
it stands to reason that if the mass of an accelerometer is
"added" to the structure to make a measurement, then the
natural frequency will be lowered.  Obviously, the larger the
accelerometer mass, the more pronounced and obvious the shift
of the frequency.  And, of course, the size of the test article will
have an effect on this.  If an accelerometer is added to a large
massive structure, such as a bridge or building, then the effects
of the accelerometer are likely negligible.  But, as the size and

mass of the structure under test becomes smaller, then the effect
of the accelerometer mass becomes much more important.

It is also very important to note that the mass of the structure is
not necessarily the entire mass of the structure but rather the
effective mass of the "modally" active portion of the structure.
For instance, consider the modal test of a large computer rack
with disk drives and computer boards.  The mass of the
accelerometer on the main structural portions of the rack may
not pose any problems.  However, the weight of the
accelerometer on a cabinet panel or on a computer board or on
the armature of the disk drive may have a significant effect on
the measured frequencies.  Often people get confused by
thinking that the mass of the accelerometer is related to the total
mass of the structure.  This is not the case.  It is the mass of the
accelerometer relative to the mass of the modally active portion
of the structure which may be vastly different than the total
mass of the entire structure.

The best way to illustrate the accelerometer mass effect is go
down to the lab and take a measurement.  To illustrate the mass
loading effect, a lightweight disk drive bracket was used for
measurement purposes.  This was a rectangular structure
approximately 5in x 3in x 2in high used for mounting some
older disk drives.   (Now these measurements are not my pride
and joy, but they will clearly illustrate the point.)

A very lightweight, a reasonably lightweight and heavier
accelerometer were attached to an open span on the side of the
bracket.  Three separate impact tests were performed to obtain
typical measurements.  Only impact excitation and
accelerometer response were measured in the x-direction to
obtain the drive point measurement shown.  Two measurements
for the extreme mass cases are shown in Figure 1.  The arrows
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depict two frequencies, for example, that were measured to be
260 Hz (red) and 271 Hz (blue); the third intermediate
measurement with a frequency of 266 Hz is not shown.  For this
frequency, there exists significant difference.  So the mass of
the accelerometer can have a significant effect; the higher
frequencies are effected by an even greater degree.

Another important note is that the two lower amplitude
frequencies shown do not appear to be significantly affected by
the mass of the accelerometers.  These two modes are either y-
direction or z-direction predominant in their response.  Since the
drive point measurement was only obtained in the x-direction,
then the mass of the accelerometer is essentially located at the
node of the mode for the lower amplitude frequencies and
therefore has negligible effect.

ACCELEROMETER

LIGHTWEIGHT

HEAVY

 ACCELEROMETER

ACCELEROMETER
HEAVY LIGHTWEIGHT

 ACCELEROMETER

Figure 1 - FRF with Two Different Accelerometer Masses

Therefore, two important items result from this simple test that
was performed.  First, the mass of the accelerometer has an
effect.  This must be true since the equation defining the natural
frequency of any system involves both the stiffness and mass.
Second, the location of the mass of the accelerometer will also
have an effect.  If the mass is located at the node of a mode
(point of zero amplitude), then the mass addition will have no
effect on that mode.  If the mass of the accelerometer is located
at the anti-node of a mode (point of maximum amplitude), then
it will have the largest effect on that mode.

Of course, mass loading effects can pose problems especially if
accurate frequency measurements are required.  The use of
noncontacting (or less intrusive) measuring devices can be used
to measure the natural frequencies.  For instance, a laser device
can be used to obtain high quality FRF measurements without
causing any mass loading effects on the structure.  However,
these devices are typically very expensive and not found in
every lab.  Other measurements can also be made using eddy
current probes or strain gages with reasonably good results.
However, these are not always as convenient to apply to the
structure under test.

How can the effects of mass loading be identified?  Well, the
easiest way is to mount two accelerometers at the same location
on the structure.  Take one FRF measurement with both
accelerometers and a second measurement with only one
accelerometer.  This will quickly identify whether or not the
mass loading will be an issue.  Then some corrective measures
need to be taken if this poses a problem.  (Further discussion of
this is beyond the scope of this article and will be addressed at
some future point in time.)

But there is another item that I feel is just as important as the
accelerometer mass loading effect that is almost always
overlooked.  Many modal tests are conducted in a "free-free"
condition.  Actually, there is no way we can do this here on
earth.  At best, we can simulate something that is reasonably
close to unconstrained (free-free).

Several tests were performed with different mechanisms for
supporting the bracket.  Three FRFs are shown in Figure 2.  The
bracket was supported on thick foam (green), airbag packing
material (red) and hung from rubberbands (blue).  (The same
frequency range as used for the mass loading discussion will be
addressed here.)  The frequencies depicted ranged in frequency
from 266 Hz to 272 Hz  (and the amplitude is substantially
different).  This is just about the same amount of frequency
variation observed with the accelerometer mass effects!!!  So
when everyone gets all upset about mass loading effects but
don't even consider the support mechanism for the structure, I
laugh to myself (and then provide some helpful thoughts to
consider).  Clearly, the support variation is as critical as the
accelerometer mass loading effects.  In many cases, the support
mechanism effects are much more important than the mass
loading effects -   so be careful !!!

THICK FOAM

AIRBAG

RUBBER BANDS

Figure 2 - FRF with Three Different Supports

Now these measurements were just made using what I had
available in the lab to quickly show you this problem.  It didn't
take much effort at all to illustrate the problem of mass loading.
But also realize that the support system used to hold the
structure in a "free-free" condition is equally important.  I hope
this helps to answer your question concerning test setup.  If you
have any other questions about modal analysis, just ask me.
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Which window is most appropriate for the various types of modal tests performed?
Let's discuss this

This is a good question.  Let's review some of the commonly
used excitation techniques and associated windows.  Actually,
the Fourier transformation using the FFT contains some
constraints that must be considered first.  It is these
requirements that will help shed some light on why certain
excitations are used and what windows are most appropriate.

First let's remember that the Fourier Transform is defined from
−∞  to +∞ .  As long as the entire transient is measured or a
repetition of the signal is captured, then the requirements of the
FFT are satisfied.  If this is not true, then there will be serious
consequences from the most important signal processing
problem called leakage.  Windows are weighting functions that
are used to minimize the effects of leakage - the effects of
leakage can never be eliminated.  This is really the problem that
needs to be addressed.  So with this basic fact, let's discuss the
different types of excitation signals used for experimental modal
testing and explain the windows typically employed for these
excitations.

Impact testing is a very common testing technique that is often
used for modal testing.  Impact testing always causes some type
of transient response that is the summation of damped
exponential sine waves.  This being the case, the entire transient
event can be captured such that the FFT requirements can be
met and leakage will not be a problem.  But for most structures
and especially, lightly damped structures, the exponentially
decaying response often does not decay sufficiently within the
sample record of captured data.  This then implies that the FFT
requirement may not be satisified.  In these cases, an
exponential window is typically applied to the data, thereby,
weighting the data to better satisify the FFT requirement.
Figure 1 shows an impact time pulse along with the raw time
response and the exponentially windowed time response.
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Figure 1 - Impact Excitation and Response

The exponentially windowed response has been weighted such
that this signal better satisfies the requirement of the FFT
process.  The entire signal appears to have been captured - but
at the price of the window function.  Another alternative to
applying the exponential window is to either adjust the
bandwidth of the measurement to allow for more captured time
data or increase the the total number of samples which has the
direct effect of acquiring more time data.  In any event, if the
signal does not decay essentially to zero by the end of the
sample period, then the exponential window may be necessary
in order to minimize the effects of leakage.

In many data acquisition systems, there is also a force window
that can be applied for the impact portion of the excitation.  This
force window is used to eliminate the effects of noise that may
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be present on the hammer excitation channel.  Typically, this
window is set to approximately 10% of the sample window such
that the impact pulse is located within this unity gain window -
that balance of the time record is weighted to zero.  The force
window may not always be necessary but is available on almost
all data acquisition systems.  It is very important to note that this
window should never be used to try to remove the effects of a
double impact that may occur during impact testing.  Use of the
impact force window to remove the effects of the second
impact, resulting from a double impact, will seriously distort the
input force spectrum.

Now that impact excitation has been addressed, let's discuss the
window considerations for common shaker excitations used for
experimental modal testing.  The first most common one is
random excitation.  The problem with a random excitation is
that there will never be a repetition of the signal within the
sample interval.  Therefore, a window will be required to
minimize the effects of leakage.

The most common window used for random excitations is the
Hanning window.  But it must be pointed out that the use of a
window, any window for that matter, will have an effect on the
measured data - but the use of the window is a necessary evil in
order to reduce the effects of leakage.  Remember that the
effects of leakage can only be minimized through the use of a
window - it will never be eliminated.  All windows will always
have the effect of measuring amplitudes that are reduced from
the true amplitude and, generally, have the effect of appearing
to have more damping then what actually exists.  A typical
input-output measurement resulting from random excitation is
shown in Figure 2 along with the application of the Hanning
window on both the measured input and response channels.
The use of the Hanning window can cause amplitude distortions
of as much as 16%.  Of course, this is much better than the
distortion due to leakage if no window were applied.

NO WINDOW AVERAGING WITH WINDOW

1 2 3 4

INPUT 

OUTPUT 

Figure 2 - Typical Random Measurement Sequence

Due to the problems associated with leakage and the
measurement distortion through the use of windows, other
excitations were developed that were specifically intended to
eliminate leakage and the need for windows.  Excitations such
as pseudo random, periodic random, burst random, sine chirp
and digital stepped sine were all developed.  (All of these
excitations will be discussed in some future article).  The most
commonly used excitation for modal testing today is burst
random and will be discussed here.

The basic problem is that unless the entire transient is captured
or a repetition of the data is captured, then there will be leakage.
In one way or another all of the specialized excitation
techniques attempt to satisify this requirement of the FFT.  If
this is satisfied, then there is no leakage and therefore, no need
to apply any window weighting function.  In the case of burst
random,  the excitation is applied to the structure in a manner
whereby the excitation signal starts and stops within the sample
interval.  This directly implies that the basic requirement of the
FFT process is completely satisfied; there is no leakage
associated with this signal and no window weighting functions
are required.  Typically, a burst of 50% to 80% for the sample is
customary and can be specified by the user.  Now there is no
leakage associated with the input excitation signal but some
additional consideration must be given to the response channels.

The response of the structure does not stop instantaneously
when the shaker excitation is terminated.  Generally, there is
some exponential decay that is seen to exist on the response
channels after the shaker excitation is terminated.  (In fact, there
is also some measured force that is seen on the excitation
channel after the shaker signal is terminated; this is part of the
input that must be measured as part of the input forcing
function.)  A typical input-output burst random signal is shown
in Figure 3.

END OF BURST

SHAKER OFF

INPUT EXCITATION

   

SHAKER OFF

RESPONSE
EXPONENTIALLY
DECAYS

STRUCTURAL

OUTPUT RESPONSE

Figure 3 - Typical Burst Random Measurement Sequence

As long as the measured response decays essentialy to zero by
the end of the sample period, then the entire signal is captured
and there is no need to apply a window weighting function.
However, if this is not the case then some adjustments are
required.  In order to have the entire transient be captured, then
either the length of the excitation burst can be reduced, the
bandwidth adjusted to provide more time data or more lines of
resolution provided which essentially lengthens the captured
time sample.  All of these will generally help to assure that the
entire response of the structure is captured within the sample of
data collected.  Generally, the use of windows for this excitation
technique is not required.  In fact the purpose of this excitation
technique is to eliminate the use of any weighting functions.
This will then provide a leakage free measurement that satisifies
the periodicity requirement of the FFT process.

Now, I hope you understand which windows are most
appropriate for these most commonly used experimental modal
analysis excitation techniques.  (Other excitations will be
discussed in a future article.)  If you have any other questions
about modal analysis, just ask me.
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What's the difference between a complex mode and a real normal mode?
There's a lot to explain but let's start with some simple examples.

Now that's a question that comes up often and gets many people
confused.  So let's discuss this in a little detail to explain the
differences.  Unfortunately, we are going to have to include a
little math and some theory here to help explain this.

Let's start with an undamped set of equations and proceed on to
a damped case with proportional and then non-proportional
damping.  It is here where the differences will become apparent.
A simple example will be used to illustrate some points here.
The equations describing a general system can be written as

[ ]{ } [ ]{ } [ ]{ } { }FxKxCxM =++ &&&

where [M], [C], [K] are the mass, damping and stiffness
matrices respectively, along with the corresponding
acceleration, velocity, displacement and force.

The transformation to modal space will yield
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with diagonal matrices of modal mass, modal stiffness and,
under certain conditions, modal damping.  The mode shapes
will uncouple the mass and stiffness matrices and for certain
specific types of damping, these mode shapes will also uncouple
the damping matrix.  In order to understand some of these
conditions, a simple example will be shown.

For the example here, the matrices will be defined with
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First, the undamped case is considered.  The mass, [M], and
stiffness, [K],  will be used with the [C0] matrix.  The
eigensolution of this set of matrices will yield frequencies,
residues and shapes as:
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Notice that the mode shape is a sign valued (+ or -) real number.
The first mode has both DOFs with the same sign indicating
that both of these DOFs are in phase with each other differing
only in magnitude.  The second mode has both DOF with
differing signs indicating that both DOFs are out of phase with
each other and have differing magnitudes.

Now let's consider the second case with damping which is
proportional to either the mass and/or stiffness of the system.
The damping here is [CP] to be used with the [M] and [K].  The
eigensolution of this set of matrices will yield frequencies,
residues and shapes as:
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Notice that the eigensolution yields the same mode shapes as
the undamped case.  This is due to the fact that the damping is
proportional to the mass and /or stiffness of the system.  This
results in modes that are referred to as "real normal modes".  So
it is clear that the mode shapes for the undamped and
proportionally damped cases are exactly the same.

Now let's consider the third case with damping which is not
proportional to either the mass and/or stiffness of the system.
The damping here is [CN] to be used with the [M] and [K].  The
eigensolution of this set of matrices will yield frequencies,
residues and shapes as:
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Now for this case, the mode shapes are seen to be different than
the previous cases.  First of all, the mode shapes are complex
valued.  Upon closer inspection of these shapes, it can be seen
that the relative phasing between each DOF for each of the
modes is NOT either totally in-phase or out-of-phase.  This
results in modes which are described as "complex modes".  This
is very different from the two previous cases.  This will
typically occur when the damping for the system is not related
to the mass and/or stiffness of the system and is referred to as
non-proportional damping.  In order to perform the eigen
solution, a slightly different form is used where the equations
are cast in state space in order to perform the solution.

Basically all the equations get more complicated when
considering complex modes.  Some simple statements between
a real normal mode and a complex mode can be summarized as
follows:

MAGNITUDE

PHASE

Figure 1a - Proportional (Real Normal) Mode Schematic

MAGNITUDE

PHASE

Figure 1b - Non-Proportional (Complex) Mode Schematic

REAL NORMAL MODE
Some characteristics of a real normal mode are:
1. The mode shape is described by a standing wave which has

the presence of a fixed stationary node point
2. All points pass through their maxima and minima at the same

instant in time
3. All points pass through zero at the same instant in time
4. The mode shape can be described as a sign valued, real

number
5. All points are either totally in-phase or out-of-phase with any

other point on the structure
6. The mode shapes from the undamped case are the same as the

proportionally damped case.  These shapes uncouple the
[M],[C], and [K]

COMPLEX MODE
Some characteristics of a complex mode are:
1. The mode shape is described by a traveling wave and appears

to have a moving node point on the structure
2. All points do not pass through their maxima at the same

instant in time - points appear to lag behind other points
3. All points do not pass through zero at the same instant in time
4. The mode shape can not be described by real valued numbers

- the shapes are complex valued
5. The different DOFs will have some general phase relationship

that will not necessarily be in-phase or 180 degrees out-of-
phase with other DOF

6. The mode shapes from the undamped case will not uncouple
the damping matrix

In order to further visualize some of these statements.  A simple
mode shape is plotted for a real normal mode and a complex
mode for one of the modes of a cantilever beam.  In the real
normal mode (Figure 1a), the relative phasing between the DOF
is either totally in phase (as in the case of the blue and red DOF)
or totally out of phase by 180 degrees (as in the case of the
green DOF relative to the blue and red DOF).  A complex mode
does not have this simple phasing relationship and the mode
shape must be described by both amplitude and phase, or real
and imaginary components (Figure 1b).  The plots in Figure 1
are intended to visualize this relationship of the phase.

Now it is very important to point out that phasing can be seen in
FRF measurements all the time.  Sometimes this may be an
indication of complex mode behavior, but be careful to jump
conclusions.  The data acquisition, instrumentation, signal
processing, FFT, and modal parameter estimation are all stages
that can distort a measurement and force a mode shape to
"appear" as if it is complex.

While there is a lot more to it all, I hope this simple explanation
helps to put everything in better perspective.  Think about it and
if you have any more questions about modal analysis, just ask
me.



________________________________________________________________________________________________________________________
What's the difference between a complex mode and real normal mode? Copyright 2002
SEM Experimental Techniques - June 2002 Page   1 Pete Avitabile

MODAL SPACE - IN OUR OWN LITTLE WORLD by Pete Avitabile

Could you please explain
the basic steps

to acquire data for 
modal testing ?

There's a lot to explain

basic steps
but let's summarize some

Illustration by Mike Avitabile

Could you please explain the basic steps to acquire data for modal testing?
There's a lot to explain but let's summarize some basic steps.

The basic data acquisition process has several steps.  These
steps for impact and shaker testing are slightly different and will
be discussed separately.

For impact testing, the excitation is applied to the structure
using a hammer or some type of impacting device where the
force transmitted to the structure is measured.  The response of
the structure is often measured using an accelerometer but
sometimes a laser or other measuring transducer is used.
Typically, the force used to excite the structure is measured on
the lowest channel of the data acquisition system.  Although this
is not a requirement on many data acquisition systems today,
many test engineers still follow this practice.  The response
signal(s) is measured on the remaining channel(s) (depending
on whether a dual or multichannel system is being used).  In
order to start the data acquisition measurement, typically the
measurement is started from a trigger from the impact device.
Some minimal voltage must be specified in order for the data
acquisition system to start the measurement process.  A trigger
level of 10% to 20% of the maximum voltage of the measured
force is a good value to use for most tests performed.  In many
data acquisition systems, a pretrigger delay is specified to
capture the entire transient of the impact device.  By using the
pretrigger delay feature, none of the impact force pulse is
omitted.

The transducer data is collected and this data is always passed
through a low pass, analog filter before any digitization is
performed.  This is done mainly to filter out high frequencies
that are not of interest and to prevent aliasing from occurring.
These analog filters, often referred to as anti-aliasing filters,
remove high frequencies which might otherwise contaminate
the measured frequencies.

This data is then passed into the analog to digital converter
(ADC) where the data is sampled and converted into digital
form.  Two concerns exist at this point.  The data must be
sampled at a rate so as to adequately characterize the time data
for conversion to the frequency domain.  Generally, the data
must be sampled at least twice as fast as the highest frequency
of interest for transformation to the frequency representation.  If
time data processing is needed to evaluate time characteristics
of the structure, then sampling should be performed at least 10
to 20 times faster than the maximum frequency of interest in
order to adequately interpret the system characteristics.  In order
to properly characterize the amplitude of the signal correctly,
the ADC must be set to an appropriate voltage level to
characterize the signal.  If this is not done properly, then
quantization errors in the measured signal may pose a problem.
In many data acquisition systems, a feature referred to as
autoranging assists in setting appropriate voltage levels for all
of the data acquisition channels.  The ADC levels can also be
set manually but care must be exercised to assure that the
acquisition channels are set properly.  Otherwise, the signal may
suffer from quantization error if the levels are set to high or
from clipping and overloads is the level is set too low.

At this point, the digital data describing the impact and response
is available in raw digitized form.  Depending on the character
of the actual time signals,  windows may need to be applied in
order to minimize any leakage that may otherwise result.
Leakage will occur during impact testing if the entire transient
is not captured during the acquired sample of data.  If there is
significant noise on the impact channel, then a force window
may be used to minimize this if necessary.  If the response
signal does not decay sufficiently to zero by the end of the
sample interval, then an exponential window may be necessary
to avoid distortion of the signal due to the Fourier
transformation process.
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Figure 1 - Impact Test Flow Diagram

Before an exponential window is applied, two additional signal
processing features should be used.  In order to allow more time
for the response signal to naturally decay to zero, the bandwidth
of the measurement can  be reduced or the number of spectral
lines increased; both of these parameters will ultimately
lengthen the total time required for the measurement.  This will
allow more time for the response signal to naturally decay
thereby minimizing the need for application of a significant
damping window.

For shaker testing, the excitation of the shaker is typically
measured at the lowest channel of the acquisition system (again
while this may not be required, many follow this practice).  The
response transducers are measured in the remaining channels of
the data acquisition system.  Depending on the excitation used,
triggering will vary.  For random excitations, a "free run" mode
is typically used.  However, other excitations (such as burst
random, sine chirp, etc.) will start from a signal source or force
trigger.  In addition, sometimes a pretrigger delay is specified
for burst random excitation.

For many shaker excitations used, no window is applied since
these signals usually have "special" characteristics that are
employed in order to provide leakage free measurements that
satisfy the FFT requirements.  However, if any arbitrary signal
such as random excitation is employed, then a window such as a
Hanning window, is used to minimize the leakage effects.

For either impact or shaker testing, the time captured data must
be transformed to the frequency domain using the FFT and the
transform algorithm.  The FFT provides the linear Fourier
spectrum of the input and output(s) signals.  (Note that these
functions are complex valued functions.)  This then provides the
input spectrum (Gxx), output spectrum (Gyy) and cross
spectrum (Gyx).  These three spectra are then averaged using all
the individual data records collected.  Once the Gxx, Gyx and
Gyy are obtained then the frequency response function and
coherence are computed.  While different forms of the
frequency response function are available, H1 is the most
popular form of the frequency response function employed in
the majority of single input modal testing performed today.
Figures 1 and 2 depict the measurement process for impact and
shaker testing, respectively.

While frequency response functions are the only measurements
required for development of an experimental modal model,
many times the auto- and cross-spectra along with the coherence
are saved as part of the dataset.  (With the abundant availability
of disk drive storage, there is no reason to not save all of the
measurements!)
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Figure 2 - Random Shaker Test Flow Diagram

Obviously, there is much more that could be discussed but I
hope this helps to explain some of the basic steps in the overall
measurement process for experimental modal testing.  If you
have any more questions about modal analysis, just ask me.
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Is there any real advantage to MIMO testing?
Why not just use SISO and then move the shaker?
Let's talk about the differences.

Multiple input multiple output (MIMO) testing has many
advantages when compared to data collected from single input
single output (SISO) testing.  The energy from multiple shakers
allows the structure to be more uniformly excited throughout
the entire structure and thus allows for the development of
better frequency response functions (FRF).  When only using a
single shaker, the measurements obtained are generally not as
good as those obtained from multiple shaker excitations,
especially when considering larger structures.  With single
shaker methods, many times it is difficult to get a reasonably
good level of excitation throughout the entire structure.

Another important factor is the effect of the shaker setup on the
test article to be measured.  With single shaker testing methods,
the shaker system must be setup multiple times in order to
obtain multiple reference data necessary for polyreference
curvefitting techniques.  Many times the test setup may have an
effect on the measured FRFs.  When multiple reference data is
collected with a single shaker, this can be a serious concern.
The data that is collected with MIMO testing is generally more
consistent when compared to equivalent data collected SISO
testing.

In order to see some of the differences, some data was collected

on a structure using both single shaker and multiple shaker
excitation techniques.  Four different sets of data were
collected:
   - SISO with random excitation and a Hanning window
   - SISO with burst random excitation and no window
   - MIMO with random excitation and a Hanning window
   - MIMO with burst random excitation and no window

In all cases, a reciprocal FRF measurement between the two
excitation locations was collected.  The accelerometers were
permanently mounted to the structure for all testing performed
to minimize any mass loading effects that might otherwise
occur.  Only the shakers were connected and disconnected
between the various measurements obtained.  (The shakers were
actually placed at the measurement locations and then
connected or disconnected as necessary to minimize the effects
of shaker setup problems.)  The FRF measurements for all four
cases are shown in Figure 1.  Each graph contains two
reciprocal FRFs - Hij and Hji.

On first glance, it appears that all four techniques provide
similar data.  The FRFs appear reasonably good.  However,
upon closer inspection of each of the techniques, differences
will be easily seen in the reciprocal measurements (Figure 2).

REF #1 & #2  -  OVERLAID
SISO - RANDOM - HANNING

REF #1 & #2  -  OVERLAID
SISO - BURST RANDOM

       
REF #1 & #2  -  OVERLAID

MIMO - RANDOM - HANNING
REF #1 & #2  -  OVERLAID
MIMO - BURST RANDOM

Figure 1 - Reciprocal FRFs for All Data Sets Compared over the 50 to 100 Hz range
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Figure 2 - Reciprocal FRFs for All Data Sets Compared over the 53 to 58 Hz range

First, look at the FRF measurement using SISO with random
excitation shown in Figure 2(a).  Note that the two curves do
not line up very well especially at the first resonant peak shown.
Also notice that the random excitation exhibits significant
variance on the FRF measurement even with the Hanning
window applied; this is due to the leakage effects of the random
excitation process which are not completely removed through
the use of the Hanning window.  The shift in the peak of the
FRF is directly attributed to the shaker setup and the stiffness
effects of the stinger attaching the shaker to the structure.  The
test setup clearly has an effect on the measured FRF data.

Next, look at the FRF measurement using SISO with burst
random excitation shown in Figure 2(b).  Notice that the two
peaks still do not line up very well at the first resonant peak.
However, the burst random excitation provides a much better
measurement when compared to the random excitation with the
Hanning window applied.  The burst random excitation
generally provides a much better overall measurement since no
window is necessary for the collected data.  This is due to the
fact that the measurement satisfies the periodicity requirements
of the FFT process.  The random excitation will generally need
many more averages in order to reduce the variance on the
measured FRF data and will still not produce as nice a
measurement as the burst random excitation.

Now, look at the FRF measurement using MIMO with random
excitation shown in Figure 2(c).  The peaks at the first
resonance compare much better than in the previous case.
However, there is still significant variance of the FRF in general
and significant differences exist mainly at the antiresonance.
Since both shakers are mounted on the structure at the same
time, the effects of the mounting of the shaker are similar for the
duration of the test.  Therefore, the resonant peak is not affected
by the setup configuration.

Finally, look at the FRF measurement with the MIMO with
burst random excitation shown in Figure 2(d).  This reciprocal
measurement is almost identically the  same.  Obviously, this
measurement is the best of all the measurements considered.
The burst random MIMO excitation has the best overall

characteristics - the measurement does not need a window to be
applied since there is no leakage  and has the consistency
necessary in the reciprocal FRF since the shakers are mounted
simultaneously on the structure for the duration of the test.

So from the SISO and MIMO data evaluated, it is clear that the
MIMO data produces more consistently related data.  The SISO
measurements clearly showed differences when evaluating the
resonant peaks.  In addition, the burst random excitation
produced much better results when compared to the random
excitation with the Hanning window applied.

Another interesting point is shown in Figure 3.  Notice that the
two SISO and MIMO all produce different results.  This clearly
shows that the test setup has an effect on the measured FRFs.
Of course, we realize that the peaks of the FRF may be affected
by the stinger stiffness attaching the shaker to the structure, but
at least with the MIMO configuration, the peaks are consistently
related.  (This can be a very critical point especially when
performing multiple reference modal parameter estimation
techniques to extract the modes of the system.)

M I M O
BURST RANDOM 

S I S O   &

Figure 3 - Comparison of SISO & MIMO FRFs

I hope this example helps to show the advantages of MIMO
testing techniques.  If you have any more questions on modal
analysis, just ask me.
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What are some of the major mistakes people make in modal tests so I don't make the same ones.
Let's talk about some of them.

Well, there are many things I have seen over many years that are big
mistakes that people have made during modal testing and analysis.
Some of them are actually pretty funny and some of them are fairly
serious.  So let me discuss some of what I refer to as the "modal testing
funnies" that I have observed over the past several decades of modal
testing.

Impact testing and coherence - Many, many years ago (as well as just a
few months ago) I observed a modal test where the engineers would
only take one average for each measurement location.  When asked
why, they very clearly stated that since the coherence was one, why
bother making any more measurements - how much better could they
get !  I have seen many fall into this trap.  The coherence is a function
that can only be evaluated for averaged measurements.  With only one
average, there is no variation relative to the only measurement made.
So, therefore the coherence can only be one - but is definitely not an
indication that the measurement is acceptable.  You can only use the
coherence function to evaluate the variation on a set of averaged
functions.  Averaging is required!

Reference location at the node of a mode - In order to conduct a modal
survey, the reference location (stationary response in a roving impact
test and stationary input location for impact or shaker testing) must not
be located at the node of a mode.  The node point is a location of zero
response.  If there is no response, then how can a good FRF be
obtained.  I remember many years ago, a group was testing a large
cantilevered type of structure and they had just procured some very
expensive low frequency accelerometers.  Concerned that the device
might fall from the structure, the reference accelerometer was mounted
at the base of the cantilevered structure - but of course there is no
response to measure so the FRFs were very poor to say the least.
Another test of a rib-panel cabinet structure was instrumented with all
the measurement locations at the majority of the stiff rib intersections
and no accelerometers on any of the panels portions of the structure.
For this particular structure, it turned out that the modes of interest
were mainly related to the panel responses.  All the accelerometer
locations were essentially at nodes of all the modes.  Unfortunately,
someone worked on this over several months and acquired many sets

of useless data before asking for guidance and help.  The measurements
need to be at locations where there is response to measure.  Avoid
nodes of modes!

Mass loading effects - Now mass loading effects have been discussed
in other articles.  The mass effect of instrumentation can cause an
effect on the measured FRFs and give a misrepresentation of the
system natural frequencies.  Care must be exercised to determine what
mass loading effects, if any, exist.  This may be a pronounced effect or
relatively insignificant.  But I have a mass loading story that is hard to
beat.  Back in the early 80s, I was involved in impedance testing of
isolation components for submarine propulsion systems.  New designs
were being evaluated and impedance testing was being performed over
a 5 KHz range with a new approach at the time called digital stepped
sine; each test took approximately 3 hours to conduct.   With many
measurements for each configuration, many proposed prototypes to
evaluate and only a dual channel analyzer, testing was performed 24-7
to complete the tight scheduled program.  The configuration involved a
set of 2 ton concrete blocks supported on air bags and separated by the
isolation system.  There was one particular co-op student (about 6'5"
and about 350lb) who would run some of the third shift tests.  Three
months after the program ended, the analysts evaluating data called
with some questions regarding several data sets that appeared to have a
400 lb difference in mass that appeared part way through the frequency
range.  Their comment sent a chill up my spine as I remembered
coming into the shop assembly area where the tests were being
conducted every morning and remembering seeing a pillow and blanket
on the concrete blocks.  After some lengthy discussion, it was
determined that once the test was started, the co-op student would
climb up onto the airbag supported concrete block to take a nap while
the test was underway !!!  You can imagine how hard it was to explain
that unique testing problem.  It turned out that since a very good
logbook was kept for all the tests, it was easy to determine which tests
the co-op was involved in and additional measurements were reviewed
and some determined to be inappropriate for use.  No one likes to keep
an accurate logbook but this is one case where that information was
invaluable.  Now that is a mass loading effect that I don't think will be
easy for anyone to top.  Watch out for mass loading!
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Double impact and force windows - Many times double impacts are
unavoidable while performing an impact test.  There have been several
times where I have seen test engineers use the force window to
eliminate the effects of the second impact of the double impact.  Their
thought process was that since I really didn't want to have a double
impact, why not just zero out the effects of the second unwanted
impact.  At first thought, this might seem reasonable, but the reality is
that the structure actually did see the double impact.  Therefore, it is
totally incorrect to apply the force window to try to analytically
remove the effects of the second impact.  The structure actually
responds due to the actual double impact applied.  Never try to remove
the effects of a double impact through the use of the force window.

Averaging using a different point for each average - This is one you
have to laugh at in complete disbelief.  I witnessed a test eons ago,
where the resulting mode shapes of a fairly simple structure appeared
to be nothing more than shear gibberish.  After checking some of the
basic things that could be wrong, a lengthy discussion was held to
determine why the coherence of the measurement could be so bad for a
simple structure when 25 averages had been acquired.  It turns out that
there were 25 measurement points to be acquired.  The test engineer
took 25 averages for each measurement point for the modal test.
Unfortunately, each of the individual measurements that made up the
summation of all 25 measurements were obtained through an impact
test where each individual point on the structure was impacted at a
different location for the total 25 measurements.  Basically, each
averaged FRF came from the 25 averages from impacting ALL of the
individual 25 points on the structure.  This one averaged function was
then labeled for one of the test structure measurement points.  This
process was repeated 25 times until all the measurement points were
measured.  Obviously, this is completely incorrect.  An averaged FRF
for a given point on the structure must come from a measured function
where the SAME point is impacted for each of the averages.  I still
can't  believe that one.

Coordinate systems and point/direction information - The proper
identification of point and direction identification for a modal test is a
fairly simple process - but sometimes errors result from incorrect
specification of this information.  A simple remedy is to clearly mark
the coordinate system at the test setup.  I usually put down tape on the
floor with the x, y and z directions clearly labeled.  Many people laugh
behind my back at this routine but I never mess up point direction
information for a modal test and many others often do.  So I guess it is
"he who laughs last, laughs best" and I am still laughing at some of the
mishaps that I have seen.  I remember one  modal test of an engine
block on its mount system.  The test was used to basically identify the
rigid body modes of the engine on the mount system - these are
typically very low frequency modes.  One day I received a phone call
with a problem where the modal test revealed a flexible mode of the
engine block in the 10 Hz frequency range.  This was highly unlikely
and I questioned the proper identification of the point and direction
information for all of the measurement locations.  The people at the test
lab very abruptly stated that they were experienced modal test
engineers and knew exactly how to identify this basic information.  Not
wanting to ruffle their feathers, I asked for the data to review.  Upon
close inspection of their data, it became very clear and blatantly

obvious that one face of the engine block had all of the X direction
transducers mislabeled 180 out of phase (basically they were pointing
in the opposite direction as that specified in the modal software
package).  Once the phase was corrected for the measurement points of
concern, the engine block rigid body modes appeared exactly as
expected.  Point and direction information is a fairly simple
straightforward process - care needs to be exercised in this important
step of the geometry generation.

Finite element models aren't always correct - Now that's a loaded
statement.  Many people have heard the statement that "Everyone
believes the test except the test engineer and no one believes the model
except the analyst."  A large satellite structure was tested about ten
years ago where a great deal of care was employed to accurately
identify the shaker locations for a modal test with a very elaborate pre-
test analysis using the finite element model.  The model identified
several shakers along the length of this long cantilevered structure
attached to a huge seismic mass - but the two horizontal shakers were
only set up in one of the directions perpendicular to the length of the
cantilevered satellite structure.  When questioned on the omission of
exciters in the other perpendicular direction, the analysts firmly
responded that there was no need for the exciters in the other horizontal
direction since an extensive pre-test analysis was performed and ALL
the modes of the structure would clearly be excited by the selected
excitation directions.  Well, it turned out that the model was not
perfectly correct (and actually had many lumped mass elements
incorrectly defined and located in the model).  Therefore, the pre-test
analysis was biased by the errors in the finite element model and
therefore provided inaccurate information.  The selection of reference
locations is not an easy task.  A finite element model, if available, is a
great tool to assist in the selection of references.  But care should be
taken to not put too much faith and confidence in a model that has not
been verified (which was actually the point of the test under way).

Bottom line - The bottom line for almost any modal test is that you
need to carefully think about each step of the measurement process to
assure that correct FRFs are obtained .  The worst situation occurs
when people stop thinking about what they are trying to do.  I get upset
when I walk in to a lab and see measurements being made with no
understanding of what is being measured.  Many times the response of
the concerned people is that "this is the way we have always done it
and it must be right because we have been doing it this way for years".
It is all right to take measurements following a set procedure but it is
imperative that everyone understands the logic and reasoning behind
the approach and methodology used for the acquisition of FRF data.
The first thing that should always be done is question assumptions to
assure that everyone knows why things are done a certain way.  The
next thing I always say is that thinking is not optional!  This is not
push button technology like a hamburger joint where the choices are
simple - burger, fries, soda, $4.52 please.  Modal testing has come a
long way in the past 25 years but we are still not to the fully automated
modal test just yet.

I hope some of these stories have brought a smile to your face but just
make sure you don't make the same mistakes!  If you have any more
questions on modal analysis, just ask me.
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Is it better to collect averaged FRF data for a modal test?
Or collect time data and process it afterwards?
Let's talk about the differences.

Both approaches are acceptable providing that good data is
collected but time data offers many more advantages.  Let's
discuss some of the different aspects of collected averaged data
vs. time data streamed to disk.

In the old days, the option of streaming to disk was not possible.
Typically, time data was collected and immediately averaged to
obtain FRF data.  Generally, computer memory and disk drive
capacities were very small and this necessitated the immediate
processing of time data.  (Actually, in the very early days of
modal testing, it was very rare that all the spectra would be
saved and many times only the FRF was saved - you had to
think twice about anything that was saved due to the expense of
storage devices.)

This was the typical mode of operation for most modal tests
performed.  As the data was collected, the averaged input,
output and cross spectrum was available for review along with
the FRF and coherence.  With this approach, there was
immediate information available to assure that adequate
measurements were obtained.  The measurements could be
scrutinized after each set of measurements were collected and if
necessary, additional averages could be collected to obtain
improved measurements or determine what might be causing
poor measurements.  As each set of measurements were
collected, this data review continued for each set of
measurements obtained.  If any problems occurred during any
of the measurements acquired, there was immediate feedback
through review of the FRF and coherence as to the adequacy of
each measurement obtained.

Depending on the application, at times, data was collected and
recorded on magnetic tape in the field at the test site. This data
was then brought back to the laboratory for processing to
obtained averaged FRF data.

However, the use of magnetic tape and the associated tape
recording equipment, at times, introduced a wide array of
different issues that could possibly contaminate some, if not all,
of the data collected.  While this introduced problems of its
own, the advantage of having time data enabled further
processing following the completion of the test.  Sampling
parameters could be studied to determine various signal
processing effects since time data was available.  This enables
the test engineer to gain further insight into various aspects of
the data collected.  If only averaged FRF data is available, none
of the additional processing is possible.

Today, it is very common to obtain time data that is directly
streamed to disk.  (This largely due to the availability of
inexpensive large capacity disk drives.)  This data is collected
and then processed after the completion of the test.  There is no
doubt that time data is by far the best data to collect today.
With time data, the same processing still needs to be performed
(as is done with averaged FRF data) on the data (Figure 1).
However, the time data is always available for additional
processing if needed.  Additional signal processing scenarios
can be investigated if desired or needed.  This is not possible
with averaged FRF data; once the data is collected there is very
little additional processing that can be performed since time data
is not available once the data is processed.

Based on all the statements above, it appears fairly obvious that
time data is the best data to collect.  There doesn't seem to be
any reason to collect anything but time data followed by
whatever spectral processing is needed.  In this way, any
subsequent processing can be investigated and explored with
the time streamed data.  Once time data is available, new
concepts and processing can be performed at a future data as the
technology progresses.  If averaged data were collected, then
future processing could not be explored.
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Figure 1 - Schematic Overview of Time Streamed Data to Disk vs. Averaged FRF Data

However, whenever any testing is performed, it is extremely
dangerous to only collect time data.  Now that may sound like a
contradiction after everything that was discussed above but just
hear me out.  Whenever time data is collected there is no
immediate spectral data that provides any information as to the
adequacy of the data.  All we know is that we have collected
time data streamed to disk.

But how good will the processed FRFs be once the time data is
processed?  Has sufficient data been collected to obtain good
FRFs with acceptable coherence functions?  And many other
statements can be raised here as to the adequacy of the time data

collected.  You will not know how good the data is until it is
processed.  You would hate to come back from an expensive
field test only to find out that all the data is unacceptable!

So the rule is - collect all the time data you want but you had
better process some typical data sets in the field to assure that
the data collected will be acceptable.  There is no substitute for
viewing an FRF and coherence!!!

I hope discussion helps with time streamed data vs. averaged
FRF data.  If you have any more questions on modal analysis,
just ask me.
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Why is calibration and mode shape scaling important?
And does it make a difference?
Let's talk about this

Calibration and mode shape scaling are two important items for
the development of an accurate dynamic model that would be
used for other structural dynamic studies.    Some of these
would be simulation and prediction, modification, correlation,
to name a few.  While there may be some instances when
calibration and scaling may not be critical, I will always
recommend that they are done since this may be the only data
ever acquired.  First let's discuss calibration and then discuss
scaling.

Calibration of the whole acquisition system is very important.
Back in the early days of 2 channel FFT analyzers, many times
we may have stepped around calibration when performing
troubleshooting or quick investigative tests since we were only
interested in the ratio of output to input - so the exact units may
not have been critical.  This may have been tolerable since we
may have only been interested in general shapes of the
structure.  But as soon as the use of the modal data for
simulation, prediction, etc. was needed, then a fully calibrated
model was necessary.  An accurate calibration was required
when the dynamic model is used for other structural dynamic
studies.

As larger channel FFT analyzers became available, the use of
several accelerometers (possibly with different sensitivities)
required at least some nominal calibration value to be used.  If
not, then different regions of the structure could possibly show
relative differences in shape which could cause confusion in
understanding the mode shapes.

So what calibration should be performed?  Well a complete
calibration is always best.  This would involve a complete
calibration of an entire acquisition channel as a unit - the
accelerometer, signal conditioner, ADC channel together.

While calibration of each individual piece is often acceptable,
the calibration of the complete system together is preferred.
There are a variety of types of calibration.  Accelerometers can
be calibrated relative to some well-maintained reference
accelerometer that is traceable to a source.  This can be
performed in the lab using a piggyback arrangement for the test
accelerometer to the reference accelerometer.  Or the test
accelerometer can be calibrated through drop test with some
known mass.  Another common calibration utilizes an excitation
through a force gage mounted to a known mass with an
accelerometer.  This ensures that the ratio of force to
acceleration using the equation of motion with the known mass.
(The individual transducers can be identified if one of them is
known).  The most accurate way to perform this calibration is
through the acquisition channels to be used for the test.

And while many calibration service companies provide
calibration in fixed increments (ie, 50, 100, 200, 500, 1000, ...),
this only provides information at those discrete frequencies.
The better way of calibrating is to perform broadband input
excitation over the frequency range of interest.

Now that calibrated modal data has been addressed, we need to
discuss mode shape scaling.  Yes - I know that the shape is the
relative motion between points.  But there is a scaling that needs
to be preserved.  That is, the relationship between the modal
mass, modal damping and modal stiffness.  The shapes can be
anything but the relationship between the shapes and physical
quantities is very important.  The shapes can be scaled to
anything you'd like - but the most common is unit modal mass
scaling (but others such as unit length, largest value equals one
are also common).  The most important item is that the shapes
are scaled to some quantity that is identified for future
reference.  Scaling can be a critical item with respect to further
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use of the dynamic model for simulation, prediction, correlation,
etc.
In order to address scaling, a simple 3 dof system will be used.

The equation of motion and specific system values are:
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and the corresponding eigensolution yields:
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Now the first mode of the system will be the only one
addressed.
The frequency, damping and complex pole for mode 1 are:

Frequency     12.18Hz Damping    0.038%
Complex pole       -0.029 ± j 76.537 rad/sec

Let's recall that the poles and residues are the values that
describe the FRF measured.  For mode 1, this is
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Now let's also recall that the residues are directly related to the
mode shapes of the system from
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The scaling constant 'q' is a very important term in this equation.
While there are many different types of scaling that may be
used, the most common one is unit modal mass scaling.  (This is
also a very common scaling used in finite element modeling
software packages).  With this, the system parameters of modal
mass, modal damping and modal stiffness are defined as:

modal mass
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Now if we consider the first column of these equations, then the
residues can be related to the mode shapes using
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We notice that there is a scale factor 'q' which is important in
this equation.  This scaling constant helps to preserve the proper
scaling relationship between the mode shapes and the system
modal mass, modal damping and modal stiffness.  Notice that if
we take a measurement such as h31 that a31=q u3u1 (also h21
that a21=q u2u1 and so on).  For each of these equations, there
is one extracted value of the residue (from the curvefitting
process) but two values of the mode shape.  So the best that can
be said about the mode shape is that there is a 'relative' motion
between the various points.  This relative motion using the
residues can be animated and provides a wealth of knowledge.
However, if the drive point measurement is considered, then we
see that h11 provides a11=q u1u1 and it is this equation that can
be used to solve for u1 which is then used to scale all the other
terms that were measured.

Every now and then I will hear someone say that there is no
need to scale the mode shapes and that there is no need to take a
drive point measurement.  While this is true to in order to
visually observe the mode shapes, without any scale factor, this
modal information cannot be used for any further analytical
manipulation using this data.  The scaled modal data is required
for any further analyses such as structural modification, forced
response, prediction, simulations, correlation, etc.

Since the modes in this example are real normal modes, the
residues are complex valued but will only have an imaginary
part of the residue.  In order to simply the numbers, the residue
will be converted to a real valued expression using  r = 2 j a   -
(note that this is a common representation of the residue in
many commercially available modal analysis packages).

The values of the residues 'r' for this example for mode 1 are 
dof1 = (0.003266 ± j 0.0)
dof2 = (0.004619 ± j 0.0)
dof3 = (0.003266 ± j 0.0) .

Then the relationship of the residues to the mode shapes with
the scaling factor are given as:
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So it can be seen that the is a definite scaling relationship that
does exist and the mode shapes must be scaled using the drive
point measurement in order to accomplish this.  If you have any
other questions about modal analysis, just ask me.
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Is it really necessary to reject a double impact?
Are they really a problem?
Let's talk about this.

I know that many people will say that a double impact is totally
unacceptable.  It is not the optimum condition for collecting
impact data for a modal test.  However, under certain
circumstances, it may be reasonable to accept a measurement
that has resulted from a double impact.  Let's discuss this
problem that may arise when a double impact occurs and
explain how to determine if the measurement is acceptable or
not.

First, let me state that I would like to avoid double impact
measurements at all costs.  It is not a desirable situation but at
times it is unavoidable.  The real concern should be the
adequacy of the frequency response measurement which is
really the deciding factor.  Just recently, I was involved in a
modal test where double impact measurements were a concern.
The engineer involved in the test was quite firm in his position
that no double impact measurements would ever be acceptable.
(In fact, the engineer quoted reputable sources as to his position
on this subject).  When asked why double impacts were
unacceptable, the engineer responded with a comment that any
good test engineer knows not to accept a double impact
measurement!  This is good advice but the engineer really didn't
understand what were the limiting factors in this type of
measurement situation; he only knew not to accept the
measurement.  Of course , if the measurement is not good as
evidenced by the coherence and poor input forcing function
spectrum, then the double impact measurement may well not be
acceptable.

Unfortunately, since double impacts were a problem, the
engineer picked a measurement location that avoided double
impacts but resulted in an extremely poor measurement overall.
The measured FRF was much worse than the measurement that
resulted from the double impact.  In order to illustrate some
points, let's take a look at some of the acquired measurements

and explain some of the problems, pitfalls and things to
consider when faced with this problematic measurement
situation.

While the actual structure under test is not shown, the system
can be simply depicted by the schematic shown in Figure 1.
The cantilevered plate-like structure is very responsive and
prone to double impacts during testing.  Two measurement
locations were considered - the end of the cantilevered where
double impacts are likely to occur and a location on the plate
closer to the cantilevered end where double impacts are
avoided.  (Note that in all frequency plots, a dB scale was used
with 100 dB of dynamic range for plotting the input spectrum
and frequency response function; the coherence is plotted on top
of the frequency measurements for ease of interpretation with a
range of 0 to 1).

SUGGESTED
POINT

IMPACT
POINT

DOUBLE

Figure 1 - Structure with Measurement Locations

The engineer wanted to avoid the "double impact location" and
identified a "suggested point" where there was no double impact
observed.  The measurement for the "suggested point" (impact
time history, input force spectrum, frequency response function
and coherence) are shown in Figure 2.

The first thing to notice is that the impact and force spectrum
appear to be very  good.  The force pulse contains one pulse and
the resulting frequency spectrum is reasonably flat over the
entire frequency range with  less than 10 dB rolloff over the
entire frequency range.
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FORCE PULSE - NO DOUBLE IMPACT

INPUT FORCE SPECTRUM

FREQUENCY

COHERENCE

FREQUENCY

 RESPONSE
 FUNCTION

TIME

Figure 2 - Measurement with No Double Impact

The resulting frequency response function and coherence are
also presented in the same plot.  In general, the frequency
response function is not particularly good as evidenced by the
poor coherence at many frequencies over the spectrum.    Notice
that the coherence is very poor at low frequencies and there
appears to be 2 peaks that are not excited very well and appear
to be in the noise of the measurement.

Clearly, there is no double impact but the measurement
adequacy in my mind is very poor - and most would agree that
this is not a very good frequency response measurement.  In
fact, the engineer attempted to defend this poor measurement
stating that the structure is very complicated, with many joints
and possible nonlinear behavior.  (I wish I had a dollar for every
time I have heard that statement !  Nonlinearity and joints and
damping - oh my!).

Now let's consider the measurement where the double impact,
actually multiple impacts, are observed.  Now this measurement
clearly has multiple impacts on the input force excitation.  The
input spectrum is not flat and has some variance over the
frequency spectrum.  The actual variation is between 20 and 25
dB over the spectrum.  Of course, I agree that I would avoid this
particular measurement but the frequency response
measurement and coherence are actually very good.

FORCE PULSE - WITH MULTIPLE IMPACT

TIME

FREQUENCY

INPUT FORCE SPECTRUM

COHERENCE

FREQUENCY
 RESPONSE
 FUNCTION

Figure 3 - Measurement with Multiple Impacts

The frequency response function is relatively good and the
peaks in the measurement are well defined especially at the
lower frequency range (where previously the peaks were not
measured well and were contaminated with noise).  There are
also two additional peaks in the higher frequency range that
were not even observed in the previous measurement. Actually
if I hadn't made all this fuss concerning the double impact and
just showed the frequency response function and coherence,
most people would have accepted the measurement without any
questions.  (It also can be stated that the previous measurement
would not have been considered acceptable if only the
frequency response function and coherence were shown).

So what do we need to be concerned about?  If the input
spectrum has significant drop out at any particular frequency,
then the measurement may not be adequate.  But before we can
make any assessment, the input force spectrum, frequency
response function and coherence need to be reviewed and
evaluated.  We cannot make a blanket statement that double
impact measurements are unacceptable.

I agree that I will avoid double impacts at all costs to be safe -
but we have to realize that the double impact itself is not
necessarily a problem if the input force spectrum, frequency
response spectrum and coherence are all acceptable.  If you
have any more questions on modal analysis, just ask me.
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Someone told me that you must have multiple references to identify pseudo repeated roots.
Let's talk about this.

First, let me say that repeated roots are generally rarely found in
the majority of structures we test.  But recently, I have seen
many tests with what are referred to as "pseudo repeated roots".
This refers to modes with two or more frequencies that are
present in one discrete ∆f spectral line of the measured data.
Therefore, the observed peak is comprised of the sum of two or
more modes in the response function measured.

In order to see the peaks as distinct individual peaks, finer
frequency resolution is needed.  Of course, this may not be
feasible.  Many times to obtain this resolution would require
excessively long time blocks which may not be easy to obtain.
But what happens if sufficient resolution is not available.
Typically, most people would state that if multiple roots exist,
then multiple references must be acquired otherwise the roots
cannot be extracted.  Now this is a very strong statement and I
do not necessarily agree.  The modal parameter estimation
algorithms (curvefitters) are very robust and there is really no
reason to think that the algorithms are deficient when it comes
to extracting pseudo-repeated roots (two examples will be
shown).  Multiple references are actually not always necessary
in these situations.

First, let me make sure that there are no misrepresentations here.
I fully advocate using multiple reference data collection when
conducting an experimental modal test.  With multiple channel
acquisition systems commonly available, it is easy to acquire
multiple reference data.  Typically with a 4 or 8 channel data
acquisition system, multiple accelerometers can be placed at a
variety of different locations as references for an impact test
(MRIT - multiple reference impact test).  Then, the impact data
can be collected at all the measurement locations with the
multiple stationary acceleometer locations.  (Of course with a
shaker excitation modal test, multiple reference data can be
more work if multiple shakers are not available.  But, typically
multiple reference data can be collected.)  But the question

really is this - Is multiple reference data required to extract
multiple roots?

As far as I am concerned, the answer is not necessarily so.  If
the data collected is good measured data, then the frequency
response function is the sum of all the modes and the modal
parameter estimation algorithms can extract multiple roots
accurately from the measured data.  Two structures are
evaluated to show the results of extraction of multiple roots
(two distinct modes within one ∆f of the analysis spectral
resolution) from measured data.  In both cases, there appeared
as if only one root existed as indicated by the available mode
indicator tools (SUM, MIF, etc).  In one structure, only a
handful of cross directional FRFs from a total of over 100
measurements showed some indication of two frequencies.  In
the other structure, none of the measurements revealed the fact
that the first two "peaks" in the FRF contained multiple roots at
each peak!

The first structure was a prototype composite spar from a wing
structure.  The geometry typified a taperd beam (with a type of I
shape) which had no geometric symmetry.  A typical impact
measured FRF is shown in Figure 1 with a photo of the
structure.

The measurement is reasonably good with some noise seen on
the measurement over the frequency range.  A frequency
domain polynomial curvefit algorithm was used to extract mode
shapes.  (Actually, three different commercially available modal
packages were used with essentially identical results).  The
second peak in the function actually contains two separate roots.
The curvefitter extracted the two roots at the second peak with
no difficulty whatsoever even though there appeared to be only
one peak present.  Clearly, the modes extracted show two well
defined mode shapes shown in Figure 2.  Even though only one
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reference was available to extract modal parameters, two modes
were very successfully extracted!

Hz0 800

TWO MODES

Figure 1 - Typical FRF and Photo of Structure

Figure 2 - Pseudo-Repeated Mode Shapes at Second Peak

The second structure was a simple magnesium shaker table slip
plate.  The geometry was such that multiple roots were not

actually anticipated.  A typical impact measured FRF is shown
in Figure 3 with a photo of the structure.

Hz0 4096

TWO MODES

TWO MODES

Figure 3 - Typical FRF and Photo of Structure

The first peak appeared to be a single mode for all of the FRFs
obtained; to some degree the second peak had similar
characteristics.  The mode indicator tools also indicate that only
one mode is expected.  However, estimating parameters
assuming only one mode does not provide the "expected" mode
shapes.  Upon refitting the data with two modes at each peak
reveals the mode shapes expected; the shapes are shown in
Figure 4.

PSEUDO-REPEATED MODES

Figure 4 - Pseudo-Repeated Mode Shapes

Now in both cases, the mode indicator tools did not necessarily
indicate multiple roots.  User intervention was required in order
to extract the multiple roots.  Also notice that the multiple roots
were very successfully extracted with single reference data -
multiple reference data was not required!  Please understand
that multiple reference data is extremely useful - but is not
always required in order to extract multiple pseudo-repeated
roots.

I hope this answers your question.  If you have any more
questions on modal analysis, just ask me.
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I ran a modal test on a portion of a structure of concern and many modes look the same!
What did I do wrong?
Let's talk about this.

This is another common problem that I often see in
experimental modal testing.  Many times only a portion of the
structure or component of the system is of interest to you or
your company.  So immediately you focus on only that portion
of the overall structure since that is your area of responsibility
or concern.  This seems reasonable especially since you may not
want to test the entire system.  (Ahhh - if life could be so simple
and easy!).

Unfortunately many times this may not be possible.  Most times
there is significant dynamic coupling between different
components in the system or different portions of the system.  It
is not always possible to just measure the portion of the
structure of interest to you.  Of course, you can certainly
measure only the portion of the structure of concern, but many
times there may be significant dynamic interaction between the
various components of subsystems in the system.  If
measurements for an experimental modal test are only collected
over a portion of the structure, then the mode shapes may be
confusing since the entire mode shape over the whole structure
is not known.  It is as if you have put blinders on your view to
only look at a portion of the structure - this can leave the user
fairly confused.  Many times people will comment on this type
of test data that there are two first bending modes or two first
torsional plate modes, etc.  Obviously this is entirely not
possible!  There cannot be two first modes of the system.  But
from your limited vantage point when only a portion of the
structure is measured, it certainly appears as if there are two
very similar modes.

Recently, I saw a modal test of a frame type structure that had
various platforms at different levels.  An experimental modal
test was performed on one platform surface since some
important equipment was mounted on one particular platform.

Figure 1 - Drive Point FRF and Typical Cross FRFs

MODE 1 MODE 2

MODE 3 MODE 4

Figure 2 - Mode Shapes of Upper Plate Component
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MODE 1 - TOP PLATE MODE 2 - TOP PLATE

MODE 2 -WHOLE STRUCTURE
MODE1 -WHOLE STRUCTURE

Figure 3 - Mode Shapes of Upper Plate Component along with Entire Structure

Since data was only collected only on that one platform, it
appeared as if there were many similar (and almost exactly the
same) modes.  The problem clearly is that only a portion of the
entire mode shape was identified and does not provide a clear
understanding of the entire mode shape.

As an example of this problem, a simple two plate structure
separated by support columns is used to illustrate typical FRFs
and resulting mode shapes from an experimental modal
analysis.  In one case, only one plate was measured and in
another case both plates were measured (but only vertical
motion was considered to simplify the explanation of this
problem).  A typical drive point FRF on the upper plate along
with some other typical cross FRFs are shown in Figure 1.

Upon reducing all the data (considering only the upper plate of
the structure, the experimental mode shapes revealed two very
similar torsion and two very similar bending modes for the first
four peaks seen in the FRF.  These shapes are shown in Figure
2.  Obviously, this is not possible - but with the limited number
of measurements on just a portion of the structure, this is
entirely possible.

In order to better understand the 'actual' mode shapes of the
structure, a more extensive array of points were used to describe
the FRF matrix.  These FRFs were used to determine the mode
shapes of the entire system and are shown in Figure 3 for the
first two peaks in the FRF.  Clearly, the addition of the extra
points clarifies the actual mode shapes of the upper plate in
relation to the rest of the structure.  This phenomena happens

often in many structures when testing is performed for only a
small portion of an entire structure or system.

In this simple example, it is clear that the mode shapes for the
entire system must be obtained otherwise some confusion may
exist.  However, this also occurs many times when complicated
structures are tested where access to the entire structure is not
possible.  This might happen with internal components that are
not easily accessible for testing.  These internal components
may have significant modal energy related to one or modes of
the structure or system.  In these cases, only a portion of the
entire mode shape is acquired since it is not possible to
instrument interior portions of the structure.  Just imagine in the
two plate example if the lower plate were not visible or covered
by some exterior shroud or covering.  If the lower plate were
not accessible, the measurements may only reveal the portion of
the mode shapes related to the upper plate.  In this case the same
problem will exist.

This happens many times with structures where all significant
portions of the structure are not available for instrumentation or
where some disassembly is required to gain access to all the
pertinent areas of the structure for modal testing.  In these cases
the same problem exists.  So it is very important to be careful
when testing structures where interior components or
subsystems are not readily accessible for testing - there may be
significant regions of the structure that contain critical
information that identify the modal character of the system.

I hope this answers your question.  If you have any more
questions on modal analysis, just ask me.
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Why do some measurements have anti-resonances and others do not?
Let's talk about this.

This is a good question.  You are absolutely correct - some
measurements have anti-resonances and others do not.  But why
does this happen.  Let's first discuss some properties of a
particular measurement called a drive point measurement and
then extend this discussion to explain how anti-resonances
occur in a measurement.

Let's first explain a drive point measurement.  A drive point
measurement is one where the input force and output response
are made at the same point and in the same direction.  A typical
drive point measurement is shown in Figure 1.
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For a driving point measurement several items can be noted:
• all resonances are separated by antiresonances as seen in

the magnitude plot
• the phase looses 180 degrees  of phase passing over a

resonance and gain 180 degrees of phase passing over an
antiresonance

• the peaks in the imaginary part of the FRF must all point in
the same direction

The drive point measurement can be viewed as a summation of
all the modes or as the contribution due to each mode.  As seen
in the four plots in Figure 1, the upper plot contains the
summation due to all the modes and the lower plot shows the
contribution due to each mode.  For the first three modes
shown, the frequency response function is made up of  the sum
of each of the single degree of freedom oscillators describing
each mode of the system.  For reference, recall that the
frequency response function equation can be written as either
residues or mode shapes as shown in Figure 1.

Now that the drive point measurement is understood, several
other items can be discussed.  For instance, the imaginary part
of the frequency response function must all have the same
direction and in this condition an anti-resonance exists between
each mode.  This is due to the fact that the magnitude of the
FRF of mode 1 and mode 2 is equal at the anti-resonant
frequency.  But at this frequency, while the magnitudes are
equal, the phase is 180 degrees out of phase with each other.
This implies that the sum of mode 1 and mode 2 are equal and
opposite.  Therefore the function trends towards zero.  (There is
actually a contribution from other modes that is generally very
small when the modes are far spaced as shown.)

Now this implies that when the imaginary part of each mode has
an opposite sign, the phase is not necessarily out of phase - and
then the modes add and an anti-resonance does not result.  So
each measurement can have anti-resonances or no anti-
resonances (saddles) depending on the direction of the
imaginary part of the frequency response function.  When the
imaginary part of the frequency response function for sequential
modes have the same direction, then an anti-resonance will exist
between those two modes.  When the imaginary part of
sequential modes have different signs or directions, then a
saddle exists between those two modes.

Actually, the direction (or sign) of the function is directly
related to the mode shapes of the system.  As seen in Figure 1,
the frequency response function can be written in the form of
residues.  But the residues can be expressed in terms of the
mode shapes of the system.  When written as mode shapes, the
directional sign of the residue can be clearly seen as a result of
the mode shape of the system.  Figure 2 shows the
measurements for a simple 3 DOF system.  Upon reviewing
each of the individual FRF measurements, the phase
relationship and occurrence of anti-resonances and saddles in
the frequency response function can now be better understood.

Magnitude

Phase

Real

-1.0000

1.0000

Imaginary

Figure 2 - FRF Matrix for a 3 DOF System

I hope this explanation answers your question.  If you have any
more questions on modal analysis, just ask me.



_________________________________________________________________________________________________________________________
What's the difference between local and global curvefitting? Copyright 2003
SEM Experimental Techniques - December 2003 Page   1 Pete Avitabile

MODAL SPACE - IN OUR OWN LITTLE WORLD by Pete Avitabile

What's the 
difference between

local and global
curvefitting ? Let's talk

about this.

Illustration by Mike Avitabile
What's the difference between local and global curvefitting ??
Let's talk about this.

This is a good question.  In order to explain this, a few quick
equations are needed followed by a simple example that will
illustrate the differences.  Let's recall the frequency response
function which is

h j
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j p
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j pij
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There are numerous 'ij' (output-input) combinations; a matrix of
possible FRFs is illustrated in Figure 1.

Figure 1 - FRF Matrix for a Multiple DOF System

Now each FRF is defined by poles and residues.  The FRF is
different from one measurement to the next because the residue
is different.  This is true since the mode shapes are related to the
residues as

a q u uijk k ik jk=

But it is very important to note that the denominator of the FRF
is constant and does not change from one measurement to the
next.  Since the pole does not change from one measurement to
the next, then it is said that the pole is a "global" property of the
system.  This means that while the residue changes from one
measurement to the next, as expected, the pole does not change
- at least theoretically!  But in real measurements, this may not
necessarily be the case.  In actuality, the pole may shift from
one measurement to the next.  This can cause a problem.

To understand this, consider data to be fit with a straight line as
shown in Figure 2.  Now, if only two points are selected (blue)
different from another set of points (red), there can be dramatic
differences in the slope and y-intercept computed from the two
sets of points.  In other words, there are differences and
inconsistencies in the slope and y-intercept depending on which
data is used to extract parameters.  When all the data is used
together in a least squares fashion, then the "best" overall
estimate of the slope and y-intercept results.

X

Y

y = m x + b

Figure 2 - Illustration on Parameter Variation

The same effect can be seen in the extraction of modal
parameters from measured FRFs if each FRF is evaluated
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independently from every other FRF.  Depending on which FRF
is used, there may be differences in the estimated pole - but the
theory indicates that this should not happen.  However, this is
exactly what happens when real measurements are used to
extract modal parameters when each measurement is considered
independently from each other.   This is referred to as "local"
curvefitting.  In order to circumvent this problem, all of the
measurements are used together, as one set, to find the best pole
in a least squares fashion, to describe the best "global"
representation of the pole.  Once the pole is estimated, the
residues are then estimated with the "global" estimate of the
pole used in the modal parameter estimation equations.  This is
a two step process where the best "global" pole of the system is
estimated first, followed by the estimation of residues with the
estimated "global" pole of the system locked to a fixed value
regardless of what each measurement may indicate.  This is
global curvefitting.

To illustrate the differences in local and global curvefitting,
FRF measurements on a simple planar frame are used.  Several
FRFs are shown in Figure 3.  There are 5 distinct modes in the
band shown.  Notice that the top two FRFs show all the peaks
for each of the modes of the frame but that the lower two FRFs
do not contain peaks at each one of the frequencies shown in the
upper two plots.  (This is due to the fact that some of the
measurements are located at nodes of some of the modes.)

Figure 3 - Several FRFs from the Planar Frame

Now if there is no peak in a particular measurement, then  how
can pole values be estimated?  This poses a serious problem and
it is exactly these situations that the local curvefitting breaks
down.  If local curvefitting is performed on this type of data,
then the estimated modal parameters may contain poorly
extracted values from the individual FRF local curvefitting
approach since the pole is estimated poorly.  A local
curvefitting technique was used to estimate modal parameters
for the planar frame structure.  The modes shapes are shown in
Figure 4.

Notice that there are several locations in the mode shape where
the data appears to be inconsistent from the expected mode
shape.  The modes shapes are distorted.  It turns out that these
points correspond to nodes of modes of the structure.  (This is a
well-known problem with local curvefitting.)

Figure 4 - Distorted Mode Shapes from Local Curvefitting

The same set of FRFs was used for global curvefitting.  First,
the best global pole of the system was estimated and then the
residues were estimated in a second pass with the global pole
used for all the FRF measurements when estimating residues.
The mode shapes are shown in Figure 5.  Notice that these
mode shapes are the expected shapes of the planar frame
structure.

Figure 5 - Correct Mode Shapes from Global Curvefitting

Now from this example, it is clear that global curvefitting
produces superior results.  However, when collecting data, care
must be exercised to assure that the data satisfies the
requirement of global curvefitting - the modes must be global in
all of the measurements collected!  If the data is inconsistent,
then errors may result in the estimation process.  Care must be
exercised to collect FRF data that satisfies the global nature
necessary for the global data reduction process.

I hope this clears up your question.  If you have any more
questions on modal analysis, just ask me.
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We talked about the number of points needed for a modal test before.
Someone told me that the entire shape may not need to be completely defined.
Let's discuss this and explain this further.

The last discussion we had regarding the total number of points
for an experimental modal test was directed towards the
adequate description for the mode shape.  But in order to define
a good dynamic model, the requirement can be different.  Let's
first restate what was identified earlier regarding the mode
shape definition and then proceed on to identify the points
needed to identify a good dynamic model.

Let's start with a simple structure that we have discussed before.
The simple plate structure.

MODE 1

MODE 2

MODE3

MODE 4

For this plate, there are many possible measurement locations
that can be used to describe the dynamic characteristics of the
structure.  If the experimental modal analysis is being conducted
to correlate with a finite element model, then it is necessary to
have a reasonable number of well distributed measurement dofs
in order to have sufficient spatial distribution for comparison to
the model.  It is also important in order to visualize the shape.

So let's consider a finite element model that has 45 node points
with 32 plate elements.  Let's also consider an experimental
modal test with 15 evenly distributed measurement locations.  A
comparison of the finite element node points and experimental
measurement points to describe the plate are shown for the first
two free-free flexible modes of the plate.

MODE 1

MODE 2

For this comparison, there is a sufficient distribution of points
such that the modes can be uniquely defined for the correlation
of the finite element model and experimental modal model.  If
the model is to be correlated using the Modal Assurance Criteria
and using Pseudo Orthogonality Checks, then there is sufficient
information to perform a valid analysis.  However, a response
model may not need the same distribution of points.
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Consider a structure where there are two separate points where
forces are applied to the system.  Also consider that there are
only three points on the structure where critical response needs
to be measured.  This is pictured below with the input forces in
blue and response measurements in red.

FORCE

RESPONSE

The point-to-point frequency response function describes the
characteristic output response due to a unit sinusoidal input
force.  This is computed for a particular input-output
measurement on the structure.  A particular frequency response
measurement has no relationship to other measurements on the
structure.  If only one frequency response function is of
concern, it doesn't matter whether two, three or one hundred
additional measurements are made -  the individual frequency
response measurement for a particular input-output
measurement does not get better or worse as additional
measurements are added.
(This is not true of the finite element approach where adding
additional nodes and elements generally has a direct effect on
the results.)

If the only requirement is to determine what the dynamic
response of the system is due to the applied forces, then the only
points that are required for the experimental modal model are
the three red points and two blue points pictured.  These points
completely describe the response of the system at these points.
Of course, the points shown may not adequately describe the
deformation sufficiently to determine exactly how the load is
distributed through the system - but this limited set of points is
sufficient to define the dynamic model.

Now let's continue on and consider that the system may need to
be modified with structural changes to the system.  The figure
below depicts the structure with a rib stiffener modification that
could possibly be proposed to modify the structure.  In order to

perform any of these structural dynamic modifications, a set of
points associated with all of the dofs used for the structural
change need to be included.  These are shown in green in the
figure.

RESPONSE

MODIFICATION
STRUCTURAL

FORCE

So these two models show a completely different set of
measurement dofs that are needed for each of the different
models described.  For the response model and structural
dynamic modification model, a significantly different set of dofs
are needed in order to develop the proper dynamic model to
describe the system.

So ..... the set of required points can be stated as follows.
In order to have an adequate dynamic model, there must be
points to describe

1. all dofs where forces are applied to the system
2. all dofs where response needs to be measured
3. all dofs where structural modifications are considered

Any additional dofs included in the model are included for your
viewing pleasure only!!!  Additional points are included in the
experimental modal test for you to better visualize the
characteristic shapes of the system (or for correlation of a model
if that is the purpose of the test).   This minimum set of dofs is
all that is required to develop an appropriate dynamic model.

Now I hope you have a better understanding of how many
points are needed for a modal test - it varies depending on the
ultimate use of the dynamic model.  If you have any other
questions about modal analysis, just ask me.
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Do I need to have an accelerometer mounted in the X, Y and Z directions to do a modal test?
Well ... let's discuss this.

This is an item that often causes confusion for many people.
There is some preconceived notion that there must be an
accelerometer mounted in each of the three principal directions
in order to acquire data for a modal test.  Well, it turns out that
this is not necessary but in some tests it may be strongly advised
or even required.  But many times people think that you can't
get three dimensional mode shapes unless you have
accelerometers in all three directions.

The basic equation we use for estimating parameters can be
written in one form as
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The terms in the matrix, [A], are the residues which are obtained
from the curvefitting process; we also get the poles, or
frequency and damping, from the denominator of the equation.
But these residues are directly related to the mode shapes from

( )[ ] { } { }A s q u u
k k k k
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This relationship between the residues and the mode shapes
holds the answer to the question posed.  Let's expand that
equation to look at some of the terms that are found in each term
of the matrix.
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And if we were to look at each of the columns we would see the
mode shape is contained in the column with some scalar

multipliers; we would also see that due to reciprocity, the rows
also contain the mode shapes.  If we were to look at one
column, such as the first column, then we would see
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So the value of the mode shape that is factored out of the
equation is called the "reference" DOF.  In other words, all of
the measurements are affected by the value of this reference
DOF.  If this DOF is zero (at the node of the mode) then no
matter how many measurements are made, that particular mode
will not be observed from the measured data.

It is this basic equation that really contains the answer to the
question raised.  As long as the reference DOF has a non-zero
value for each of the modes of interest, then the frequency
response function will have residue associated with that input-
output relationship.  As long as the mode shape in the X, Y and
Z direction has a value associated relative to the reference DOF,
then the mode shape(s) can be observed from measurements
made relative to that reference DOF.  It's that simple!

Now let's use a simple structure to illustrate this point.  A simple
L-shaped bracket will be used for discussion purposes and
illustration of the reference DOF and its relationship to all of the
measured DOFs for the experimental modal survey.  For the
discussion, the reference point where the accelerometer is to be
mounted will be shown in black in the following figures and the
various impact locations will be shown in blue, red and green
for distinction between the different points.
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For this first mode of this bracket, the reference accelerometer
could possibly be located at the upper corner of the structure in
the x-direction.  Notice that if the structure is impacted at the
upper corners of the bracket in the x-direction (red or green) or
on the lower corner in the z-direction (blue), the structure has
significant response at all these locations.  This implies that if
the structure is impacted in the x-direction (red or green) in the
upper corner, there is response in the x-direction at the reference
point.  And if the structure is impacted on the lower corner
(blue) in the z-direction, there is response at the reference point
in the x-direction.  So this mode can easily be seen from the
selected reference location.

REFERENCE

IMPACT

IMPACT

IMPACT

For the second mode of the structure, the reference
accelerometer could possibly be located at the lower corner on
the structure in the z-direction.  If the structure is impacted in
the z-direction at the same point (blue), the structure has
significant response at this point for this mode.  But also notice
that if the structure is impacted at the upper corner (red and
green) in the x-direction, there is response at the reference
accelerometer location in the z-direction.  So this reference is
good for this mode.

REFERENCE

IMPACT

IMPACT

IMPACT

And if the third mode is considered with the reference
accelerometer located at the lower corner in the z-direction, all
three impact locations on the structure have significant response
at this point for this mode.

REFERENCE

IMPACT

IMPACT

IMPACT

Now the real question is if there is ONE reference location that
can be selected that will adequately capture the dynamic
characteristics of the structure for all the modes of interest.  For
this case, it seems reasonable that the lower corner of the
structure in the z-direction is sufficient to observe all of the
modes for this case.

REFERENCE

IMPACT

IMPACT

IMPACT

REFERENCE

IMPACT

IMPACT

IMPACT

REFERENCE

IMPACT

IMPACT

IMPACT

Now we can see that the single reference point is sufficient to
adequacy observe all the modes of interest - and only one
direction is necessary to accomplish this.  Of course, if more
references are used this is totally acceptable and is definitely a
better way to test the structure - but these extra references are
not necessarily needed in order to extract modes shapes that are
three dimensional in nature.

I hope that this helps to clear up the misconception regarding
the need to measure in three separate reference directions for a
modal test.  Think about it and if you have any more questions
about modal analysis, just ask me.
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Mode shape scaling requires a drive point measurement.
Is there any way to scale shapes without this?
Let's talk about this

Mode shape scaling is an important item for the development of
an accurate dynamic model that would be used for other
structural dynamic studies.    Some of these would be simulation
and prediction, modification, and correlation, to name a few.
While there may be some instances when scaling may not be
critical, I will always recommend that this is done since this
may be the only data ever acquired.  Generally, a drive point
measurement is required to scale mode shapes.  However, there
are alternate ways to collect measurements and obtain scaled
mode shapes without a drive point measurement.  Let's discuss
this.

Recall that the poles and residues are the values that describe
the measured frequency response function and can be written as
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Now these residues can be shown to be related to the mode
shapes.  Without going through all the steps, the resulting
relationship for the 'k' mode of the system can be written (with
some terms expanded) as
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Now if we consider the 'r' column of these equations, then the
residues can be related to the mode shapes using
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So for each measurement, a relationship between the residue
and mode shape can be obtained as
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but notice that there are more unknowns than equations and it
doesn't matter how many extra equations are added to the list.
The shapes cannot be determined unless one particular
measurement is included - the drive point measurement which is
given as

rrrrrr uuah =⇒

With the drive point measurement, then the mode shape at the
reference location can be obtained - thereby allowing all the
other mode shape coefficients to be determined.
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But what happens if a drive point measurement is not available
or is very difficult to obtain.  Is there any other way that the
mode shapes can be scaled using other measurements that could
possibly be made?  Well, it turns out that the answer to this is
YES.  Let's describe a set of measurements that will enable an
equivalent representation of the drive point scaling
measurement.

Let's consider some terms in a frequency response matrix at
arbitrary locations as shown.  The 'r' subscript is the reference
and the 'o', 'p', 'q', 's' and 't' are arbitrary measurements in that
matrix.  Most of the measurements are made relative to the 'r'
reference but one measurement is not.  We are assuming that the
drive point measurement, hrr , has not been measured but is
shown in the matrix for illustration purposes.  There are three
particular measurements of interest that are needed to write
some simple equations (these are shown with a double bar
underscore in the matrix).
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Recall that we can write the residue - mode shape relationship
for a particular mode and for a particular measurement as
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(Note: For brevity, the scaling coefficient has been dropped)
Three specific measurements have been selected here to
illustrate the development of an alternate scaling mechanism.

Now, the first equation can be rewritten as
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and substituted into the second equation to give
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The third equation can be rewritten as
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and substituted into the modified second equation to give
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And then, rearranging terms, gives the drive point equivalent as
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I know that I usually don't have this many equations to explain
things but this only involved a few simple manipulations to
reveal an alternate mechanism to obtain the mode shape
coefficient for the reference degree of freedom.  Remember that
the drive point measurement was not used to obtain the mode
shape coefficient for the reference point.

At times this can become a very useful approach especially
when there is no access for a drive point measurement or it is
inconvenient to obtain the drive point measurement.  While I
haven't used this often, it does come in handy when performing
impact measurements and it is difficult to get the impact device
into an area of the structure where access is restricted.  It is also
useful during shaker testing when it is difficult to make a drive
point measurement.

I hope this clarifies your question regarding mode shape scaling
and the need for a drive point measurement.  If you have any
other questions about modal analysis, just ask me.
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I find overload and underload of the digitizer and range setting difficult to understand.
Let's discuss this.

This is a very good item to discuss.  Previously we had
discussed issues in impact testing related to hammer tip, trigger
delay and double impacts.  There are other issues related to
overload/underload of the analog to digital converter, poor
utilization of the digitizer, and difficulties with testing nonlinear
structures that are additional concerns.   In order to try to
explain the issue of range settings and their impact (no pun
intended) on the analog to digital converter (ADC) setting,
several typical measurements discussed previously will be used.

Figure 1 shows an impact measurement where the input force
excitation does not adequately excite the entire frequency range
of interest.  Approximately half of the frequency range does not
see sufficient force input to excite the structure and therefore
both the input and output signals are very low over this
frequency range.  But at the lower frequencies, the input force
signal is strong as is the response signal.

40

-60

dB Mag

0Hz 800Hz

0.1 VOLT
ENERGY

4.0 VOLT
ENERGY

40

-60

dB Mag

0Hz 800Hz

STRONG RESPONSE        WEAK RESPONSE
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ENERGY

9.0 VOLT
ENERGY

Figure 1 - Hammer Input Only Excites a Portion of Spectrum

The low frequency components dominate the energy of the
signal.  Now the real issue is how the energy is distributed over
the frequency range (which is essentially an assessment of the
area of the curve for discussion purposes).  For the sake of
argument, let's say that the input force spectrum (blue) has
approximately 4Volts in the low frequency range and 0.1Volts
in the higher frequency range and has a total of 4.1Volts.  Let's
also say that the response (red) is distributed as 9Volts and
0.5Volts in the low and high frequency ranges, respectively.
Clearly, the total voltage is dominated by the low frequency
range.  In this case, the input channel and output channel may
be set to 5 volts and 10 volts for possible ranges on each
channel.

So what does this mean.  Let's use a simple sine wave to explain
resolution.  For illustration purposes, a simple 6 bit ADC is set
to full range and then set to a lower range to clearly show how
the digitizer can affect the amplitude measured.  (Please note
that all values are approximate and rounded off for illustration
purposes).  Figure 2 shows a sine wave with 1.5 V peak
amplitude and an ADC set to a maximum of 10 Volts.  Figure 2
only shows the portion of the ADC which contains the signal.
Notice that the resolution is poor and that the actual amplitude
of the sine wave is not identified correctly due to quantization
error.  This would result if the ADC range setting was set much
larger than the actual signal to be measured (in this case the full
range of the ADC is 10V).

Now if the ADC range is set to 2.0 Volts as shown in Figure 3,
the resolution of the signal is much better.  This is because all of
the dynamic range of the ADC is dedicated to the signal of
interest (the ADC is set to 2.0 Volts to measure the 1.5 Volt
signal).
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1.5 V

10.0 V
ALL DISCRETE LEVELS BETWEEN

1.5V AND 10V NOT SHOWN

6 BIT ADC IS SHOWN FOR ILLUSTRATION
(ACTUAL VOLTAGE STEPS APPROXIMATE)
ONLY A PORTION OF THE ADC IS SHOWN

Figure 2 - Sine Wave with Poor Resolution

1.5 V

6 BIT ADC IS SHOWN FOR ILLUSTRATION

2.0 V

Figure 3 - Sine Wave with Good Resolution

Now let's consider one more case where there are two sine
waves at different frequencies and different amplitudes to be
measured simultaneously.  The same 2.0 Volt range is used.  In
Figure 4, it is very clear that the larger of the two sine waves
dominates the ADC setting.  However, it is very important to
note that the smaller of the two signals will suffer from
quantization error more than the larger signal.  This is very
common in frequency measurements that are made on structural
systems.  There is no way to avoid it.  But imagine how much
worse the quantization error would be if the ADC were set to a
10 Volt max range.

Now that we have some idea about range setting for a simple
sine wave, we can better understand the problem with the
measurement in Figure 1.  The higher frequencies are not well
excited and there is little response of the higher modes.  The
measurement at the higher frequencies suffers from quantization
errors.  This problem in Figure 1 at the higher frequencies is
analogous to the problems cited in Figure 4.

1.5 V

6 BIT ADC IS SHOWN FOR ILLUSTRATION

2.0 V

Figure 4 - Two Sine Waves with Possible Resolution Problems

Now let's consider one more case where the impact to the
structure excites modes well beyond the frequency range of
interest (128 Hz) as seen in Figure 5.  For the sake of argument,
an assumed energy distribution between the desired (lower)
frequency range and the higher (excited but outside the range of
interest) frequency range.  Notice that the transducers will
measure the entire response (energy) of the system even though
only a portion of that energy is actually used in the digitization
for the frequency information.  What happens is that the ADC
must be set much higher than actually needed since the total
voltage from the transducers is actually heavily affected by the
higher frequencies.  This implies that the ADC will be set much
higher than needed to accommodate these higher frequencies -
the result is that the lower frequencies will suffer from
quantization errors.
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0Hz 128Hz
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-50
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0Hz 128Hz

128 HZ BW          INFORMATION BEYOND BW

1.5 VOLT
ENERGY

1.0 VOLT
ENERGY

1.0 VOLT
ENERGY

3.0 VOLT
ENERGY

Figure 5 - Exciting Modes Outside the Band of Interest

I have tried to answer your question about digitizer settings in a
round-about way using a typical measurement that might be
collected for a structural system.  I hope this helps to explain
this important part of taking measurements.  If you have any
other questions about modal analysis, just ask me.
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Do mode shapes of a plate have any particular predetermined order? 
Let's discuss this. 
 

 
This is a question that comes up more often than you would 
ever imagine.  This needs to be discussed and some examples 
will be given to explain and clarify this often confused item. 
 
Many times I have heard people say that modes of a structure 
always first start with torsion.  While it may be true for their 
particular application that the modes that are typically seen in 
their structural configuration may start with torsion, there is no 
predetermined rule as to the order or sequencing of modes.   
 
For instance, many people often think that modes of a plate 
must start with torsion – but there is no mathematical reason for 
this to occur.  It just may have been that all the plate structures 
that they have seen in the past have had a first mode that was a 
torsional mode.  Of course once someone sees a torsional mode 
as the first mode of a structure several times, then forevermore, 
all plate like structure must have a first mode which is torsion.  
This is not true at all. 
 
I remember an instance many years ago when an analysis was 
performed on a new stiffened body-in-white configuration.  The 
structural engineers had spent a significant amount of time 
concentrating on designing a structure that had a significant 
increase in the first flexible modes of the car frame.  Prior to 
that time, the modes of a configuration of this type always 
started first with torsion (T) and then followed by bending (B).  
When the first analytical models were analyzed, the first mode 
of the car frame turned out to be bending rather than torsion.  
There was incredible confusion concerning this since up until 
this time the first mode was always torsion – almost as if it was 
etched in stone (as the 11th commandment!) 
 
No one believed the model since this appeared to be totally 
contradictory to what everyone believed to be the “way things 
were meant to be”.  But there is really no basis for things to be 

that way.  The model is a distribution of mass and stiffness that 
results in an eigenproblem that yields frequencies and mode 
shapes which satisfy the force balance equation.  If the model is 
prepared correctly then the solution will identify the frequencies 
and mode sequence that satisfies the mathematical problem.   
(Of course, there may have been errors in the model but that’s a 
totally different story.) 
 
The simple fact is that the frequency and mode shape 
sequence is due to the mass and stiffness distribution of the 
structural configuration and not due to anything else. 
 
In order to illustrate the mode sequence arrangement 
possibilities, three different plate configurations with different 
length to width aspect ratios were generated and finite element 
solutions were obtained for each.  These are shown in the figure 
with the arrangement from lowest to highest mode from top to 
bottom.  The modes are further indicated with a B for bending 
along the longer length of the plate, B2 for bending along the 
shorter length of the plate, and T for torsion about the symmetry 
axis.  For the three different plates analyzed, there is no specific 
ordering of the mode shape sequence.  Each of the plates has a 
different combination as seen in the figure. 
 
And as long as we are on the subject of mode shapes, the 
question to ask is if the bending along the longer length of the 
plate (B) will always occur at a lower frequency than the 
bending along the shorter length of the plate (B2)?  Now before 
you too quickly just answer that question, stop and think about 
it for a minute…….. 
 
Is this a trick question?  What do I need to think about before I 
answer that question?  What are the material properties? And 
are they the same along the long and short length? 
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If the material is homogeneous, then the bending mode along 
the long length (B) will occur before the bending mode along 
the short length (B2).  But what if the material is a reinforced 
carbon fiber composite where the stiffening fibers run along the 
longer length of the plate?  Then there is a possibility that the 
plate will be much stiffer along that length.  Then it is also 
possible that the frequency of the bending along the shorter 
length (B2) may occur before the frequency along the longer 
length (B). 

(Oh my, Toto – I am not sure we are in Kansas anymore!). 
Obviously, the bottom line here is that you really need to think 
about this possibility.  It is a very possible reality! 
 
I have tried to answer your question about mode order for a 
plate.  Obvoiusly, this holds true for any structural configuration 
that has characteristic bending and torsion modes – not just a 
plate configuration.  If you have any other questions about 
modal analysis, just ask me. 

 

 

 B-T-T-B-B2 B-T-B-T-B T-B-B2-T-T 

 



 

_________________________________________________________________________________________________________________________ 
Once I have set up a good measurement, is there any reason to watch the time and frequency results for every point? Copyright 2004 
SEM Experimental Techniques - December 2004 Page   1 Pete Avitabile 

MODAL SPACE - IN OUR OWN LITTLE WORLD by Pete Avitabile 

Once I have setup
a good measurement,

is there any reason to watch
the time and frequency results

for every FRF?
Let's discuss this

 
 Illustration by Mike Avitabile 
 
Once I have set up a good measurement, is there any reason to watch the time and frequency results for every FRF? 
Let's discuss this. 
 

 
This question brings up a very important topic.  Once a test has 
been set up and care has been taken to make sure that the 
measurement is good, you should always monitor all of the 
measurements made on the system.  This is a must! 
 
I have seen some people take a great deal of care measuring the 
impact force and response, measure the input spectrum, FRF 
and coherence for just one point and then just disregard 
monitoring all the points for the rest of the test.  The general 
feeling is that once the drive point measurement is made, the 
force spectrum is checked and the coherence is acceptable, then 
the test should proceed without any major difficulty.  The 
problem is that just because one point seems to be very good, 
doesn’t necessarily mean that all of the points will be measured 
the same.  I have seen many tests where measurements made on 
various parts of the structure have had very different measured 
characteristics than might be expected. 
 
So let’s start with a typical measurement scenario and identify 
what could possibly go wrong if attention is not given to every 
measurement made during the test.  A bracket that was in the 
lab was used to acquire some measurements.  Obviously, the 
time and frequency data should be reviewed from some 
measurement points.  Typically, the drive point measurement 
may be acquired as a starting point.  For the structure under 
consideration, an impact excitation was used and the time input 
force and time response are shown in Figure 1.  The response 
seems to almost decay to zero by the end of the sample interval 
so possibly a light exponential damping window could be used 
to minimize the slight amount of leakage that might occur.   
 
 
 

IMPACT EXCITATION

ACCELEROMETER RESPONSE

TIME RESPONSE

 
Figure 1: Force Excitation and Accelerometer Response 

 
 
Next the input force spectrum is checked to make sure that a 
sufficient amount of force is applied to the system over the 
frequency range of interest; usually this input spectrum should 
be reasonably flat over the spectrum with approximately 10 to 
15 to possibly 30 dB roll-off over the desired frequency range.   
(Notice that I said the “desired” frequency range which may not 
be the entire spectrum measured.)  The coherence is checked to 
make sure that there is reasonably good causal relationship 
between the measured input force and the output response to 
assure that a good measurement is made.  And of course, the 
FRF is checked for peaks in the measurement indicating modes 
of the system.  These are shown in Figure 2 and this 
measurement looks very good.  In addition to the magnitude of 
the FRF, it is a very good idea to also check the complex parts 
of the FRF. 
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Figure 2: FRF, Input Force Spectrum, Coherence 

 
The real and imaginary parts of the FRF should be inspected to 
make sure that the measurement looks as expected.  Figure 3 
shows a good representation of this. 
 

FREQUENCY RESPONSE FUNCTION - DRIVE POINT MEASUREMENT

REAL PART

IMAGINARY PART

 
Figure 3: Real/Imaginary FRF – Drive Point Measurement 

 

FREQUENCY RESPONSE FUNCTION - CROSS MEASUREMENT

REAL PART

IMAGINARY PART

 
Figure 4: Real/Imaginary FRF – Cross Measurement 

 
However, a note of caution.  Many times people only look at the 
drive point measurement at the start of a test.  While this is a 
critical measurement of the system especially for mode shape 
scaling considerations, it is not the best measurement to look at 
all the time.  For instance, the peaks of the imaginary part of the 
FRF will always have the same phase relationship.  But if two 

modes are very close to each other than it is sometimes very 
difficult to determine how many modes really exist in the data.  
Many times it is better to check one of the cross measurements 
as shown in Figure 4.  Notice that all of the peaks in the 
imaginary part of the FRF do NOT have the same phase 
relationship.  This is very useful in determining peaks of closely 
spaced modes and should always be taken during preliminary 
testing setup.  So once this is done, is there any real need to 
continuously monitor the time and frequency data for all of the 
measurement locations.  The measurement shown in Figure 5 
will help to show why constant monitoring is needed.   
 

FORCE
SPECTRUM

COHERENCE

FREQUENCY
RESPONSE

FUNCTION

 
Figure 5: FRF, Input Force Spectrum, Coherence 

 
If just the FRF and coherence were measured, then part of the 
picture is lost.  With just the FRF and coherence, it may be seen 
that the measurement was poor and possibly blamed on 
nonlinearities, noise, complex damping and a host of other well-
known problems that can affect data.  But the real culprit for 
this measurement is none of those.  The input spectrum which 
was reasonably flat for all the other measurements has a much 
different force spectrum than in earlier measurements.  For this 
particular structure, impacting at certain locations, there is a 
dramatic change in the local compliance in the structure and it is 
very difficult to maintain a fairly uniform input spectrum.  It is 
just a “quirk” of this structure but can happen on any structure.  
So if you aren’t going to check every measurement during the 
test, make sure that each measurement is saved for every point 
measured – and that includes all the parts of the measurement 
not just the FRF and coherence.  Because you can see from this 
case, the input spectrum had important information that was 
critical to interpreting the measurement in Figure 5. 
 
I hope I have shed a little more light on different aspects of 
running a test and possible items that need to be addressed.  If 
you have any other questions about modal analysis, just ask me. 
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I know that certain shaker excitations have different characteristics – but which is the best to use? 
Let's discuss this. 

 
Let's discuss the most commonly used excitation techniques for 
modal analysis today.  These are random, pseudo random, burst 
random, sine chirp and digital stepped sine.  These will just be 
briefly reviewed (because they have been covered before), but 
the more important issue is do they all provide the same results 
all the time.  There is not always a straightforward answer to 
this so we will discuss some issues to consider when performing 
shaker testing.  The main excitation techniques utilized are 
shown in Figure 1 for reference.   
 
Random is still used at times today, even though leakage and 
windows cause some distortion of the signals acquired.  The 
time signal is shown in different colors.  (This is mainly done to 
highlight the fact that each measured time signal is different 
from one record to the next.)  Since each signal sample is 
different than every other signal, the system is excited with 
different spectral characteristic for each record of data collected.  
If the system has slight non-linearities, then the system will 
respond differently for each record of data – the averaged data 
will then reflect the best linear description of the system in the 
presence of these slight nonlinearities.  This type of excitation is 
very useful to minimize or smooth data that is subjected to noise 
or rattles or other measurement contaminants.  But leakage and 
windows tend to distort the measurement so this is not the 
optimal excitation technique. 
 
Pseudo random is really nothing more than a set frequency 
spectral lines over a frequency band of interest that are inverse 
transformed to the time domain to create an excitation signal.  
Since the excitation is basically sinusoidal in nature, the effects 
of leakage are non-existent providing the system is excited 
sufficiently long enough that steady state response is achieved.  
This proves to be a very useful excitation.  However, because 
the signal is repetitious (notice that the excitation color is 
identical from one record to the next), the system will respond 
in a deterministic fashion.  This will not average any slight 

nonlinearities or rattles that may exist in the system.  Pseudo 
random works very well with structures that are fairly linear in 
character.   
 
Burst random excitation was developed as a very good 
excitation technique which combines the advantages of both 
random and pseudo-random excitation.  The signal is random 
from one record to the next (notice the different colors from one 
record to the next) and nonlinearities are averaged in the 
process.  Since the signal is completely observed in one sample 
interval, there is no leakage and windows are not needed.  The 
only concern is to make sure that both the input AND output 
response are totally observed within the sample record of data. 
 
Sine chirp excitation is a fast swept sine that is completely 
observed within the sample interval.  The effects of leakage are 
non-existent providing that steady state response is achieved.  
This excitation is very similar in advantages/disadvantages to 
pseudo random.  One additional advantage is that the level of 
force can be controlled and can be used to identify the nonlinear 
character of the system. 
 
Digital stepped sine excitation is yet another very useful 
excitation technique.  This is very similar to pseudo random 
except that only one frequency is excited at a time.  But one 
significant difference lies in the improved description of the 
signal amplitude.  Broadband techniques (those discussed 
above) require that the analog to digital converter (ADC) be set 
to capture all the energy over the entire spectrum.  But the 
frequency character may have a wide variation in amplitude 
over the frequency spectrum.  This is not an issue with digital 
stepped sine since all of the energy of the excitation/response is 
dedicated to one single spectral line in the frequency spectrum.  
Therefore, quantization error is not an issue for this excitation. 
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Figure 1 - Typical Shaker Excitations Employed 

So it seems pretty straightforward what to do.  Well, the reality 
is that things aren’t always so simple.  So now that we have 
categorized all the excitation techniques, let’s talk about what 
some of the issues are that might arise.  In general, over the past 
several decades I have generally found that burst random 
usually works best overall.  But I have also used sine chirp on 
many occasions when the structures were fairly linear in nature.   
When I have needed extremely high resolution FRFs, then I 
have used digital stepped sine.  Once or twice, I have used 
either pseudo-random and random.  So let me explain some of 
the times I have used other signals and explain why. 
 
One structure I tested many years ago was a very lightly 
damped system.  It turned out that burst random was not very 
effective.  The system was so lightly damped that the response 
could not be totally observed within one sample interval of the 
time record – even with the burst set to less than 5% of the time 
window.  Fortunately, this system was fairly linear so that 
pseudo-random excitation was employed (but sine chirp could 
have also been effectively employed for this structure). 
 
When a structure does have some nonlinear character, then it 
may be desirable to perform the test at a level that is comparable 
to the in-situ conditions.  Sine chirp proves to be a very good 
excitation for this type of test.   So why not use digital stepped 
sine – well for this particular test there were not a sufficient 
number of acquisition channels available to make the test 
feasible. 
 
I guess the best thing to realize is that there is always going to 
be some situation which may make one of the available 
excitation techniques provide a better measurement than the 
other excitation techniques.  Each of the techniques needs to be 
compared to determine which is the best.  Don’t just rely on one 
technique because it has proven to be acceptable in the past. 
 
But today, with the large channel count systems that are more 
common for modal testing, my recommendation would be to 
utilize all of the excitation techniques.  Today there is sufficient 
disk storage that this shouldn’t be a concern.  Since it takes a 
good deal of time to set up a large number of accelerometers on 
the structure, why not run all the different excitation techniques 
– even digital stepped sine which takes much more time than the 
broadband based techniques.  If you have spent 3 or 4 days 
setting up a large test, do you think anyone will care if you take 
a few hours and collect all the data possible?  I don’t think there 
will be objections.  At least then you have all the data. 
 
I hope that I have answered your question regarding the 
different excitation techniques.  If you have any more questions 
on modal analysis, just ask me.
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When I perform impact testing, the input spectrum looks distorted – do you think my FFT analyzer has a problem? 
Let's take a measurement and see what’s going on. 

 
The only way to figure out what is going on is to do a little 
trouble shooting.  But of course we have to have some idea of 
what the correct answer should be.  Well … for an impact test, 
the force in the time domain should be just a simple pulse over a 
very short duration.  And the resulting frequency spectrum 
should be a relatively flat input profile over some frequency 
range.  The width of the input spectrum is directly related to the 
time of the pulse.  Basically, the shorter the pulse in the time 
domain, the wider the frequency range that is excited.  And 
conversely, the wider the pulse in the time domain, the narrower 
the frequency range that is excited.  At least this is what we 
expect to get.  So now let’s go down to the lab and take a few 
measurements with your analyzer to see if this is what we get.  
(In this article, I will try to replicate what was actually observed 
during a test at a particular lab.  But I cannot reproduce exactly 
what occurred due to FFT hardware differences.)  For this test, a 
typical impact hammer is being used and the structure under test 
is just a typical structure with an accelerometer mounted on it. 
 
The impact force is shown in Figure 1 with the time response 
(upper two traces in black).  Now the time signal looks 
reasonable.  The impact signal is a sharp pulse with relatively 
flat zero signal over the entire time.  In terms of the response 
signal, the damped response of the system appears to be 
reasonable but a window may be necessary to minimize 
leakage.   
 
The input spectrum (shown in blue in the lower trace and 
labeled as distorted force spectrum) is also fairly flat with little 
roll-off to the input spectrum as expected.  But one thing to 
notice is that there is a significant spike in the spectrum at very 
low frequency which does not look correct.  This is definitely 
not expected and is probably the reason you have asked a 
question regarding this measurement.  This needs to be 
investigated further. 
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Figure 1 – Impact Time Force, Exponential Accelerometer 
Response and Force Spectrum (Proper and Distorted) 
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Now let’s return to the time signals and do a little investigating 
on the measured signals.  The first thing to check is if the input 
transducers have a suitable signal and whether the electronics 
may be a problem (ie, check for transducer saturation along 
with checking cables, batteries, etc).  Usually the FFT analyzer 
can be setup into some type of time sampling mode to view the 
time signals as would be done on an oscilloscope.  As long as 
there appears to be a suitable signal, then you can proceed to the 
FFT representation of the signal.   
 
The time signal looked adequate … but a question needs to be 
asked if any windows have been applied to the measured data.  
Based on the analyzer window settings for this particular 
analyzer, there does not appear to be any windows applied to 
the force input signal.  But the response signal may need a 
window.   However, many times the labels for the force and 
response windows are confusing on many FFT analyzers.  Most 
times the labels make sense but many times the analyzer 
software uses labels that may not clearly identify the window 
being used. 
 
In this particular case, the input signal was labeled as not 
needing any window – the label on the force channel indicated 
something similar to “response only window”.  Now that label 
is confusing to me.  The label might mean that “only a window 
is applied to the response channel” – or does it mean something 
else?  Of course, we should open up the user’s manual and read 
the paragraphs related to this particular window configuration.  
But many times, a typical user may think he knows what all the 
buttons/labels mean since he is familiar with other FFT analyzer 
equipment used in the past and not think that reading the user 
manual is really necessary.  On the other hand, sometimes the 
user manuals are just as confusing.  Often times I am more 
confused by the user manual information than when I started.   
 
So, typically, I resort to a very simple “hunt and peck” 
approach.  That is, select one parameter to be changed while 
others remain constant.  In the case of the impact hammer, the 
first check is to make sure that the force gage is not damaged – 
swapping another force hammer is the simplest thing to check 
along with cabling and signal conditioners. 
 
The next check is the FFT acquisition system setup.  The 
analyzer window for the force channel was set to “response 
only window”.  The response window can also be changed – 
but our first impression is that this has nothing to do with the 
input force spectrum.  Originally, the response window had 
been setup as a Hanning window which is obviously incorrect – 
this may have been set as a default setting for some other tests 
such as processing random type signals.  The window should 
either be no window or the exponential window.  As a first 
check, the rectangular window was selected (and should be 

done first even if an exponential window is ultimately required).  
Now the response signal appears to be the same as previously 
observed. 
 
Now this is not possible since the Hanning window had been 
applied previously.  Well, it turns out that the original signals 
were observed as the “un-windowed” signals which is the 
default setting for many analyzers – specific setting have to be 
selected in order to view the windowed signal on certain 
analyzers.  While the response signal is obviously affected by 
the application of the window, the interesting observation is that 
the force spectrum on the input channel also appears to be 
affected by the window on the response channel!  The force 
spectrum is shown in Figure 1 in the lower trace (shown in red 
and labeled as proper force spectrum).  How could the force 
spectrum on the input channel change when the response 
window is changed?   
 
Is the analyzer broken?  Should you report this flaw to the 
manufacturer?  Well – actually no!  On many FFT analyzers, 
the response window is actually applied to the response signal 
as well as the force signal in order to properly compute the ratio 
of the output to input (this is commonly done to avoid the 
distortion that results from applying the window to just the 
output response – there are theoretical issues that justify this but  
we don’t need to discuss those here).  The  important item here 
is that the response window is applied to both the input and 
output channels on many (but not all) FFT analyzers.  So now 
we can see why that original force spectrum was distorted – 
now it is clear what “response only window” meant.  The 
original FFT analyzer was setup with a default setting using the 
Hanning window – on the response channel.  Even though the 
only channel being evaluated was the force channel, the 
window effect on the response channel was equally important. 
 
You need to be extremely careful when performing any testing 
using FFT analyzers.  You need to be very sure you understand 
how the analyzer operates – many analyzers have many 
different features and not all of them are the same.  To be sure, 
make some simple checks like were done here to assure yourself 
that the measurements are acquired in a proper sense. 
 
I hope that I have answered your question regarding this impact 
measurement problem.  If you have any more questions on 
modal analysis, just ask me. 
 
 
(Author Note: The events described in this paper have been replicated using 
different analyzer hardware to show what was essentially observed during this 
interesting measurement.  It is not a statement concerning the hardware used – 
but rather a caution that test engineers need to carefully understand the 
functionality of their particular FFT analyzer hardware.) 
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Why does my stability diagram of a component on a system show modes that the Sum or MIF don’t show? 
Let's look at some measurements and see what’s going on. 

 
There must be more to this problem than what was stated by 
your question.  My guess is that you are performing a modal test 
on a structure but you are not measuring all the significant 
modally active portions of the system during the modal test. 
 
Now what do I mean by that.  Well, there are many times when 
a modal test is performed and there is only an interest in a 
portion of the structure and nobody wants you to spend any time 
testing more than what you actually need to do or are being 
funded to do.  This happens all the time in real lab 
environments.  Let’s say for instance that you are trying to solve 
a vibration problem on the floor board of an automotive 
structure.  Now your first thought might be that you don’t want 
to make measurements on the exhaust system of the car – since 
you are only interested in the floor board.  
 
Of course when you only make measurements on the floor 
board the rest of the automotive structure is not divorced from 
the measurements made on the floor board.  That means that the 
measurements made see the response of the entire system.  Now 
granted that most of the measurements on the floor board will 
be primarily due to the response of the floor board.  But there 
will also be effects of other portions of the system that will be 
observed in the measurements.  Their response may not be 
strong but it will be there.  So a measurement on the floor board 
will also have the effects of other portions of the structure such 
as the exhaust system, seating system, etc.  It is impossible to 
completely separate out the response of these other systems.  
Unless of course the floor board is cut out of the structure and 
tested separately.  But then the floor board modes do not have 
the same boundary conditions as assembled in the system so the 
modes of this separate test may not provide the required insight 
into the response of the system. 
 
This is a problem that can be seen in many experimental modal 
tests that are conducted on just about any type of structure.  It 

could be floor boards in an automotive structure.  Or maybe 
fuselage modes of a shell like structure when the only area of 
interest is the wing modes for flutter studies.  Or it could be …..  
well I just don’t have enough room to list all the possible 
scenarios.  But rest assured, it is a prevalent problem in just 
about every structure that could be subjected to modal testing. 
 
So in order to illustrate what could happen, I went down to the 
lab and used one of my existing structures that has lots of local 
modes, a few global modes and some nonlinear behavior due to 
joint problems – just a typical structure that I often use to 
illustrate these types of problems you have described.  The 
structure is shown in Figure 1 and is setup for some shaker 
testing.  This structure consists of a very stiff outer frame and a 
very flexible panel structure that is held in with a clip 
arrangement.  Notice that the shakers are set up for testing only 
the outer frame of the structure and in the initial test, 
accelerometers are only located on this outer structure; initially 
there are no measurements on the panel structure since it is not 
of immediate concern (or so it is assumed). 
 
 

 
Figure 1 – Ribstiffened Panel Structure 
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Now Figure 2 contains a drive point measurement from one of 
the shaker reference locations.  Notice that there are three well 
defined peaks and some other characteristics that are not well 
defined. 
 

 
Figure 2 – Drive Point FRF on Frame Structure 
 
Now using just the measurements on the frame structure, a 
stability diagram is developed as shown in Figure 3.  Notice that 
there are many more than three fairly well stabilized poles in 
that plot.  The SUM function and MIF function show the three 
peaks very well but the balance of the peaks are not shown very 
clearly at all.  So this stabilization diagram appears to be 
identifying many more modes than what appear to be 
interpreted from the SUM and MIF functions. 
 

 
Figure 3 – Stability Diagram and MIF from Frame FRFs Alone 
 
Now the problem is that the structure has many more modes that 
what can be easily seen on the frame portion of the structure.  
That panel has many modes that have very little contribution to 
the response of the frame portion of the structure but their 
effects can be seen in the measurements taken only on the 
frame.  That is to say that the poles of the system can be seen in 
the stability diagram even though the SUM and MIF do not 
show those peaks very well at all. 
 
Now let’s take a set of measurements that includes the panel 
portion of the structure.  A drive point FRF on the panel is 
shown in Figure 4.  Notice that there are many more peaks in 
this measurement than seen in the previous drive point FRF in 
Figure 2.  (Note: these measurements have significant effects of 
joint slop and have nonlinear characteristics but this structure is 

very good for illustrating the local modes effects of concern in 
this discussion). 
 

 
Figure 4 – Drive Point FRF on Panel Structure 

 
Now using all the measurements on the outer fame as well as 
the panel, the stability diagram in conjunction with the SUM 
and MIF function shown in Figure 5 appear to present a much 
clearer picture of all the so called extra modes from the stability 
diagram of Figure 3 shown previously. 
 

 
Figure 5 – Stability Diagram and MIF using all FRFs 
 
So now it becomes much clearer as to how many modes are in 
the band and why the previous stability diagram did not provide 
useful information.  In order to use the tools to interpret the 
measured data, it is imperative that a sufficient set of FRFs be 
acquired to adequately describe all the dynamics of the structure 
– not just the portion of the structure of immediate concern.  I 
see this situation occur very often in industry.  A  problem 
arises regarding a portion of a system (or contractually you are 
only obligated to a portion of the system) and measurements are 
taken on just that portion of the system.  The data obtained only 
contains a piece of the puzzle.  The use of the mode 
identification tools can become confusing if only a subset of 
data is acquired.  Many times more than just your “region of 
interest” may need to be measured in order to understand the 
complete dynamics of the system. 
 
I hope that I have answered your question regarding this 
interpretation of the stability diagram.  If you have any more 
questions on modal analysis, just ask me.
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Sometimes my impact force is very smooth just as expected but often it looks like it is oscillating – Why is that? 
Let's look at some measurements and talk about this. 

 
Many times when performing impact testing, the force pulse 
appears to very regular shaped with a pulse that resembles a 
half-sine wave.  The event starts at zero, followed by the pulse 
and returns to zero for the duration of the measurement event. 
 
However, many times the force pulse seems to oscillate about 
zero after the initial half-sine pulse.  The real question is why 
does this happen, should it occur, is it possibly a double impact 
and should a window be used to minimize the effect of this. 
 
Well …  there is a lot to answer here and I may not be able to 
cover it all in this one article.  This problem is referred to as 
“filter ring”.  Let’s start out with some simple measurements to 
show this problem that is often seen.  Just by taking a few 
sample measurements, the effect can be observed and hopefully 
better understood with some simple examples and illustrations.   
 
This is a problem that can be seen on many FFT analyzers.  For 
the measurements and discussion here, I am going to use a 
general BRAND XYZ FFT analyzer.  A typical measurement 
will be made on a typical structure with a impact force hammer 
and response accelerometer.  However, only the force input will 
be discussed here.  Some of the force pulses will be very regular 
shaped just as we would expect to see in a textbook case.  But 
other measurements will have a force pulse that has an 
oscillation to the end of the time pulse as if it is the response of 
a simple single degree of freedom system.  This problem is 
often refered to as “filter ring”.  It is due to the fact that the 
analog anti-aliasing filters on the front end of the analog to 
digital converter (ADC) may show some response due to their 
own natural frequencies that are possibly excited due to the 
force pulse.   This is actually what occurs.   The force pulse will 
excite different frequency ranges depending on the tip that is 
used to excite the structure as is well understood by everyone.   
 

But here is the problem.  Depending on what frequency range 
(bandwidth) is selected, this filter ring may or may not be 
noticeable on your analyzer.   Now on the surface this doesn’t 
sem reasonable until the actual inside working of the FFT 
analyzer is considered.  Usually, the FFT manufacturers have 
different sets of anti-aliasing filters – one for low frequency 
work and one for high frequency work.  Typically, if you are 
measuring lower frequency ranges, the lower frequency filter is 
employed.  If a soft impact tip is used then this will not 
significantly cause any filter ring.  But if a slightly harder tip is 
used, then the upper frequency range of the hammer excitation 
may excite the low frequency analog anti-aliasing filter.  The 
filter gets excited and has a dynamic response characteristic 
which manifests itself on the force pulse as this filter ring. 
 
So let’s take some measurements to illustrate this filter ring 
characteristic and see how setting different frequency 
bandwidths may have an effect on the filter ring observed.  An 
impact hammer will be used with four different tips over two 
different frequency ranges.  The hammer tips will consist of a 
very soft red air capsule, a medium blue plastic tip, a harder 
white plastic tip and a metal tip.  In each case, the hammer is 
used to impact a structure to acquire a time trace.  In one set of 
measurements, the frequency bandwidth is set at 400 Hz and in 
the second set of measurements the bandwidth is set to 1600 Hz.  
The two figures on the next page show the results of the 
different impacts over the two frequency bands.  The tips range 
from softest to hardest from top to bottom. 
 
Notice that the 400 Hz bandwidth has significantly more filter 
ring as the hammer tips go from softer to harder.  This is 
because the harder tip excites a wider frequency range and has a 
great possibility of exciting the low frequency analog anti-
aliasing filter.   
 
 



 

_________________________________________________________________________________________________________________________ 
Sometimes my impact force is very smooth just as expected but often it looks like it is oscillating – Why is that? Copyright 2005 
SEM Experimental Techniques – August 2005 Page   2 Pete Avitabile 

RED AIR CAPSULE

BLUE PLASTIC

WHITE PLASTIC

BLACK METAL

400 HZ BANDWIDTH SETTING

 
Figure 1 – Impact with 400 Hz Bandwidth 

 
 
Comparing the 400 Hz bandwidth to the 1600 Hz bandwidth, 
there is a noticeable change in the filter ring – there is hardly 
any ring at all for the 1600 Hz bandwidth.  And the only 
difference was the selection of the bandwidth. 
 
On this particular FFT analyzer, the two sets of anti-aliasing 
filters are used depending on which bandwidth is selected.  
Clearly, the filter ring is much more obvious when the harder tip 
is used over the lower frequency range.  This is because the 
harder tip has significantly more energy at the higher 
frequencies which excites the filter dynamic characteristics.  
Notice how the softer tip doesn’t excite this filter ring very 
much at all. 
 

RED AIR CAPSULE

BLUE PLASTIC

WHITE PLASTIC

BLACK METAL

1600 HZ BANDWIDTH SETTING

 
Figure 2 – Impact with 1600 Hz Bandwidth 

 
 
Generally, a softer tip is a better selection to assure that the filter 
ring does not occur.  If there is filter ring then it makes sense to  
select a higher frequency range so that the filter ring is 
minimized.  Then it is not a serious issue and the problem is 
resolved.   
 
I hope that this little discussion has shed some light on this 
problem regarding filter ring observed on the force time history.  
If you have any more questions on modal analysis, just ask me. 
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I ran a shaker test with a simple beam but some of the modes don’t look right – What’s wrong? 
Let's consider some problems with shaker quills. 

 
Shaker testing for experimental modal analysis can pose some 
special difficulties if care is not taken in setting up the shaker 
and attachment device commonly called a “quill” or “stinger”.   
Typically a system is setup as shown in Figure 1.  The idea of 
the stinger is to allow for axial motion to be imparted into the 
structure which is measured by the force gage for simple 
compression and tension type loads.  
 
 
 

FORCE TRANSDUCER

RESPONSE TRANSDUCER

STINGER

SHAKER

STRUCTURE UNDER TEST

 
 

Figure 1 – Typical Shaker Setup 
 

 
The purpose of the stinger is to allow for loads in the direction 
of excitation but to minimize the lateral loads that may be 
imparted into the system.  Essentially, a free body diagram 
concept allows us to know the force imparted into the structure 
at the attachment point.  Therefore, all the dynamic effects of 
the shaker system and stinger are not included in the dynamic 
characterization of the structure under test.  At least that’s what 
is happening from a theoretical standpoint.  Of course this 
assumes that the stinger has essentially no lateral stiffness and 
does not have any significant contribution to the overall 
dynamic characterization of the system.  This is extremely 
important because the force gage only measures the axial load 
applied – if there is any other loads (lateral or moment) that 
occur, the force gage does not measure them. 

The measurement that was made is described next.  (This 
measurement was received from an outside source).  A 
relatively flexible beam was set up for testing with a shaker 
similar to that shown in Figure 1.  However, the stinger was 
relatively short and there was a possibility that the rotational 
stiffness of the stinger may affect the beam flexible modes.  
 
So now let’s take a look at some of the measurements that were 
made.  Figure 2 shows an FRF measurement that was taken with 
a shaker system attached to the structure with a stinger that was 
possibly too short.  This then caused the rotational stiffness of 
the stinger to be more pronounced – especially relative to the 
flexible beam that was being measured.  A modal test revealed 
that there was a classical 1st and 2nd bending mode for the first 
two peaks as expected.  However, the next two peaks revealed 
essentially the same classical 3rd bending mode of the beam.  
FRF measurements were obtained only for the structure under 
test but none on the stinger. 
 
Subsequent tests (and additional measurements on the stinger 
itself) revealed that the two peaks were actually the result of a 
tuned absorber effect.  The stinger was actually in phase with 
the structure mode shape at 3rd peak of the FRF and out of phase 
with the structure motion at the 4th peak of the FRF. 
 
The force gage only accounts for the axial motion imparted by 
the shaker excitation – there is no measurement of the rotational 
effects associated with the beam rotary stiffness introduced by 
the stinger in the test setup.  But the stinger actually looks like a 
rotational spring relative to the beam at the attachment point.  
 
In order to confirm the observation, a longer stinger was utilized 
in a second test of the structure.  The longer stinger effectively 
minimizes the effect of the rotation stiffness imparted to the 
structure under test. 
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Figure 3 shows the FRF with the longer stinger attached.  It is 
clear that the FRF is much cleaner and follow the expected 
pattern of beam like mode response.  A brief modal survey was 
conducted and the first three peaks correspond to the first three 
classical mode shapes for a cantilever beam. 
 

 
Figure 2 – FRF with Short Stinger 

 

 
Figure 3 – FRF with Longer Stinger 

 
Clearly, the first two modes see a shifting of frequency due to 
the different stinger configurations.  This can be due to a variety 
of reasons which might be mass loading effect, stinger effect, 
different test setup, etc.  (These are measurements that were 
provided by an outside source so I can not be sure of the actual 
test setup – but the effect is very clear).  The third peak is 
significantly different.  There is a splitting of the main peak as is 
typically seen in tuned absorber applications – there is also a 
significant reduction in the overall amplitude of the measured 
response (as is seen in tuned absorber theory).   
 
Figure 4 shows the expected shape that would result if this 
stinger acted as a tuned absorber to the measurement system.  
(Again these measurements were provided from an outside 
source and are used to illustrate the effect that is expected to 
exist here).  Obviously the rotational effects of the stinger at the 
attachement point on the structure will be more pronounced as 
the stinger is shortened.  If the stinger happens to have the same 
frequency as one of the modes of the main structure, then the 
coupling would definitely produce FRFs as shown in Figure 2. 
 

STINGER LOCATION MODE 1

MODE 2

MODE 3

TUNED EFFECT
OF STINGER

POSSIBLE

 
 

Figure 4 – Stinger Tuned Absorber Effect 
(Note: Shapes not to scale; shapes sketched to show expected 
effect of stinger rotational stiffness coupled to main structure) 

 
 
Clearly, the effect of the shaker stinger length plays a very 
important role in the measurement of accurate FRF 
measurements.  If the stinger is too short then there is a general 
stiffening effect that can be seen in the measured response 
function.  For this particular case, there is a general tuned 
absorber effect that can be easily seen.  This tuned absorber 
effect may not occur in every stinger application but was 
observed in this particular measurement setup. 
 
Figure 5 shows an overlay of the two FRF measurements 
acquired – one with the short stinger and one with the longer 
stinger.  Comparing the two measurements shows significant 
differences on all the modes of the system measured. 
 
 

 
Figure 4 – Comparison FRF 

 
 
I hope that this little discussion has shed some light on this 
problem regarding shaker stinger setup.  If you have any more 
questions on modal analysis, just ask me. 
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Should the measurement bandwidth match the frequency range of interest for impact testing? 
Let's discuss this to see why they may not need to match. 

 
Now here is a question that may appear simple on the surface.  
But as we discuss it, you may realize that there are some 
alternate issues that may make you think differently regarding 
this problem.  On the surface, it would appear that the 
measurement to be made should be over the bandwidth of 
interest.   
 
Obviously, if the bandwidth is narrower, then the higher modes 
of interest may not be observed.  And, of course, if the 
bandwidth is too large then there will be response of higher 
modes that may not be of interest.  But the real point is this – is 
the latter case undesirable or can a wider frequency range be 
selected and get an equivalent or better measurement?  
Hmmm…. maybe this needs to be discussed and evaluated some 
more before a final call is made here.   
 
Let’s consider a simple measurement on a typical structure 
where the first two or three modes are of interest.   These first 
three modes are expected to exist over an 800 Hz bandwidth.  A 
typical measurement over that 800 Hz bandwidth with 800 lines 
of resolution can be seen in Figure 1.   
 
In general, the measurement looks reasonably good.  The 
frequency response shows the desired peaks well and the 
measurement appears acceptable.  The input spectrum shows 
reasonably flat input over all frequencies with approximately 20 
dB roll off over the frequency range.  The coherence is 
reasonably good at most frequencies in the range of interest. 
(While difficult to see in the plot, there is some minor drop off 
of the coherence over the frequency range even at the 
resonances but likely to be acceptable for most engineers’ use.)   
 
So what could possibly be wrong with the measurement?  Let’s 
take a look at the time signal associated with the response of the 
system. 
 

0Hz 800Hz

INPUT SPECTRUM

COHERENCE

FREQUENCY RESPONSE SPECTRUM

 
Figure 1 – Input Spectrum, Coherence and Frequency Response 

Function over an 800 Hz Bandwidth 
 

0s 1.0s

TIME RESPONSE

 
Figure 2 – Time Response Output for 800 Hz Bandwidth 

 
Now the time response is noted to be fairly well diminished 
within one-quarter of the time record. 
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So is this a problem.  On the surface – no.  But the question I 
really want to ask is this.  Could I make a better measurement?  
And how would I do that? 
 
Look at the time response in Figure 2.  There is a very strong 
possibility that any noise on the response channel might be 
significant in the measured frequency response function.  (For 
the case shown in this example, there was not any appreciable 
amount of noise.  But if there were, then the frequency response 
function would be degraded as well as the coherence.) 
 
Let’s consider a different frequency bandwidth for the 
measurement.  For the next measurement, let’s try to optimize 
the time response to be a significant signal for the majority of 
the time record or block of data collected.  If the frequency 
range is quadrupled, then the time record length will be one 
fourth of the original time record.  This signal is shown in 
Figure 3.  Notice that the time response now fills the majority of 
the time record. 
 

0s 250ms

TIME RESPONSE

 
Figure 3 – Time Response Output for 3200 Hz Bandwidth 

 
Now also take a look at the resulting input spectrum, coherence 
and frequency response function shown in Figure 4. 
 

0Hz 3200Hz

INPUT SPECTRUM
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FREQUENCY RESPONSE SPECTRUM

 
Figure 4 – Input Spectrum, Coherence and Frequency Response 

Function over a 3200 Hz Bandwidth 
 

The measurement at first glance does not look very good over 
the entire frequency range.  BUT over the range of interest for 
the first several modes, the measurement is actually very good.  
(Again, while difficult to see in the plot, the coherence is 
actually as good as Figure 2, if not better overall.) 
 
So the bottom line here is that the second measurement may 
actually be the preferred measurement depending on the 
coherence of the measured response.  The trick to this 
measurement is that the hammer tip should be selected to excite 
only the frequency range of interest – NOT the entire 
bandwidth of the FFT analyzer.  In this way, a good 
measurement can be obtained for the modes of interest. 
 
I have run across this issue several times in a variety of different 
measurement situations.  Generally, people are bewildered why 
this measurement might be acceptable but as I discuss this 
measurement problem it becomes apparent that the overall 
measurement can actually be better than the narrow bandwidth. 
 
A specific example relates to some measurements taken a few 
years ago on a surveillance pod for an aircraft structure.  The 
initial measurements over the narrow specific frequency range 
were very noisy since the response died very quickly in the 
measurement time record.  Selecting a wider frequency range, 
where the response signal was significant over the entire time 
record, actually produced a much better measurement for the 
modes of interest.  And again, the force hammer tip was 
selected to excite only the modes of interest and not the entire 
frequency range of the FFT analysis process.  A typical 
measurement from that structure is shown in Figure 5. 
(Unfortunately, the narrow band FRF measurement is not 
available for comparison but was a much poorer measurement 
overall.) 
 

COHERENCE

FREQUENCY RESPONSE SPECTRUM
 

Figure 5 – FRF/Coherence for POD Measurement 
 
 
I hope that this little discussion has shed some light on alternate 
ways to improve a measurement.  In either case, judgment needs 
to be made to determine which measurement is the best overall 
before proceeding with a specific course of action.  If you have 
any more questions on modal analysis, just ask me.
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Can modal parameters be extracted for heavily damped modes when you can’t see them in the measured FRFs? 
Let's discuss this with an example to illustrate. 

 
Now this is a question that I have heard many times over the 
years.  The answer is bittersweet in many respects.  Of course 
you can extract heavily damped modes from FRFs!  But you 
need to know there is a root in the FRF and make sure that you 
make a good measurement so that the root can be extracted.  
Let’s elaborate on this with an example to help show that the 
parameter estimation algorithms are very robust and well-suited 
to extract heavily damped roots. 
 
To illustrate this point, I am going to refer to a simple model 
that we have used for many years.  It is a very simple 2 DOF 
mass-spring-dashpot system that has non-proportional damping.  
The equation of motion and mass, damping and stiffness are 
defined as 
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These matrices can be used to extract the complex solution  
(frequency, damping and mode shapes).  In addition, the 
frequency response functions can be synthesized to simulate a 
set of collected data.  In this case, only one reference, for the 
first DOF will be used to generate a row of the frequency 
response matrix as shown in Figure 1.  Now it is very clear that 
only one mode is observed in the peak amplitude of the 
magnitude of the frequency response function.  If we only 
looked at the magnitude of the function then it would appear 
that there is only one mode in the system.  But if we also looked 
at the phase, then there is an indication that maybe there is 
something other than a single mode in the band of interest.  (In 
fact for this case, there are definitely two modes in this band.) 
 

Figure 1 – H11 and H12 Frequency Response Functions 
 
But the big question is “Can the modal parameter estimation 
algorithms extract reasonable (accurate) values for the residues 
of the system?”.  As a user, the proper order model must be 
identified for the extraction of residues.  If only one mode is 
requested, then obviously only one mode will be estimated – 
and it might provide marginal estimates for one of the roots.  
And if the model is overspecified with too many modes, then 
the results may be equally distorted - possibly there will be a 
reasonable estimate for one or two of the modes but they are 
also likely to be poorly estimated. 
 
Now if the proper order model is specified, will the correct 
modal parameters be estimated?  Using a 2 DOF model fit with 
an orthogonal polynomial estimation algorithm (popular in 
many commercially available software packages), the poles 
extracted are reported in Table 1. 
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Table 1 – Poles Extracted from Orthogonal Polynomial 

 
 
These are actually the poles that would be obtained from a 
complex eigensolution for the non-proportioanl system matrices 
presented above.  From this table, you can see that there are two 
roots at the same frequency with one at 5% of critical damping 
and another at 40% of critical damping which is very heavy 
damping.  Now proceeding on, the residues can be extracted in 
a similar fashion.  For H11 and H12, the residues are shown in 
Table 2 and 3, respectively.  These residues match well with the 
analytical residues that were determined from the analytical 
model used to generate the frequency response functions. 
 

Table 2 – H11 Residues from Orthogonal Polynomial 

 
 

Table 3 – H12 Residues from Orthogonal Polynomial 

 
 
Now from this simple example, it is clear that the modes can be 
extracted from a frequency response function and it is 
independent on the damping of the system  - whether it be 
lightly damped or heavily damped and whether it be 
proportional or non-proportionally damped system.   
 
Let’s be very clear here…  The modal parameter estimation 
algorithms are very capable curvefitters that are commonly used 
today in almost all commercial software packages.  The problem 
does not lie with the curvefitter as much as it lies with the 
measurement and the engineer using the software.   
 
Obviously, the engineer needs to have some indication that 
there are a certain number of roots in a given frequency band – 
either from the mode indicator tools or from apriori knowledge 
that there are a certain number of roots in a given band.  While 
the curvefitters are generally robust, what I find many times is 
that the mode indicator tools, at times, do not provide a clear, 
concise indication of the number of roots in a band.  And even 
more often that that, there is generally a poor set of 
measurements that have been collected that are not considered 
adequate to extract modal parameters.  The problem most times 
lies with the actual measurements.  Generally, they are not of 
sufficient quality to extract accurate modal parameters.  That is 
the plain and simple fact in most cases! 
 

Another case is a structure with relatively heavy damping and 
pseudo-repeated roots.  The mode indicator tools in Figure 2 
clearly help to identify the number of modes present for the 
roots extracted and shown in Table 4.  This case is included 
here to show that all the tools must be used together to assist in 
the modal parameter estimation process.  These measurements 
are reasonably good which leads to success in the extraction of 
modal parameters. 
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Figure 2 – SUM, MMIF, CMIF, Stability 

 
Table 4 – Time Domain Polyreference Extraction 

 
 
I hope that this little discussion has shed some light on 
estimation of modal parameters with heavy damping and  
pseudo- repeated roots.  The modal parameter estimation 
algorithms are capable of extracting these roots provided good 
measurements are provided.  But good measurements are the 
critical key.  If you have any more questions on modal analysis, 
just ask me.

 



 

_________________________________________________________________________________________________________________________ 
What effect can the test setup and the rigid body modes have on the higher flexible modes of interest? Copyright 2006 
SEM Experimental Techniques – April 2006 Page   1 Pete Avitabile 

    
MODAL SPACE - IN OUR OWN LITTLE WORLD by Pete Avitabile  

What effect can the 
test set up and the rigid

body modes have

on the higher flexible
modes of interest ? Let's discuss this with

an example to illustrate

 
 Illustration by Mike Avitabile  
 
What effect can the test set up and rigid body modes have on the higher flexible modes of interest? 
Let's discuss this with an example to illustrate. 

 
This particular question comes up very often.  In this particular 
case, the question was posed relative to ground vibration testing 
of an aircraft.  The concern lies with the fact that if a different 
support configuration is used, how or will this effect the 
measured flexible modes of the system. 
 
Now there are some very important questions to be answered 
here.  All of them may be more than can be answered in one 
article but at least some concepts can be presented and some 
possible ways to better understand the problem can be 
presented. 
 
In order to do this, I want to show some data that was recently 
collected in the lab for some composite plate specimens that 
were subjected to impact testing.  The main purpose of the 
testing was to determine the damping of the composite material 
using a newer material formulation and compare these results to 
commercially available composite resins that are typically used.   
 
One of the first things that was done was to subject the first 
prototype plate to a number of different proposed test set up 
configurations to determine if the test setup would have a 
significant effect on the results obtained.  Since the plates were 
of a very lightweight construction, many different set up 
configurations were explored.  Only four different 
configurations will be shown here to illustrate some of the 
differences that could possibly result.  The composite plate was 
supported on a very soft elastic system and subject to impact 
testing using the multiple reference impact technique using 
three reference accelerometers.  The impact test was conducted 
with the four different support configurations as shown in 
Figure 1 along with a photo of one of the test set ups.  A typical 
frequency response function measured for one of the 
configurations is shown in Figure 2 (just for reference). 
 
 

 

1 1a

2 2a

 
 

 
Figure 1 – Schematic of Four Different Test Support  

Configurations for One Composite Plate Sample 
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Figure 2 – Typical FRF Measured on Composite Plate 

 
The data was reduced using normal modal extraction procedures 
and the results for the first four modes are shown in the 
following tables.  The results all seem to be fairly consistent 
with the exception of the first mode of the structure.  There is a 
definite difference between the different set up configurations.  
The frequency for most modes varies less than 1% except for 
the first mode which shows up to 5% variation on frequency 
results.  (Now we can argue about fiber orientation and other 
factors but the bottom line is that there are differences.)   
 

Test 1 Results (Outboard Supports) 
Mode Frequency (Hz) Damping (%) 

1 43.89 2.15 
2 188.48 0.92 
3 203.24 0.71 
4 207.88 1.03 

  
Test 1a Results (Inboard Supports) 

Mode Frequency (Hz) Damping (%) 
1 42.03  2.33 
2 188.02  0.91 
3 204.00 0.81 
4 209.72 1.09 

  
Test 2 Results (Outboard Supports Rotated 90 deg) 

Mode Frequency (Hz) Damping (%) 
1 43.97 2.19 
2 188.51 0.91 
3 203.01 0.75 
4 209.73 1.05 

  
Test 2a Results (Inboard Supports Rotated 90 deg) 
Mode Frequency (Hz) Damping (%) 

1 42.11 2.32 
2 188.47 0.92 
3 203.92 0.82 
4 209.88 1.07 

  
It is important to note that the rigid body modes are significantly 
lower than the first flexible mode of the system.  (It is difficult 
to see from the measurement shown but the rigid body modes 
are close to 1 Hz.)   That means that there is much more than a 
10:1 ratio between the rigid body modes and first flexible mode 
of the system.  But notice that the first flexible mode is 
definitely affected by the support configuration.  
   

Everyone always says that as long as there is greater than a 10:1 
ratio then there is no effect between the rigid body modes and 
the flexible modes of the system.  But that really depends on 
what you agree is “close enough”.  In this case, if you are 
willing to accept a 5% variation in frequency, then maybe we 
could agree that there is “essentially” no effect of the rigid body 
modes on the flexible modes of this system with the 40:1 ratio 
between the rigid body modes and flexible modes.  But you 
need to check this and you need to have people agree that this is 
acceptable.  It really depends on how accurate you need your 
data to be.  This will always vary from case to case and industry 
to industry and test configuration to test configuration. 
 
In the case of these composite plates, there were many modal 
tests performed and all the results were carefully compared.  
And not just frequency was compared.  Mode shapes were also 
compared to determine the variance that might be observed 
from the sets of data collected.  You need to check both 
frequency and mode shapes. 
 
The data collected must be interrogated to determine how the 
frequencies and mode shapes will vary due to these different 
test configurations.  Maybe there is very little difference in 
mode shape which may be the parameter of interest.  Or maybe 
the frequency is a sensitive parameter for the design under 
evaluation.  This really depends on the application at hand. 
 
So what should you do?  Well… if there is an analytical model 
available, then it is a very easy task to investigate the effects of 
different boundary condition on both the frequencies and mode 
shapes.  Each configuration can be easily evaluated using 
correlation tools to determine the effect on the reported 
frequencies and mode shapes using vector correlation tools 
commonly available.  This can be done prior to running the 
actual test to determine what effects, if any, might be observed.  
In this way, some evaluation can be made as to the expected 
variation in modal characteristics.  Analyses can be performed 
to determine how these changes in characteristics may effect the 
final system response.  If the effects are significant, then the 
effects of the test support condition need to be carefully 
evaluated.  But if the results of the system response are not 
significantly different then the effects of the test support 
condition can be considered to be not as critical.  But someone 
needs to make this evaluation.  Rules of Thumb that are used 
are exactly that – they must be evaluated in more depth and 
should not be blindly followed.  And remember that a change in 
the stiffness of the test support must have an effect on all the 
frequencies.  If you add stiffness the frequencies must shift 
upwards – the question is how much do the frequencies shift 
and is it of importance or is it measurable.     
 
I hope that this little discussion has shed some light on the 
effects of test set up on the frequencies and mode shapes.  You 
need to evaluate this carefully.  If you have any more questions 
on modal analysis, just ask me 
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Is there any problem running a modal test with 2 KHz excitation but only analyzing up to 500 Hz ? 
Let's discuss this. 

 
Now this is an interesting question.  There are several issues to 
be discussed relative to this.  The more important question is 
maybe why one would want to run a test in this fashion in the 
first place and then discuss some of the issues that might have 
an effect on the overall measurement and then possibly some 
alternate things to consider. 
 
So let’s consider a measurement as shown in Figure 1.  As the 
question was posed, the measurement would be acquired over a 
2KHz range but the only range up to 500 Hz is to be analyzed. 
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Figure 1 – Measurement over 2KHz with 500 Hz Concern 

 

There is really no right or wrong answer here but I have some 
strong feelings regarding the adequacy of this measurement as 
shown.  Without some very specific details, I really don’t want 
to make this measurement as requested.  Looking at the input 
power spectrum, cross power spectrum, frequency response 
function and coherence, there is definitely excitation and 
response to 2 KHz.  There appears to be considerably higher 
response levels in the higher frequency range as well as many 
more modes of the system.  This measurement looks acceptable 
overall but is it really the best possible measurement over the 
500 Hz frequency range of interest?   
 
The first thing to maybe consider is why is there only a need to 
extract model information up to 500 Hz when the excitations are 
a much higher frequency.  Well, the analysis or design to be 
considered may only involve lower order frequencies.  It may 
be that the model to be developed is only needed to address 
response up to 200 or 400 Hz and there is no need to consider 
the contribution of higher frequencies for the aspects of the 
design to be considered.  That implies that the higher modes do 
not significantly participate in the overall response of the system 
and can be excluded from the analysis.   
 
So if this is the case then the excitation need not extend to a 
high frequency to extract the measurements and model to 
describe the system dynamics appropriately.   But possibly the 
excitation may have come from an operating condition where 
the input excitation is broadband and excites this wide 
frequency range.  But because it is an operating condition, it 
may be considered a better excitation than an artificially 
generated excitation – but this is definitely debatable. 
 
But there may also be a dual purpose need for the test.  While 
you may only be concerned for frequencies up to 500 Hz for 
your analysis, there may be others that need to use and analyze 
the data for other applications up to 2 KHz.  This is always a 
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problem when one test is to be used for multiple purposes and 
analyses.  This is not the optimum way to conduct a test but 
may be used purely in consideration of time aspects when a test 
article is not available for long duration or is an expensive piece 
of hardware on a tight production schedule.  In any event, there 
may be multiple reasons for this type of test scenario. 
 
But what might be the issues that might affect the overall 
measurement.  Well, there needs to be some consideration to the 
transducers used to acquire the measurement.  If the excitation 
extends to well beyond 500 Hz (and up to 2KHz) then the 
transducers selected must be suitable for responses at this high 
frequency range.  Of course, this implies that the accelerometers 
selected should be suitable for high frequency and, as such, may 
not be as sensitive at lower frequencies than an accelerometer 
that is selected specifically for a lower frequency range.  So the 
issue that is of concern is the appropriate selection of transducer 
that is going to provide a suitable measurement below 500 Hz 
while not being overloaded or saturated by the higher frequency 
excitation.  This can cause an inappropriate transducer selection 
 
As another issue, the excitation up to 2KHz will cause high 
frequency response that may not be of interest or may excite 
other problems (such as nonlinearities) that might contaminate 
the overall measurement.  My preference would be to measure 
only the frequency range of interest as shown in Figure 2. 
 
It seems much wiser to limit the excitation used with a low pass 
filter and not ever excite the higher frequency modes of the 
system.  This would then possibly allow the use of more 
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Figure 2 – Frequency Excitation to 500 Hz 

sensitive lower frequency accelerometers that would provide a 
much better measurement overall.  This also allows for a better 
utilization of the analog to digital converter in the acquisition 
system.  But the bottom line is that the instrumentation and their 
associated signal conditioning must also be considered.  
Unnecessary loading of the transducer makes no sense at all.  
Why excite and measure something that isn’t of concern? 
 
But looking at the measurement, there may be some concern as 
to the contribution of the modes just beyond 500Hz and up to 1 
KHz.  If they are not measured then at some time in the future, 
there may be a reason or need to evaluate beyond what was 
required today.  And looking at that next band in Figure 3, you 
can see that there is definitely some dominant modes that may 
be of interest (if not today, then maybe tomorrow).  So you see 
that often there is not a clear cut answer as to what frequency 
range might be appropriate.  But one thing is clear – the 
transducers selected for making the measurements are very 
sensitive to the actual frequency range to be tested and this 
needs to be well thought out before a test is conducted. 
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Figure 3 – Measured Response to 1 KHz 

 
So what if I am forced to run a test with a 2 KHz excitation but 
only analyze to 500 Hz.  It might be best to run a test with 
2KHz excitation and a second test with 500 Hz excitation.  Both 
measurements should provide equivalent information if all the 
issues identified above have been properly addressed.  And if I 
am forced to excite the structure to 2 KHz, then I would run 
both tests and analyze both sets of data to see if there are any 
significant differences.  Of course, this still would imply that the 
instrumentation would have to be suitable for both frequency 
ranges and therefore may not be optimum for the lower 
frequency range.   
 
I hope that this little discussion has shed some light on the 
effects of acquiring data well beyond the actual frequency range 
of interest.  It can be done, if required, but there may be some 
issues related to selecting transducers that appropriately 
measure the actual frequency band of interest accurately.  You 
need to evaluate this carefully.  If you have any more questions 
on modal analysis, just ask me.
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What is a good MAC value so I know my model is right ? 
Let's discuss this. 

 
Now this is a question which needs a lot of discussion.  Many 
people are often confused about MAC and the other correlation 
tools that are commonly used.  There are a few issues to be 
discussed in order to clarify some misconceptions.   
 
For purposes of discussion, let’s assume that we have an 
analytical model and experimental data that has close to perfect 
vector correlation viewed from the MAC (Modal Assurance 
Criteria) and POC (Pseudo-Orthogonality Check); both 
approach the desired unity matrix.  But, while the vectors 
correlated well, let’s assume that the frequency correlation is 
not quite as good and assume that there is a 10% frequency 
variation for the first mode and only a 1% variation for the 
second mode.  So what does this correlation mean then. 
 
To help with this discussion, let’s look at the response of a 
simple plate that has been discussed in several previous Modal 
Space articles to explain some simple concepts.  Figure 1 shows 
the response of the plate due to a random excitation as the input 
excitation and corresponding output random response due to 
that input.  Also shown is the frequency respresentation of that 
input-output phenomena.   
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Figure 1 –Overall Response with Random Input Schematic 

The FRF and impulse response is nothing more than a filter 
applied to the input excitation.  The FRF is also shown with 
each of the corresponding mode shapes at each of the resonant 
frequencies.  So we see that the frequency value as well as the 
mode shape is important for identifying the response of the 
system.  While the shapes are correct, the frequency difference 
is also important. 
 
If the frequency value is not correct then the response will vary 
depending on how the input spectrum varies.  In this case the 
second mode frequency is very accurate and the input spectrum 
is fairly flat over the region of the second mode so the slight 
frequency variation only causes slight change in the response of 
the system.   
 
However, for the first mode there is a 10% variation of the 
frequency.  For this mode, there is a significant variation of the 
input frequency spectrum in this frequency range.  So the 
variation of the frequency is more important for this mode than 
the second mode.   
 
So it starts to become fairly obvious that the MAC is only an 
indicator of the vector correlation.  But that only identifies if the 
vectors are correlated.  It doesn’t provide any information as to 
the suitability of the model to accurately predict the response of 
the system.  But how does the vector affect the response.  Well, 
the best way to understand the vector effect on the response is 
to look at the basic equation of motion. 
 
The physical response of the system is 
 

[ ] { } [ ] { } [ ] { } { }M x C x K x F t&& & ( )+ + =  
 
where [M], [C], [K] are the mass, damping and stiffness 
matrices respectively, along with the corresponding 
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acceleration, velocity and displacement and the force applied to 
the system.  This can be written in modal space as 
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where the diagonal matrices are the modal mass, modal 
damping and modal stiffness along with the modal acceleration, 
modal velocity, and modal displacement.  The right hand side of 
the equation has the modal force.  Notice the the force is 
projected to modal space using the transpose of the modal 
vectors.  So the mode shapes are important for the identification 
of the modal characteristics as well as the appropriation of the 
physical force to each of the modal oscillators.     
 
If the mode shape varies then the distribution of load and 
response will vary.  So we have to think about how we are 
going to use the model and more importantly we need to 
identify what types of loads will be applied and what response 
is critical to the overall performance of the system.  With a 
random excitation that is broadband and fairly uniform in 
nature, some of these effects will generally be small.   
 
Now to continue on with another example, Figure 2 shows a 
sinusoidal excitation with some harmonic components to the 
driving frequency.  Notice that the driving frequency is NOT at 
one of the resonances of the system.  But what if the model 
frequency was wrong? and the excitation was actually aligned 
to the first mode?  Then there would be more response than 
predicted. 
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Figure 2 – Overall Response with Sine Input Schematic 

 
And on the other hand, what would happen if the second mode 
frequency was wrong in the model?  Notice that a harmonic of 
the driving frequency is aligned to the second mode of the 
system.  The response would be predicted wrong.   
 
So we have to start to think about what the MAC values mean 
in regards to the entire model and the response of that model.  
The MAC (and POC) helps us to identify how accurate the 

shape is.  But we also need to think about the frequency 
correlation as well and the forcing function. 
 
So when a correlation is performed, it is important to obtain the 
best correlation possible.  But what does that really mean?  
There needs to be some assessment of the response of the model 
due to all the design loadings anticipated.  Then someone needs 
to determine what variability can exist in the model and what 
effect that has on the computed response.  It is then and only 
then that I can determine how much the frequencies and vectors 
can vary once someone has defined the acceptable variability in 
the model. 
 
What we need to realize is that no model is ever perfect.  Every 
model will have variation.  And design loadings will have some 
variation also (if we consider real loading conditions).  So 
before we can ever define levels of acceptable correlation, 
someone needs to define what is acceptable in terms of the 
overall system level response.  If this isn’t done then the levels 
specified for the frequency correlation and MAC/POC 
correlation are meaningless.  If they are arbitrarily selected, then 
they may not really be good overall indicators as to how 
accurate the model prediction may be. 
 
In certain applications there may a very strict requirement that 
the first and second modes MUST have very accurate frequency 
correlation as well as shape correlation if the loadings are very 
sensitive to the frequency of the signal.  This is true in 
applications that involve rotating equipment where the specific 
operating speeds are critical to the overall response of the 
system.  It may be more critical to have the frequency accurate 
in some instances and have less stringent requirements on the 
mode shape correlation.  But in other applications where the 
inputs are uniform broadband excitations, then the frequency 
correlation may not be as critical and the shape correlation is 
more important. 
 
This can not be simply identified in a fixed correlation 
specification.  The simple fact is that the correlation and levels 
of acceptance need to be identified as a result of a detailed 
analysis of the system in question due to the specific loadings 
anticipated.  Without this important evaluation, then the levels 
of correlation do not have any practical relevance. 
 
Of course, it would be nice if the models developed satisfy 
some basic levels of correlation but that does not imply that the 
model will necessarily produce accurate results if these generic 
correlation levels are achieved. 
 
I hope that this little discussion has shed some light on the 
correlation process and why the specific correlation values 
achieved must be used with an understanding that there needs to 
be some relationship to the response of the system.  If you have 
any more questions on modal analysis, just ask me. 
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Someone told me that operating modal analysis produces better results and that damping is much more realistic ? 
Now this is something that needs discussion. 

 
Now this is a topic that I have seen which causes some 
confusion among many people.  These techniques are very 
powerful and can have very good results but ….. there are 
several issues that need to be clearly identified when using these 
tools that often slip by very quietly but can have very serious 
consequences if not understood.  Let’s discuss some of the 
critical items and issues of concern. 
 
Over the past several years there have been many techniques 
developed which can reduce data from operating systems.  
These techniques have been previously referred to as “output 
only systems” or more recently as “operating modal 
characteristics”.  The critical feature of this type of analysis is 
that the input forces need not be measured in order to reduce the 
measured data to extract deformation characteristics.  This is its 
biggest benefit ….. and also one of its downfalls.  While there is 
no need to meaure the input, there is also no guarantee that the 
input exciting the system actual causes response of all the 
desired system characteristics.  This can lead to definition of a 
system model that does not totally identify all the system 
characteristics – only those characteristics excited by the 
unmeasured/unknown force are estimated. 
 
Figure 1 is a schematic we have used before to illustrate the 
input-output problem for a structural dynamic system.  In output 
only systems, the output response is the only item measured.  
The assumption is that the input force is generally broadband 
and excites a frequency band that defines the operating 
characteristics of the system.  However, in Figure 1, the input 
force (which is not measured) clearly does not excite all the low 
frequency modes of the system which may be critical to the 
definition of the dynamic characteristics of the system overall. 
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Figure 1 –Overall Response with Random Input Schematic 

 
Well, this may not be a problem as long as this force is truly 
representative of the actual forcing function and there is no 
other possibility that the lower frequency modes may be excited 
by other operating forces.  But the problem with output only 
systems is that you never really know what the excitation force 
is and if all the modes of the systems have been adequately 
excited for extraction of a model that completely describes the 
system characteristics. 
 
So let’s just realize that the forcing function is a concern and 
that it must be broadband in order to extract all the dynamic 
characteristics adequately.  Provided that this is achieved then 
the modes that represent the system can likely be extracted.  But 
another issue of concern is that there needs to be some way to 
scale the operating modal data to be used for any further 
dynamic simulations, correlations to a finite element model, 
forced response simulation or other dynamic analyses that 
require scaled mode shapes. 
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While there has been some research in this area, there still needs 
to be more work devoted to developing useful techniques that 
cover a broad range of situations and can provide scaled modes.  
Hopefully, future efforts will provide these tools. 
 
So one additional critical item that needs to be discussed is 
related to the estimation of the pole of the system.  While the 
frequency can be estimated relatively easily, the damping is not 
as simple at all.  Many times I have heard people state that the 
damping obtained from an operating modal analysis is much 
more accurate that a traditional modal test.  While this may be 
very true of systems that have nonlinear characteristics or 
bearings or other complicated construction features, the fact is 
that just about all of the operating extraction algorithms that are 
available all predict damping that appears to be higher than 
what actually exists in a linear time invariant (LTI) system. 
 
To illustrate the fact that output only data reduction schemes 
always produce higher damping, even on an LTI system, results 
from two models will be presented here – one case is a pure 
analytical development of simulated operating data and the 
other is an actual experimental set up on a system which is 
extremely linear and for all practical purposes is an LTI system. 
 
For the first case, let’s assume that we can start with a linear 
time invariant system with analytically determined frequency 
and damping values.  The damping will be specified to be 2% 
for this study.  An analytically derived random signal can be 
applied to drive the LTI system and the output response can be 
computed.  From this time data, a simulated set of data can be 
used to mimic the output only measurement process.  This data 
can then be processed to extract system characteristics.   
 
This analytical simulation was performed and the starting 
system characteristics along with the characteristics extracted 
from the simulated operating data produced the results in Table 
1.  While the frequencies and shapes are very good 
approximations of the LTI system, notice that the calculated 
damping from the output only system is much higher than the 
starting system.  Obviously this is a result of the extraction 
process; the estimated damping from the output only system is 
higher than the original damping that was specified for the LTI 
system. 
 
 
Table 1: Analytical Model - Prescribed 2% Critical Damping 
Original Analytical Model Random Operating Response 
Freq (Hz) Damping Freq (Hz) Damping 
 9.1 2.0% 9.1 3.8% 
 32.5 2.0% 32.6 2.3% 
 60.3 2.0% 60.3 2.3% 

In the second case, an experimental system was setup with a 
snowboard with no bindings or attachments to the board; this 
system is extremely linear with none of the typical joints or 
interactions of components that might cause the system to be 
nonlinear or appear to have more damping.   
 
A traditional experimental modal test was performed first to 
estimate the system characteristics.  Then a time stream of 
response (due to arbitrarily tapping the snowboard) was used to 
provide the simulated operating data.  This output only data was 
processed and system characteristics were extracted.   
 
The results of the traditional experimental modal test with the 
output only results are shown in Table 2.  While the frequencies 
and mode shapes are very accurate, the damping estimates are 
not comparable at all.  (NOTE: In both cases studies here, 
commonly used commercial extraction algorithms were 
employed to estimate parameters to produce the results) 
 
 
Table 2: Comparison of Traditional Experimental Modal with 
Output Only Results for a Snowboard Configuration 
Experimental Modal Results Output Only System Response 
Freq (Hz) Damping Freq (Hz) Damping 
 18.1 0.70% 18.2 2.44% 
 38.9 0.44% 38.8 1.73% 
 42.1 0.65% 42.2 1.71% 
 62.4 0.44% 62.0 2.0% 
 66.8 0.70% 67.5 2.0% 
 
 
Now I know that I have presented only two cases here.  But 
there have been many tests (and analyses) on numerous 
configurations that have substantiated this claim over the years.  
This may not always be the case but it appears to be true for 
almost all the cases I have seen thus far.  So the most important 
item to note here is that, in general, output only systems tend to 
always predict much higher damping than what really exists – 
even in an LTI system.  So please be very careful using the 
results from these operating modal analyses because the 
damping predicted may be higher than what really exists in the 
actual system.   
 
As time progresses, these algorithms will improve and 
hopefully, they will provide more realistic results as time 
progresses.  But in the meantime be careful using those results.  
I hope that this little discussion has shed some light on 
operating modal analysis (or output only systems).  If you have 
any more questions on modal analysis, just ask me. 
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What is MRIT?  I hear people talk about it for impact testing. 
Let’s talk about this testing technique. 

 
MRIT, or Multiple Reference Impact Technique, has been 
around for many years now.  It became popular when 
multichannel FFT analyzers became more affordable and more 
commonly available in everyday experimental modal analysis 
testing.  Let’s first start with some simple concepts related to 
single input single output systems and then move on to a deeper 
understanding on the information in the FRF matrix.  This will 
lead us to understand why we might be interested in MRIT as a 
testing technique for the development of multi-referenced data. 
 
In the old days, most people only had a two channel FFT 
analyzer at best.  (You know… we had to walk uphill to school, 
both ways, in the snow and rain, with no boots or rain coats!).  
We collected FRFs for one input output location at a time.  
Then another measurement was taken.  Now depending on 
whether it was an impact test or shaker test would determine the 
reference location.   
 
In a shaker test, the force measurement was the reference and 
the accelerometer was “roved” around the structure to different 
locations.  (Obviously it was easier to move the accelerometer 
rather than the shaker.)  Once all the measurements were 
acquired, a column of the FRF matrix was obtained.  The 
particular column that was measured was determined by the 
location of the force measurement on the structure. 
 
But in regards to impact testing, possibly the hammer could 
“rove” while the accelerometer was kept in the same location.  
In this case, the accelerometer was the reference and a row of 
the FRF matrix was obtained.  Again the particular row is 
determined by the location of the accelerometer on the structure.  
(But there is also the possibility that the hammer could be held 
stationary and the accelerometer would “rove” around the 
structure).   
 

In any event, the stationary measurement was called the 
“reference” because it was the same for every input output 
measurement acquired.  Figure 1 shows a typical column from 
the FRF matrix for a shaker test (or stationary hammer test) in 
blue and a typical row of the FRF matrix for an impact test 
(where the hammer roves around the structure) in red. 
 

 

ROVING IMPACT TEST 

SHAKER TEST 

 
 

Figure 1 – Typical Row/Column Measured in FRF Matrix 
 
 
OK – so now we know the old days.  Because only one FRF 
was measured at a time, it was fairly simple to conduct a modal 
test.  But the most critical aspect of the test was the appropriate 
selection of the reference location.  This has been discussed 
several times before but it is clear that the reference location 
must be able to measure the mode shape for all the modes of 
interest from that reference location.  The mode shape is related 
to the residues as 
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for one particular reference location.  This corresponds to one 
column of the residue matrix.  (Remember that the residue 
matrix is symmetric so this can also be written to address a row 
of the residue matrix.)  If the reference location is close to the 
node of a mode for one or more modes, then the measured FRFs 
will not provide the best information for extraction of the modal 
parameters.  Therefore, this reference selection is critical.  
However, if more than one row or column of the FRF matrix is 
collected then redundant information is available.  So as 
discussed several times before, the entire residue matrix is 
defined as 
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The collection of multiple rows or columns of the FRF matrix is 
therefore very desirable.  The multiple reference modal 
parameter estimation algorithms take advantage of this 
redundant information to get the best possible modal parameters 
from the redundant multiple references.  Now I said 
“redundant” several times to emphasize this important fact.  But 
sometimes these extra references may not be optimal for all the 
modes if that were the only reference.  This is really the reason 
why multiple references are often used.  Just in case one of the 
references is not located at an optimal location, there will be 
other references that will contain better information. 
 
Now we understand that it is good to have more than one 
reference for the estimation of modal parameters.  So as 
multiple channel FFT analyzers became more commonplace, the 
ability to collect simultaneous sets of references from multiple 
locations became very possible. 
 
Thus the birth of  Multiple Reference Impact Testing.  
Generally, this can be done by placing multiple accelerometers 
at various locations on the structure that are expected to be 
reasonably good references for most of the modes of the 
structure.  So, for example, if a four channel FFT was utilized, 
then one channel would be used for the force hammer and the 
remaining three channels would be used for a reference 
accelerometer.  And contrary to popular belief, this does not 
have to be a triaxial accelerometer at one point on the structure 
– it is probably better to use three separate single axis 
accelerometers located at three different locations (and they 
don’t have to be located one in x, one in the y and one in the z 
axis!).   
 

Using this strategy, then each time a set of averages are 
acquired, there would be three different FRFs, in three different 
rows of the FRF matrix.  As the hammer roves from one point 
to another, three additional FRFs would be acquired and as all 
impact locations were completed, then three separate rows of 
the FRF matrix would be acquired as seen in Figure 2.  This 
data collection process is referred to as Multiple Reference 
Impact Testing. 
 
 

Ref#1

Ref#2

Ref#3

 
Figure 2 – Multiple Rows Measured in FRF Matrix 

 
One variation of this MRIT occurs when a large multichannel 
system is used to measure all the accelerometer responses 
simultaneously.  If only one location is impacted then one 
complete column of the FRF matrix is measured similar to the 
shaker test in Figure 1.  Of course, if we would continue and 
impact a few different locations, then multiple columns of the 
FRF matrix would be obtained as seen in Figure 3. 
 

 

Ref#1 Ref#2 Ref#3  
Figure 3 – Multiple Columns Measured in FRF Matrix 

 
In both cases described, multiple reference data is obtained from 
the MRIT approach.  This is a very good way to collect multiple 
referenced data.  If a multiple channel FFT is available, I can’t 
imagine not performing a MRIT test.  It doesn’t take any more 
time and multiple reference data results which is very useful.   
 
If you have any more questions on modal analysis, just ask me. 



 

_________________________________________________________________________________________________________________________ 
What is the difference between all the mode indicator functions?  What do they all do? Copyright 2007 
SEM Experimental Techniques – February 2007 Page   1 Pete Avitabile 

    
MODAL SPACE - IN OUR OWN LITTLE WORLD by Pete Avitabile  

What is the difference 

between all the mode 

indicator tools 

What do they all do? 
Let's discuss this  

 
 Illustration by Mike Avitabile  
What is the difference between all the mode indicator functions? What do they all do ? 
Let's discuss this. 

 
This is a good question.  The indicator functions are very useful.  
There are several different mode indicator functions that are 
routinely used in experimental modal analysis when data is 
reduced.  Let’s talk about each of the most common tools to 
show their strengths and weaknesses and how to interpret data 
from each. 
 
Of course, the measured frequency response function (FRF) can 
be viewed also but with only one FRF it may very difficult to 
identify how many modes exist.  This is a problem because all 
of the modes may not be active in the particular FRF measured.  
The modes may be directional and from one measurement all 
the modes may not be easily observed.  This might also be 
especially true of the drive point measurement where all the 
peaks will have the same phase; two very closely spaced modes 
may be very difficult to observe.  So to assist in the process of 
pole selection, many different tools have been developed over 
the years.  The main tools used are:  

- SUM – Summation Function 
- MIF – Mode Indicator Function 
- MMIF – Multivariate MIF 
- CMIF – Complex Mode Indicator Function 
- Stability Diagram 

So let’s discuss each of these.  For an example structure, a 
simple plate will be used as shown in Figure 1.  But this plate 
has some closely spaced modes which will tax all of the mode 
indicator tools.  The plate is subjected to MIMO testing with 2 
shaker reference points and 15 accelerometer locations. 
 
The first tool discussed is the Summation Function, SUM.  This 
is a very simple formulation.  Basically, it is the sum of all of 
the FRFs measured (or sometimes only a subset of all the FRFs 
is used).  The SUM will reach a peak in the region of a mode of 
the system.  The idea is that if all the FRFs are considered then 
all of the modes will be seen in the majority of the 
measurements.  As more and more FRFs are included, there is a 
greater chance that all of the modes will be seen in the 

collection of FRFs summed together.  This is obviously better 
than one particular measurement where all the modes may not 
be present.   
 

 
Figure 1 - Plate Test Setup with 2 References 

 
A SUM function for all the measured response functions is 
shown in Figure 2.  The SUM function will identify modes 
reasonably well especially if the modes are well separated.  In 
the figure, there are five peaks observed which indicates that 
there are at least five modes in the frequency band shown.  
Another important feature of the SUM function is that each of 
the peaks is generally fairly wide and if closely spaced modes 
exist, then this may not show all of the modes well. 
 

 
Figure 2 - SUM for 2 References and 15 Accelerometers 

 
While the SUM function is useful, it is not always very clear 
when modes are closely spaced.  The original Mode Indicator 
Function (MIF) was formulated to provide a better tool for 
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identifying closely spaced modes.  Basically the mathematical 
formulation of the MIF is that the real part of the FRF is divided 
by the magnitude of the FRF.  Because the real part rapidly 
passes through zero at resonance, the MIF generally tends to 
have a much more abrupt change across a mode.  The real part 
of the FRF will be zero at resonance and therefore the MIF will 
drop to a minimum in the region of a mode.  An extension of 
the MIF is the Multivariate MIF (MMIF) which is an extended 
formulation of MIF for multiple referenced FRF data.  The 
MMIF follows the same basic description of a single MIF.  The 
big advantage is that multiple referenced data will have multiple 
MIFs (one for each reference) and can detect repeated roots.  
This is shown in Figure 3. 
 

 
Figure 3 - MMIF for 2 References and 15 Accelerometers 

 
If the first MIF drops, then there is an indication that there is a 
pole of the system.  Every one of the drops in Figure 3 for the 
MIF1 (shown in green) indicates a mode of the system.  Notice 
that there are six dips in the function – one more than was 
observed in the SUM function.  Clearly, there is one mode that 
is closely spaced around 300 Hz which was not clearly 
identified in the SUM function.   
 
Now if the second MIF also drops at the same frequency as the 
first MIF, then there is an indication that there is a repeated (or 
pseudo-repeated root).  Clearly, the second MIF in Figure 3 
(shown in yellow) indicates that there is a repeated root at the 
first dip in the MIF close to 100 Hz.  (Note that the SUM only 
indicated one mode in this range.)  However, the other small dip 
in the second MIF close to 300 Hz is not an indication of a 
mode because the second MIF does not dip at the same 
frequency as the first MIF.  In order to have an indication of 
two roots both MIFs must dip at the same frequency. 
 
The MMIF is a much more accurate tool for indication of 
modes.  However, the assumption is that real part of the FRF is 
zero at resonance.  If the measurements have some distortion or 
if there is some phasal information in the measurements 
(associated with non-real normal or complex modes) then the 
MMIF may not be able to accurately depict the modes 
accurately.   
 
The Complex Mode Indicator Function (CMIF) is a better tool 
if this is the case.  The CMIF is based on a singular valued 
decomposition of the FRF matrix to determine all the principal 

modes that are observed in the set of measurements.  The plot of 
the singular values also helps to identify poles of the system.  
The CMIF will peak where maximum values exist indicating 
poles of the system.  There will be one CMIF curve for each 
reference.  Figure 4 shows the CMIF. 
 

 
Figure 4 - CMIF for 3 References and 15 Accelerometers 

 
Clearly, the two CMIF curves peak close to 100 Hz indicating 
that there are two peaks at that frequency.  In the 300 Hz 
frequency range, there is an indication that there are two (or 
possibly three) modes in that range.  The CMIF function 
provides some additional insight into the number of poles in the 
frequency band of interest. 
 
All of the tools assist in the selection of poles during the 
extraction process.  The last tool is the Stability Diagram, SD.  
The basic philosophy is that poles that are extracted from 
increasing order mathematical model will repeat as the order is 
increased if the pole is a global characteristic of the system.  
Other indications of roots will not maintain consistent indication 
as the order of the model is increased.  A plot of these 
characteristics when a pole migrates to a stable configuration 
provides yet additional insight into the poles of the system.  
Figure 5 shows a stability diagram over a narrower frequency 
range than previously shown.  Notice that there is an indication 
of a repeated root near 100 Hz and another pair of roots close to 
300 Hz.  (Discussion on details of the stability diagram will be 
discussed in a future article.)  So this confirms the findings from 
the MMIF and CMIF. 
 

 
Figure 5 – Stability Diagram for FRF Data 

 
There is a lot more that can be discussed but the majority of the 
mode indicator tools are explained in this article.  If you have 
any more questions on modal analysis, just ask me.

 



 

_________________________________________________________________________________________________________________________ 
How do you select the reference location for a modal test?  What needs to be considered? Copyright 2007 
SEM Experimental Techniques – April 2007 Page   1 Pete Avitabile 

    
MODAL SPACE - IN OUR OWN LITTLE WORLD by Pete Avitabile  

How do you select the 

reference location for 

a modal test ? 

What needs to  

be considered ? 
Let's discuss this to see 

how to think about this 

 
 Illustration by Mike Avitabile  
 
How do you select the reference location for a modal test?  What needs to be considered? 
Let's discuss this to see how to think about this. 

 
Now the selection of the reference location is one of the more 
important steps of performing an experimental modal test.  If 
the reference(s) are selected poorly, then there is a strong 
possibility that one or more modes of the system may be 
represented poorly or, in the worst case, not at all.  Many times 
the references are selected with a priori knowledge if similar 
structures have been tested many times in the past.  In these 
cases, the selection is much easier.  But when the structure is 
unique and has no previous history, then the selection of the 
reference can be much more complicated.  Obviously, 
experience is a very strong plus in these situations.  And it may 
be that there is an analytical model that may assist in this 
selection of the reference.  So let’s discuss some basics and 
describe some things to consider when selecting the reference 
location(s). 
 
The first thing to really show is the basic equation that 
dominates the selection of the reference.  As I always say to all 
my students, “Remember … the most important answer to 
almost all of your modal questions is very simply  ui uj”.  Of 
course the students all make fun of me for saying this over and 
over but then they realize that most of their modal questions are 
often answered with this very statement!  So what do I mean by 
this.  Recall that the residue matrix is given by 
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But we do not collect data for all of these input output 
combinations (and theory tells us that we do not need to 
measure all of them either).  So there needs to be a very careful 
selection of which rows or columns are measured.  If we look at 
one column then we can write 
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Obviously, the value of the mode shape at the reference location 
must be significant for all the modes to be measured.  If this is 
done then the FRFs measured will have strong response of the 
modes of the system.  But if the value of the mode shape at the 
reference location is not significant for one or more modes of 
the system, then the FRFs may not contain strong response for 
all the modes of the system.  This will make the modal 
parameter estimation process more difficult. 
 
So if an analytical model is available, then the mode shapes can 
be reviewed to select optimal reference locations.  One simple 
tool that is often used is the drive point residue.  Basically, this 
is an assessment of the mode shape represented as a residue 
 

ikikkiik uuqa =  
 
This is a common tool used in preliminary assessment usually 
called a Pre-Test Analysis.  Of course there are other tools such 
as Mode Shape Summation, MODMAC, Effective 
Independence, along with others that are beyond what can be 
discussed here.  But what if a finite element model is not 
available or (let me say this quietly) what if the model is not 
correct.  So we need to be able to select the references without 
any previous knowledge or assistance from an analytical model. 
 
So often times, an experimental test is setup and the first thing 
that is done is to make sample measurements to determine how 
many modes might exist in the structure.  At times, the drive 
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point FRFs are reviewed – possibly the imaginary part of the 
FRF is viewed.  Unfortunately, this is probably not one of the 
better measurements to view.  This is because closely spaced 
modes may be difficult to identify since all of the peaks of the 
imaginary part of the FRF will have the same positive or 
negative going peaks in the function.  Actually the non-drive 
point measurements are better because the values of the 
amplitude can be both positive and negative enabling a better 
chance to identify closely spaced modes.  For example, two 
measurements are shown in Figure 1.  The upper trace is a drive 
point FRF and it is impossible to identify that there are two 
modes at the first peak.  The lower trace is a cross measurement 
and it is more obvious that there are two modes at that 
frequency.  So you can see that a drive point measurement is 
useful but may also be deceiving in that the strength of each 
mode is not apparent in the measurement. 
 

 

 
Figure 1 – Drive Point Vs Cross FRF with Close Modes 

 
As a modal test is set up, often, a random sampling of FRFs is 
made with an educated guess as to what might be reasonable 
references.  This random selection is shown in Figure 2 with the 
selected measurements shown in different colors.   
 

 
Figure 2 – Random Selection of FRFs for Test Setup 

 
The FRFs are reviewed and identification of peaks in the FRFs 
are noted from one measurement to the next.  If all the peaks are 
the same and no additional peaks are obtained, then the 
references might be reasonably selected from those 

measurements made.  Unfortunately all the measurements are 
made in a somewhat random fashion.  There is also a very 
strong possibility that critical modes may be missed with this 
procedure.  (I have seen even the best of test engineers 
occasionally miss major modes of a structure)  
 
Another possibility to identify potential references is to obtain a 
small set of FRFs at all of the potenetial candidate reference 
locations.  This set of FRFs is shown schematically in Figure 3.  
An SVD is then performed on this matrix.  By evaluating the 
SVD of submatrices of this original matrix (ie, removing 
individual references in a controlled fashion), an evaluation of 
the number of significant modes can be determined.  If the same 
number of significant modes are obtained, then the reference 
removed was not a critical reference for the identification of the 
modes of the system.  However, if fewer significant modes are 
identified then the reference removed was an important 
reference for those modes no longer observed and should be 
retained as a reference for the modal test. 
 

 
Figure 3 – Systematic Selection of FRF Submatrices for SVD 

 
So while it is common practice to take a handful of randomly 
selected FRFs to identify a potential reference location, a 
possible alternate approach that utilizes a mathematical 
approach to perform an SVD with a set of FRFs may be a much 
more rigorous mechanism for identifying potential references.  
This approach, commonly called the Test Reference 
Identification Procedure (TRIP), offers a technique for 
reference determination.  This is especially useful when no 
analytical model is available or when there is skepticism as to 
the accuracy of the finite element model used for the Pre-Test 
analysis. 
 
The real trick here is to pick a reasonable ui uj term such that 
the value of the mode shape at the reference location is a 
significant value.  This will then cause the FRFs to have 
significant peaks that allow for adequate measurements to be 
made.  Of course, you have to have an idea of what the mode 
shapes of the system are in order to achieve this.  A finite 
element model or apriori knowledge is very beneficial to 
accomplish this. 
 
If you have any more questions on modal analysis, just ask me
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How do you interpret the stability diagram?  And how do data points affect the fit? 
There are some concepts here that are important to discuss. 

 
The parameter estimation process is a very important part of the 
extraction of a model (poles and residues).  Usually this is 
broken down into two parts – the extraction of the poles in the 
first step and then the estimation of the residues in the second 
step.  The stability diagram is a tool that is used in the 
development of the extraction of the pole from the data.  Let’s 
discuss the estimation of poles and the use of the stability 
diagram.  A few simple examples are included here to drive 
home the point of critical issues in the estimation process. 
 
Let’s assume that we have a set of data as shown in Figure 1.  
As a starting point, a third order fit will be assumed to describe 
the phenomena well.  In general, the fit is reasonable as 
evidenced by the R2 coefficient which is large.  But when the 
variance tolerance is included (dotted lines), there is a fair 
amount of variation possible.  One point is clearly seen as an 
outlier to the fit of the data.  If this outlier point is removed 
from the data set as seen as in Figure 2, then the R2 coefficient 
increases.  So from the set of data shown here, it becomes very 
clear that the data quality is very important to the extraction of a 
valid set of parameters.  It is of paramount importance to have 
good quality data for the estimation process. 
 

 
Figure 1 – Fit of Data with Obvious Outlier 

 

 
Figure 2 – Fit of Data with Outlier Removed 

 
From this simple example, it is clear that good data is important.  
Now consider the data set shown in Figure 3.  This is a very 
simple set of data that appears to have a very simple first order 
characteristic.  Let’s study the estimated parameters as the order 
of the model is increased. 
 

 
Figure 3 – Set of Fairly Linear Data 
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Figure 4a – First Order Fit of Data 

 

 
Figure 4b – Second Order Fit of Data  

 

 
Figure 4c – Third Order Fit of Data  

 

 
Figure 4d – Fourth Order Fit of Data  

The plots in Figure 4 show the progression of the estimation of 
the slope as the order of the model is increased from first order 
to fourth order.  In Figure 4a, the first order fit produces a slope 
of 12.097 with a very good R2 value.  Now as the order of the 
model is increased to second order, the slope is still 12.097 with 
a good R2 value.  So increasing the order of the model to second 
order has not produced a change in the estimation of the slope.  
Of course, the higher order terms are basically making 
adjustments to account for the variance on the measured data. 
 
As the order of the model is increased to third order, the slope is 
11.974 which is very close to the slope previously computed 
from the first order and second order models.  In fact, the slope 
is only 1% different.  So we could argue that the slope is 
basically the same and has not changed significantly from the 
previous estimates.  And as the order model is further increased 
to a fourth order model, the slope is again estimated to be 
11.974 which is unchanged. 
 
So after this process is complete, the general consensus would 
be that the parameter of the slope of the data is approximately 
12.0 and that very little change occurs as the order of the model 
is increased.  Also note that it doesn’t matter which order model 
I use because to within the tolerance of 1%, all orders produce 
essentially the same slope! 
 
This simple example really provides an understanding of 
exactly what goes on behind the scenes in the development of 
the stability diagram.  As the order of the model is increased, 
there will be estimates of poles.  If the pole estimated only 
changes very slightly from one order model to the next, then the 
software will provide a flag (or indicator) to help understand if 
the pole has reached some “stable value” within some specified 
tolerance.  (These tolerances might be set set to 1% on 
frequency and 5% on damping to identify pole stabilization.)  
There are usually some indicators that will be provided 
superimposed on a SUM, MMIF or CMIF plot.  A typical 
stability plot is shown in Figure 5 for reference.  The stability 
diagram helps to identify which poles are “consistent” or stable 
as the order of the model is increased. 
 

 
Figure 5 – Typical Stabilization Diagram.  

 
If you have any more questions on modal analysis, just ask me. 
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The Stability Diagram has poles that are not indicated by the MMIF or CMIF.  Are they really modes? 
There are some concepts here that are important to discuss. 

 
Now this is a problem that can very possibly occur and needs 
some discussion in order to sort out what is happening in this 
situation.  We have discussed this before when the problem 
pertained to not measuring a significant portion of the structure.  
But in this example, we are going to see that even if we measure 
appropriately, there are additional issues that must be addressed. 
 
For the example, I am going to use the same plate structure 
previously used that has two very closely spaced modes in order 
to show some situations that are possible.  We just recently 
discussed all the mode indicator tools so their use is understood.  
This plate will be evaluated with several different references to 
illustrate some points. 
 
For the first case, the plate will be evaluated with more 
references than needed in order to show the modes of interest.  
Three references will be used on the plate as shown in Figure 1. 
 

 
Figure 1 – Plate with Three References Identified 

 
A typical SUM block (upper) and three drive point FRFs 
(lower) are shown in Figure 2 for reference.  Now using these 
three references, the MMIF and CMIF both show that there are 
two closely spaced modes at that first frequency around 100 Hz 
as seen in Figure 3; only the CMIF is shown. 

 
Figure 2 – SUM (upper) and FRFs (lower) for Plate Structure 

 

 
Figure 3 – MMIF and CMIF for Three references 
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The stability diagram very clearly shows that there are two 
modes present in that frequency range as shown in Figure 4. 
 

 
Figure 4 – Stability Diagram with Three References 

 
The mode shapes corresponding to this frequency range are 
bending and torsion as indicated in Figure 5.  These two modes 
occur at almost the same frequency and while not perfectly 
repeated, they do occur so close that they are referred to as 
“pseudo-repeated” roots. 
 

MODE 2 MODE 1 

 
Figure 5 – Bending and Torsion Modes of the Plate 

 
 
Now Figure 6 shows the CMIF with different combinations of 
only two of the three original references.  Notice that the two 
references adjacent to each other in Figure 6a and 6b both show 
two modes in that frequency range but that the two references at 
opposite corners in Figure 6c do not.  (Note that only the CMIF 
is shown for brevity but the MMIF which is not shown confirms 
the same results seen with CMIF.  Also note that the stability 
diagram is essentially the same as Figure 4 using any two of the 
references shown in Figure 6.) 
 
So why does this happen?  Why do the MMIF and CMIF not 
clearly show the modes all the time?  In order to answer this, the 
modes shapes of the structure must be discussed relative to the 
reference location.   
 
Consider the reference in Figure 6a.  Notice that these two 
corners of the plate both have negative shapes values for 
bending while the torsion has a negative and positive value for 
shape.  The same is also true for the references in Figure 6b.  
But when looking at the mode shapes at the reference locations 
in Figure 6c, something different happens.   
 

 
(a) – Reference 3Z and 13Z 

 
(b) – Reference 13Z and 15Z 

 
(c) – Reference 3Z and 15Z 

Figure 6 – CMIF for Different References 
 
In this case, the mode shape for the first mode has the same sign 
and direction - and the mode shape for the second mode also has 
the same sign and direction.  Whether they are plus or minus is 
not important.  What is important is that the points have the 
same phase.  There is no way to distinguish the difference 
between mode 1 and mode 2 from the reference location in 
Figure 6c.  But the references in Figure 6a and 6b can 
distinguish the difference in the mode shape because of the 
phase information at those reference locations. 
 
So it is not enough to have two references on the structure in 
order to identify pseudo-repeated roots.  The references must 
provide an independent view of the mode of the system from 
the reference location in order to distinguish the modes.  But the 
stability diagram can still identify the fact that there are two 
roots at that frequency.  So from this example, it is possible to 
have roots in the stability diagram that may not been seen in the 
MMIF and CMIF. 
 
If you have any more questions on modal analysis, just ask me. 
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Bolted joints are common in structures.  Can the frequency change significantly due to joints? 
Now there are several things to discuss here. 

 
Bolted joints are common in many applications.  This 
connection mechanism is found just about everywhere and may 
be a significant contributor to the frequencies of the system.  
Now if the structure is assembled very carefully and in a 
repeatable fashion, then the structure frequency may have 
relatively small variation in the structure’s frequency.  
However, if the joint is not assembled in a consistent fashion, 
then there may be considerable difference that may cause a 
significant variation in the frequency of the structure.  
Obviously, there will be many variations possible depending on 
the joint configurations used in each particular application. 
 
While there may be analytical models that may be developed to 
study the effects of the joint configuration, these models will 
have many of their own assumptions which may cause 
variation.  For instance, the element type, mesh density, joint 
configuration and actual connection configuration will all 
contribute to the variation that may be seen.  In fact, a detailed 
study of some of these parameters shows that there are many 
issues to be understood. 
 
Rather than discuss all of the analytical modeling issues that 
may need to be addressed, an actual configuration of a portal 
frame with bolted joints will be used to show some of the 
frequency variations that may result due to bolted joint 
configurations.  This portal frame has been used for many 
different studies including effects of bolted joint arrangements 
(and has been used in the Los Alamos Dynamics Summer 
School program for a variety of different studies).  The portal 
frame used for this study is shown in Figure 1.  The structure 
will be tested with a normal well assembled joint and then the 
structure will be assembled with very deliberate joint mis-
orientation to show the change in the frequency of the structure.   
 

 

Notes: 
All dimensions in inches 
Depth into plane = 2 in., except base plate = 6 in. 
All four brackets are identical with thickness of 0.25 in. 
The two sides are identical with thickness 0.375 in. 

Aluminum
Steel (bracket)
Steel (bolt)

12 

24 
0.5 

22 

0.375 0.375 

2.5 

2.5 

0.25 
0.25 

 
 

Figure 1 – Portal Frame Configuration 
 
 
Generally, there is care in the development of any joint in a 
structural system.  But what if the structure assembly is not 
properly performed or if there is some manufacturing variation 
that causes difficulty in assembling the structure.  In addition to 
the normal assembly of the joint, two cases are considered here.  
One case allows for a misalignment in the angle bracket and 
another case considers a shim to force a misalignment.  The 
three different configurations are shown in Figure 2.  A properly 
mated assembly is shown in Figure 2a, a sloppy assembly with 
misalignment is shown in Figure 2b and a shim assembly is 
shown in Figure 2c. 
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(a)                            (b)                            (c) 

Figure 2 – Three Joint Configurations Studied 
 
 
Now each of these configurations were assembled to determine 
the frequencies for the first three modes of the structure for 
comparison.  A typical drive point measurement on the upper 
beam of the portal frame in the vertical direction was made for 
comparison.   Figure 3 shows the original measurement for the 
properly mated assembly (black - top), a sloppy assembly due to 
misalignment (red - middle) and the shim assembly (blue - 
bottom).  Even with the naked eye, there are observed 
differences in the peaks of the frequency response functions for 
the three different configurations.  Generally, the amplitudes are 
very similar but the frequencies are definitely different. 
 

 

 
Figure 3 – Frequency Response Functions for Normal 

Assembled (upper), Misaligned (middle), and Shim (lower) 
 
 
For each of the frequency response measurements shown in 
Figure 3, modal parameters were estimated using a frequency 
domain polynomial approach.  The resulting frequencies and 
damping for each of the configurations are shown in Table 1. 
 
 

Table 1 –Frequencies/Damping for Three Configurations  
 
Normally Mated Assembly 
     Mode Frequency Damping 
     (Hz)    (% Critical) 
         1 71.7 2.65 
         2 106. 1.08 
         3 179. 0.334 
 
Sloppy/Misaligned Assembly 
     Mode Frequency Damping 
     (Hz)    (% Critical) 
         1 75.7 2.15 
         2 108. 1.07 
         3 190. 0.364 
 
Shim Assembly 
     Mode Frequency Damping 
     (Hz)    (% Critical) 
         1 74.4 2.53 
         2 107. 0.843 
         3 186. 0.425 
 
 
So from this data, it is very easy to see that an improperly 
assembled joint can have a change in the frequencies of the 
structure.  This needs to be very carefully evaluated to 
understand the variation that may result from the assembly 
process if care is not exercised in the manufacturing/assembly 
process.   
 
In this quick study, only a few configurations were shown to 
illustrate what could happen with just a few very simple 
alterations to the joint assembly configuration.  The results 
show differences and need to be carefully assessed and 
evaluated.   
 
Bolted joints pose very significant effects that may need to be 
evaluated in much greater detail than that shown here.  But I 
hope that these simple cases illustrate some of the variation that 
may result.  If you have any more questions on modal analysis, 
just ask me. 
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Sometimes the mode shapes appear to be rotated from what is expected.  Are the modes wrong?  What’s up? 
Now this is something that needs to be discussed. 

 
Now this is a topic that comes up often.  So it is going to need 
some discussion.  I have seen people often get confused about 
the mode shapes for a system.  Often times people have a 
preconceived notion as to what the results “should be”.  When 
the mode shapes appear different than that expected, then you 
might think that the modes are wrong. 
 
Most often when modes of a structure are very closely spaced 
the mode shapes that satisfy the system can be linear 
combinations of each other.  Therefore, the shapes might be 
rotated from what you might have expected.  The only real 
requirement is that the modes of the system are orthogonal with 
respect to the system mass and stiffness matrices.  Each of the 
modes of the system are unique from each other. 
 
In order to help describe this, a simple geometry example will 
be used along with a simple beam and plate to describe what 
can be happening here. 
 
A simple x-y coordinate system to describe a rectangular shaped 
area is shown on the left in Figure 1.   Now we selected the 
coordinate system arbitrarily and aligned the x and y to the side 
walls in the lower left hand corner.  That just happens to be 
convenient.  And then all of our dimensions are easy to 
understand. 
 
But what if I have the irregular shaped area shown in the right 
in Figure 1.  Now the selection of the reference coordinate 
system can be selected in several locations and no one location 
appears to be better than another.  With the reference selected at 
the upper most corner, then the description of the original 
reference location in the lower left corner is described 
differently because of the coordinate system selected.   
 

This just means that the description of any point in the area will 
be described differently.  But the point in the area will not 
change. 
 

X

Y

X’ Y’

X

Y

X

Y

X’ Y’X’ Y’

 
 

Figure 1 – Rectangular and Irregular Shaped Area 
 
 

So using this simple geometry example will help set the stage 
for the discussion of a general mode shape that may be 
described in different ways depending on how the coordinate 
system is selected.  Figure 2 and 3 show a description of the 
rigid body modes for a simple planar beam structure. 
 
In the first case shown in Figure 2, the first two rigid body 
modes of the beam consist of a classic bounce mode and a 
rocking mode that occurs about the geometric center.  This is 
exactly what everyone would expect those two modes to be.  
And if this were to occur, not one would question this at all. 
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But for the second case shown in Figure 3, the first two rigid 
body modes have a slightly different appearance.  At first 
glance, most people would say that those rigid body modes 
were not correct.  And that statement would only be made 
because it wasn’t what you were expecting.  You will notice 
that one mode is mainly bounce but has a little bit of rocking 
and that the other mode is mainly rocking but not about the 
geometric center. 
 
While they may not look like what you would expect (or like) to 
see, these modes are perfectly correct.  Because they are 
essentially at the same frequency, any linear combinations of 
these modes form a linearly independent set of vectors that are 
orthogonal with respect to the system mass and stiffness 
matrices. 
 

 
(a) Bounce Rigid Body Mode  

 
(b) Rocking Rigid Body Mode About Center 

Figure 2 – Rigid Body Modes Geometric Center 
 

 
(a) Bounce Rigid Body Mode with Some Rotation 

 
(b) Rocking Mode Offset From Center 

Figure 3 – Rigid Body Modes Not About Geometric Center 
 
 

This can also happen with the flexible modes of the system 
when the frequencies are repeated or pseudo-repeated.  Figure 4 
shows a set of modes that are pseudo-repeated – they occur at 

essentially the same frequency.  These modes are seen as first 
bending and first torsion as expected.  But these same modes are 
also seen in Figure 5 but they do not appear as simple bending 
and simple torsion.  But these modes just have a different 
coordinate system to describe them.  As long as the modes 
represent an orthogonal set of vectors then they are 
mathematically correct.  They just may not be what you would 
expect to see. 
 

    
Figure 4 – Pure Bending and Pure Torsion Modes 

 

    
Figure 5 – Modes with Mixing of Bending and Torsion 

 
 
This issue occurs with structures that have double symmetry and 
when either repeated roots or pseudo repeated roots occur.  
Another time it can happen is when using different numerical 
solution algorithms.  Because the solution will typically iterate 
to a set of solution vectors, there is no reason why the vectors 
should converge towards a particular reference coordinate 
system.  Actually the beam solutions shown in Figure 2 and 3 
were obtained using two different finite element eigensolution 
approaches – one solution just happened to converge to the 
modes the way we would have expected them to occur whereas 
the other solution scheme did not.  The modes in Figure 4 and 5 
were obtained from actual test data on a structure that is known 
to have pseudo-repeated roots. 
 
I hope this clarifies your confusion about modes shapes and 
their possible orientations.  If you have any more questions on 
modal analysis, just ask me. 
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A reference DOF is needed for all modal software systems.  Why is the FFT analyzer reference different? 
This is another area of confusion. 

 
OK – so this is another area of confusion that people often 
stumble upon and it causes grief when trying to perform a 
modal survey and obtain results.  Usually this is often 
encountered when data is collected separately from the modal 
analysis software system using an independent FFT analyzer.  
But it can also happen when collecting data in any modal 
analysis system.   
 
Before we get into specifics, let’s just review a few basic items 
to try to put this problem in perspective.  The problem really 
stems from the fact that the FFT analyzer is not used for just 
modal testing and the generation of mode shapes using a modal 
analysis software system.  The FFT analyzer is a general 
purpose instrument that is used to generate frequency response 
functions for just about anything.  The measurements can be 
general purpose signals for circuit analysis, acoustic 
measurements, transmissibility measurements, etc.   
 
The concept of the analyzer is that measurements are made on 
two or more channels.  The measurement ratio of output to input 
is typically what people are trying to obtain.  That being said, 
the ratio of two signals is typically of interest.   
 
Now let’s say that a measurement is being made where the 
output voltage of a circuit (filter) needs to be obtained relative 
to the voltage applied to the circuit as seen in Figure 1 for 
instance.  (Notice that these measurements are general and not 
necessarily the typical force and acceleration that are often 
obtained for a modal test.)  So I could put the input voltage into 
channel 1 of the FFT analyzer and the output voltage of the 
circuit into channel 2 of the FFT analyzer.  Or I could swap 
those two channels because it really doesn’t matter.   
 
But what does matter is that the frequency response 
measurement desired is that of the output voltage of the circuit 
“relative to” the applied input voltage.  So in terms of the FFT 

analyzer, the output voltage spectrum is measured relative to a 
“reference signal” which is the input voltage. 
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Figure 1 – Typical Input/Output Measurement Setup 
 
For the FFT analyzer, the reference channel will depend on 
which channel was used to measure the input reference voltage 
– whether it be channel 1 or 2 or whatever.  So the frequency 
response function measured might look something like that 
shown in Figure 2 where the output voltage of the filter is 
measured relative to the input signal. 
 

 
Figure 2 – Typical Input/Output FRF Measurement 
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So the reference for the FFT analyzer is related to the 
measurements of output to input.  Now what is meant by 
reference for an experimental modal test?  Generally, the 
reference is the item in the measurement that doesn’t change.  
The typical measurements made for a modal test will depend on 
whether an impact test or shaker test is performed.  The terms of 
the FRF matrix obtained for each are shown in Figure 3. 
 

  

ROVING IMPACT TEST 

SHAKER TEST 

 
Figure 3 – FRF Matrix for Shaker and Impact Excitations 

 
For a shaker test, the force is applied at the same location and 
the response is measured for all the measurement points desired.  
This is consistent with the FFT reference nomenclature.   
 
But for a roving impact test, the hammer moves from one point 
to another but the accelerometer remains at a fixed location – so 
the accelerometer is called the “reference” for modal testing 
purposes but the FRF measured relates the output acceleration 
relative to the input force.  So it is right here that the problem 
arises.  The word “reference” means different things to different 
applications.   
 
So depending on what FFT analyzer is used, there may be a 
procedure or recommended file naming convention that may 
need to be used in order to not “confuse” the modal software in 
regards to this “reference” notation. 
 
Now of course everyone realizes that the measurements in the 
FRF matrix are reciprocal and that this reference notation is just 
an administrative procedure that needs to be addressed when 
data is transferred from an FFT analyzer to your particular 
modal analysis software package.  But it is a frustrating 
administrative procedure that must be addressed in order to be 
able to use the measurements obtained from the FFT analyzer in 
the modal software package. 

Once the proper procedure is identified, then it is a simple 
matter to document it so everyone realizes what needs to be 
done.  I know that over the years I have generated many 
different schematics to remind myself of what procedure I 
needed to follow that particular day for the particular FFT 
analyzer that I was using that day.  A typical (old) schematic is 
shown in Figure 4 where a file naming convention was used to 
clarify which measurement was which. 
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Figure 4 – Filename Convention Schematic 

 
Now depending on the software package that you currently use, 
there are a variety of ways that the data may need to be handled 
in order to properly identify the “modal reference” for the 
measurements.  Now this may get handled by a “swap” or 
“switch” command to obtain the proper “modal reference”.   
 
Or it may be required that the measurements be written out to a 
universal file format with a specific organization of the 
measurements – or the manner in which the measurements are 
imported into the software may handle this issue.  This may be 
through the identification of whether the measurements come 
from a “roving” hammer or “stationary” hammer reference 
location. 
 
But how you need to handle this will depend on your particular 
FFT analyzer and modal software system used.  But I can 
guarantee you that each of the modal software vendors all have 
to face the same issue and will have specific procedures to 
handle this commonly encountered problem.  I guess the 
amazing thing about this is that it is very clear what the problem 
is and it should be a very simple fix for the software to handle 
this problem but all the different software packages require this 
one obvious step to be performed. 
 
I hope that this clears up the confusion on references – whether 
it be on the FFT analyzer or modal software package.  If you 
have any more questions on modal analysis, just ask me. 
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Should more residuals be used to improve a curvefit?  The results look better when many extra terms are used. 
This is an area that needs to be discussed.. 

 
When using frequency domain curvefitting techniques, many 
software packages allow the incorporation of extra terms in the 
polynomial in order to account for out of band effects.  This is 
very useful in order to obtain accurate modal parameters.  
However, the user can specify many additional extra terms in 
order to improve the fit of the data.  While this may “look” 
better, it is questionable where or not the parameters are actually 
better.  So let’s discuss the basic underlying equation and 
concept behind using residuals for modal parameter estimation.  
The basic frequency response equation can be written as 

( )[ ] [ ]
( )

[ ]
( )*

k

*
k

m

1k k

k

ss
A

ss
AsH

−
+

−
=∑

=

 

Now if we only write this equation over a band somewhere in 
the middle of the frequency response function, then there will be 
three different terms – one for the terms below the band of 
interest, the band of interest and one for the terms above the 
bands of interest.  This is written as 
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And we often write this equation with only the modes of interest, 
over the band of interest, and apply extra terms called residuals 
to compensate for out of band effects and is written as 
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A typical frequency response function illustrating this is shown 
in Figure 1. 
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Figure 1 – Illustration of FRF with Band of Interest 

 
In order to describe the residual terms, it is advantageous to look 
at the single degree of freedom displacement frequency response 
function.  Figure 2 shows that frequencies below that of the 
resonant frequency are basically described by a dominant 
stiffness term and that the frequencies above that of the resonant 
frequency are basically described by a dominant mass term.  It is 
this basic fact that allows the frequency response function to be 
written with the band of interest along with a lower residual term 
(LR) and an upper residual term (UR).  Usually 4 extra residual 
terms in a polynomial curvefitter are sufficient in order to 
approximate these terms. 
 
So now let’s use a measurement to illustrate what happens when 
residual terms are overspecified to extract parameters.  A simple 
6 DOF model with a band of four modes bounded by two 
dominant modes will be used. 
 
Now a curvefit for the four modes in the middle of the band is 
performed using the typical residual terms in most polynomial 
curvefitters (4 extra terms) and the fit is seen in Figure 3.  Notice 
that the fit is reasonable but it doesn’t fit the data well over all 
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over all frequencies – at least from a visual perspective.  Because 
the fit only used 4 extra residual terms, the next curvefit 
performed uses 10 extra residual terms and is seen in Figure 4.  
Now this fit appears better overall – from a visual standpoint 
anyway.  And just to illustrate a point, the fit is also done with a 
simple SDOF shown in Figure 5.  
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Figure 2 – Single DOF System with Residual Terms 

 
But in order to really evaluate these fits, the extracted data needs 
to be compared to the actual parameters that were used to 
develop the frequency response functions.  Table 1 lists the 
frequencies, damping and residues for the four modes along with 
the parameters extracted from both curvefit approaches. 
 

 
Figure 3 – Curvefit with 4 Residual Terms 

 
Figure 4 – Curvefit with 10 Residual Terms 

 
Figure 5 – Curvefit with SDOF Polynomial 

 
Once the data in Table 1 is evaluated and assessed, it becomes 
clear that the addition of extra residual terms does not improve 
the parameter estimation overall and actually might degrade the 

results somewhat.  Also note that the SDOF produces the best 
results overall.  This brings up the point that the modal 
parameter estimation process is about extracting reasonable 
parameters to describe the system characteristics – and not 
necessarily about making curves that overlay on top of each 
other.  In all the years of estimating modal parameters, it has 
become very clear that the overspecification of residual terms is 
only trying to compensate for noise or imperfections in the 
frequency response functions obtained.  The overspecification of 
residual terms is not considered to be the reasonable approach 
for extracting modal parameters.  The default residual terms 
specified in most commercially available software packages are 
reasonable for most curvefitting applcations.  If many extra 
residual terms are needed to fit measured frequency response 
functions to “look better”, then it is likely that the measured 
functions are contaminated with noise or imperfections and 
better measurements are likely needed. 
 
Table 1 –Frequencies/Damping/Residues  
Exact Analytical Results 
     Mode Frequency Damping Residue 
     Hz    % Critical Value 
         1 0.173 2.46 311 
         2 0.203 1.95 233 
         3 0.239 1.55 159 
         4 0.265 1.49 595 
4 Modes Extracted With 4 Residual terms 
     Mode Frequency Damping Residue 
     Hz    % Critical Value   
         1 0.173 2.17 349   
         2 0.202 2.22 223 
         3 0.239 1.65 149 
         4 0.265 1.51 596 
4 Modes Extracted With 10 Residual terms 
     Mode Frequency Damping Residue 
     Hz    % Critical Value   
         1 0.173 2.66 348   
         2 0.203 1.91 231   
         3 0.238 1.43 137   
         4 0.265 1.50 584   
4 Modes Extracted With SDOF Approach 
     Mode Frequency Damping Residue 
     Hz    % Critical Value   
         1 0.173 2.30 314   
         2 0.203 1.96 234   
         3 0.239 1.68 159   
         4 0.265 1.50 594   
 
I hope that these simple cases illustrate some important points 
regarding modal parameter estimation.  Overspecifying residual 
terms is not the preferred approach for extracting accurate 
parameters.  If you have any more questions on modal analysis, 
just ask me. 
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My coherence is better in some measurements than others when impact testing.  Am I doing something wrong?   
There are definitely some issues to discuss here. 

 
OK – so this yet another area of measurement quality that needs 
to be discussed.  Impact testing is by far the most common and 
most popular of the approaches for obtaining frequency 
response functions for the description of a structural system.  
The impact test is a very economical approach for frequency 
response testing.  In addition, impact testing is very easy to 
setup and is extremely portable for field testing.  Due to the ease 
with which measurements can be made, impact testing is widely 
used in many industries and applications.   
 
But there are a wide range of issues that need to be recognized 
when performing impact testing.  Some of these relate to double 
impacts, pre-trigger delay, high peak voltages compared to 
overall RMS level of the signal, nonlinear systems, etc.  Some 
of these are commonly cited “areas of concern” when impact 
testing.  These often become the stated reasons why impact test 
results may have coherence values that are not as acceptable as 
may be desired.  But these may not be the only reasons – one 
very important consideration that I would like to discuss in this 
article is the effect of impact location on the resulting frequency 
response function and its coherence.  
 
When performing impact testing, the input impact location can 
have a very significant effect on the resulting frequency 
response function.  And this can be seen in the coherence 
function measured for each set of averaged data.  First, let’s 
take a set of measurements where care is exercised in the impact 
location during the test to show a very good high quality 
measurement.  Then some “less than perfect” impact 
measurements will be made on the same structure to show the 
degradation of the coherence. 
 
The structure is a very simple structure with what are expected 
to be some very good measurements.  A typical impact 
measurement is going to be made for the frequency response 
function at the drive point on the structure.  Sampling 

parameters are selected such that the input force and response 
acceleration are totally observed signals within one sample 
record of data.  This eliminates the need for any window 
functions on the input or output signals measured. 
 
The measured frequency response (lower trace) and coherence 
(upper trace) are shown in Figure 1.  Notice that the frequency 
response function appears to be a very good measurement and 
the coherence is very good for this measurement.  The 
coherence for most of the frequency range is extremely close to 
one.  The coherence has a slight dip in antiresonant regions but 
is not a problem for this measurement.  (Note that drops in the 
coherence in antiresonant regions are expected due to the fact 
that the structure has no response at these frequencies and 
therefore the response of the system is not coherently related to 
the measured input signal.) 
 

 
Figure 1 – FRF & Coherence for a Well Controlled Impact 
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Now in that first measurement, extreme care was exercised to 
assure that each average was the result of an impact at the same 
location in the same direction.  This is a very important concern 
when impact testing. 
 
To illustrate what happens where this care is not exercised, a 
measurement is made where each average is intentionally made 
within a region that is very close to the desired input location 
but there is some slight variation in the actual input location.  
With the same number of averages, the frequency response 
(lower trace) and coherence (upper trace) are shown in Figure 2 
for this measurement where there is some variation for each 
impact location.  While the frequency response function looks 
reasonable, the coherence is seen to have some significant 
degradation across the entire frequency range.  While the 
coherence is acceptable in the immediate region of the peaks of 
the frequency response function, overall the coherence is poor.   
 

Figure 2 – FRF & Coherence for a Poorly Controlled Impact 
 
The coherence is most significantly affected in the antiresonant 
regions of the frequency response function.  This is due to the 
fact that while resonances are global characteristics of a system, 
the antiresonant regions are absolutely not global in character at 
all.  The antiresonant regions are highly dependent on the 
particular input-output measurement location.  Because care 
was not exercised during the impact test to assure than all 
impacts were made at the same location, the antiresonant region 
changes for each input output measurement that makes up the 
total average for the measurement.  Therefore, from one 
measurement location to the next there is no consistency in the 
measurement and therefore the coherence reflects this. 
 
One additional set of averages was made where the impact point 
was kept the same but the angle of the impact excitation was 
allowed to vary during each of the averages.  The frequency 
response (lower trace) and coherence (upper trace) are shown in 
Figure 3 for this measurement.  Similar to the previous case, the 

coherence is also degraded.  There is also a lack of consistency 
in the antiresonant regions for this measurement. 
 

Figure 3 – FRF & Coherence for a Skewed Impact 
 
For both of the cases shown in Figure 2 and 3, the coherence is 
not nearly as good as the measurement shown in Figure 1.  This 
is due to the inconsistency of the impact location – whether it be 
not impacting the same location for each measurement or for 
not maintaining a consistent strike angle for each measurement.  
Both cases clearly show a degradation of the measurement 
coherence.  A very well controlled, precise impact excitation 
needs to be maintained for each average that makes up the 
complete measurement. 
 
These cases are presented here because this is a very common 
problem during impact testing.  This is especially true when the 
test lasts for a long period of time for measuring many 
locations.  Generally, as time goes on it is very easy to become 
bored and not maintain the consistent impact during the entire 
test.  This is also very common when the impact locations are at 
inconvenient locations around, on top or underneath the test 
structure.  When climbing all around the structure (and often in 
very unnatural positions), it is very easy to not maintain a 
consistent impact for all averages making up a measurement. 
 
So as a word of caution when impact testing…  be very sure to 
impact the same point, in the same direction, for each of the 
averages that make up the frequency response function to assure 
that an overall acceptable coherence is obtained for all 
measurements.  
 
I hope that this clears up the concerns about possible coherence 
degradation when impact testing.  While there are many more 
items that could affect coherence, this is one that has an effect.  
If you have any more questions on modal analysis, just ask me.
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My accelerometer is not overloaded but my measurement is terrible.  What could be wrong?   
Some discussion of this is needed here. 

 
OK – there can be many things that might cause this problem.  
The measurements can be contaminated by a variety of sources.  
Many different types of problems may be encountered in 
different situations.  But in this particular case you have a very 
strange problem from the measurement that was provided.  At 
first glance, the structure seems to be one that can be tested with 
little problem.   
 
Let’s start with a different structure and recreate the 
measurement problem that actually existed in your measurement 
system.  For the structure here, a simple plate was instrumented 
with an accelerometer and subjected to impact testing.  Three 
different cases will be shown to show what could have 
happened with the measurement. 
 
Case 1 – Sensitive Accelerometer with Exponential Window 
 
In the first measurement, an impact excitation was used.  A very 
sensitive accelerometer was used and because leakage may be a 
problem, an exponential window was used for this 
measurement.  Figure 1 shows the input excitation and the 
response from the accelerometer.  Also shown in Figure 1 are 
the ADC range settings that resulted from the measurement.  
The measurement looks reasonable and there doesn’t appear to 
be any problem with the time measurement. 
 
However, looking at the frequency response function and the 
coherence in Figure 2, the measurement looks terrible indeed.  
The measurement has no real useful information anywhere in 
the frequency range shown.  Clearly, this measurement is not 
good at all.  
 

 
Figure 1 – Excitation (top) and Response (bottom) 

with Sensitive Accelerometer and Exponential Window 
for Case 1 

 

Figure 2 – FRF (bottom) & Coherence (top) with Sensitive 
Accelerometer and Exponential Window for Case 1 
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Case 2 – Sensitive Accelerometer with No Window 
 
In the second measurement, an impact excitation was used again 
but no window was applied to the response window to see if 
there was any additional information that could be seen.   
 
Figure 3 shows the input excitation and the response from the 
accelerometer.  Also shown in Figure 3 are the ADC range 
settings that resulted from the measurement.  There doesn’t 
appear to be any overload with the time measurement. 
 
Again, looking at the frequency response function and the 
coherence in Figure 4, the measure still looks terrible.   
 

 
Figure 3 – Excitation (top) and Response (bottom) 

with Sensitive Accelerometer and Exponential Window 
for Case 2 

 

Figure 4 – FRF (bottom) & Coherence (top) with Sensitive 
Accelerometer and Exponential Window for Case 2 

 
But looking at the time trace, the response does not appear to be 
what would be expected for a second order exponentially 
decaying system.  What has actually occurred here is the 
accelerometer response was so large that it saturated the 
accelerometer response causing it to respond in a nonlinear 
fashion.  During the first 0.05 seconds of time response, the 
system does not appear to respond in an exponential fashion.  
But the interesting part is that the total accelerometer voltage 
output was not greater than 10 volts and therefore did not 
overload the ADC of the acquisition system! 

Case 3 – Less Sensitive Accelerometer with No Window 
 
In the third measurement, an impact excitation was used again 
but no window was applied and a less sensitive accelerometer 
was used for the measurement.  Now the time response in 
Figure 5 and frequency response in Figure 6 looks like what 
was expected.   
 

 
Figure 5 – Excitation (top) and Response (bottom) 

with Sensitive Accelerometer and Exponential Window 
for Case 3 

 

 
Figure 6 – FRF (bottom) & Coherence (top) with Sensitive 

Accelerometer and Exponential Window for Case 3 
 
The problem in this case was that too sensitive an accelerometer 
was used for the impact test.  While the FFT analyzer ADC did 
not overload, the accelerometer was saturated by the large 
response; this caused a response that was far different from the 
damped exponential response expected.  So it is very important 
to look at all the various pieces of the time and frequency 
measurements made. 
 
I hope that this sheds additional light onto this measurement 
problem.  You not only have to worry about the measurement 
system but also the transducers used to make the measurement.  
If you have any more questions on modal analysis, just ask me.
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Double impacts are undesirable.  What about multiple impacts? 
Ahhh… Now this is something that we have to discuss. 

 
We have discussed double impacts before and have shown that 
while they are undesirable, they may be unavoidable in many 
cases.  In fact, previously we showed that the double impact 
measurement wasn’t necessarily as bad as most people profess.  
Of course, the overall measurement, including the frequency 
response and the coherence, must be checked along with the 
averaged spectrums for the measurement. 
 
Now the question here is really if multiple impacts can be used 
as an excitation technique and if there is any problem using a 
measurement made from multiple impacts. 
 
This is actually a very good question and needs to be thought 
through carefully.  An impact measurement typically is the 
result of a single impact; the response due to that impact is 
generally a damped exponentially decaying response.  
 
Now if we were to consider an arbitrary input force, then that 
signal can be thought of as a series of impulses added together 
spaced delta t seconds apart in order to characterize the input.  
In fact, this is the way that arbitrary signals are handled in any 
vibrations text book – the solution method is called the 
superposition method, or convolution integral, or Duhamel’s 
integral – and is used to compute arbitrary response of any 
system.   
 
In this case, the series of pulses will be applied to the structure.  
But some care needs to be used here.  The impulses should be 
applied in a very incoherent fashion in terms of their timing and 
spacing.  The pulses should also not be applied for the entire 
sample period.  They should be applied for a portion of the 
sample interval, 50% to 75% for instance.  But it is also 
important for the response to be totally observed within the 
sample interval so that no leakage will occur.   
 

In this way, all the requirements of the Fourier transform are 
satisfied.  In fact, the signal will start to approach a broad band 
excitation with characteristics similar to that of a random signal 
like a burst random. 
 
A simple structure is used to illustrate the technique.  Due to the 
responsive nature of the structure, double impact measurements 
are unavoidable but they are not serious enough so as to corrupt 
the measurement overall. 
 
In the first case, a single impact measurement is applied – or 
least the intent is to apply a single impact.  Figure 1 shows the 
time signals for the impact and response.  Figure 2 shows the 
input power spectrum with the frequency response.  Figure 3 
shows the frequency response function along with the 
coherence.  Overall the measurement is good but the effects of 
double impact are seen in the input time excitation and the input 
spectrum noted by a varying input spectrum.  The variation of 
the input spectrum is small enough so as to not distort the 
overall measurement for the system as evidenced by the 
coherence. 
 
In the second case, a series of impact measurements were 
applied to the structure.  Figure 4 shows the time signals for the 
impact and response.  Figure 5 shows the input power spectrum 
with the frequency response.  Figure 6 shows the frequency 
response function along with the coherence.  While multiple 
impacts were applied, the overall measurement is very good.  
The resulting frequency response and coherence are very good. 
 
I hope that this shows that multiple impact excitations can in 
fact be used to excite the structure and measure good overall 
response functions.  If you have any more questions on modal 
analysis, just ask me. 
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Figure 1 – Excitation (top) and Response (bottom) 

with Single Impact Excitation for Case 1 
 

 
Figure 2 – FRF (bottom) & Input Power (top)  

with Single Impact Excitation for Case 1 
 

 
Figure 2 – FRF (bottom) & Coherence (top)  

with Single Impact Excitation for Case 1 

 
Figure 4 – Excitation (top) and Response (bottom) 

with Multiple Impact Excitation for Case 2 
 

 
Figure 5 – FRF (bottom) & Input Power (top)  

with Multiple Impact Excitation for Case 2 
 

 
Figure 6 – FRF (bottom) & Coherence (top)  
with Multiple Impact Excitation for Case 2 
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Can you describe reciprocity?  It just doesn’t make sense to me. 
This is something that often confuses people.   

 
Alright – let’s discuss the reciprocity of measurements when 
doing modal testing.  This is a very important item when doing 
modal tests.  People say the words but sometimes they really 
don’t believe it – mainly because when we take measurements 
there are many reasons why the actual measurement may not 
satisfy the theoretical requirement of reciprocity. 
 
Let’s first simply state what reciprocity is.  Figure 1 shows a 
structure where an input-output measurement is to be made at 
point “i” and point “j”.  Now in one measurement the force is 
applied at point “i” and the response is measured at point “j”.  
And in the second measurement, the force is measured at point 
“j” and the response is measured at point “i”.  From the 
principle of reciprocity, the hij must equal hji  
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Figure 1 – Schematic for Reciprocity Measurement 

 
From the complete set of measurements possible, Figure 2 
shows a frequency response matrix where one row and one 
column are measured.  Several reciprocal measurements are 
highlighted in that matrix for reference. 
 
 

RECIPROCAL
MEASUREMENTS

RECIPROCAL
MEASUREMENTS

 
Figure 2 – FRF Matrix Showing Reciprocal Measurements 

 
Of course, the first time you try to explain reciprocity to 
someone who is not familiar with this concept, it always seems 
to raise an eyebrow.  So let’s try to show where reciprocity 
comes from in the basic equations describing the system.   
(Some theory will have to be presented here to show 
reciprocity) 
 
First let’s realize that we start from an equation of motion 
written in matrix form for a multiple degree of freedom system 
as: 

[ ] { } [ ] { } [ ] { } { }M x C x K x F t&& & ( )+ + =  
 
Now the important point to note here is that these matrices are 
square symmetric (for a structural system).  This immediately 
implies that the “ij” and “ji” terms of the matrix are the same. 
 
Now let’s write the equation of motion in the Laplace domain 
for that physical equation of motion written above.  Assuming 
initial conditions are zero, then this is: 

[ ] [ ] [ ][ ]{ } { }M s C s K X s F s2 + + =( ) ( )  
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Of course we have to realize that each of the terms of this 
matrix is also square symmetric.  From this Laplace equation of 
motion, the system matrix [B(s)] and its inverse, the system 
transfer function [H(s)], is also square symmetric.  This is: 

( )[ ] ( )[ ] ( )[ ]
( )[ ]

( )[ ]
( )[ ]B s H s

Adj B s
B s

A s
B s

−
= = =

1

det det
 

Now with some manipulation, the system transfer function can 
be written in partial fraction form as the summation of all the 
individual modes of the system.  This is: 
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The frequency response function is the system transfer function 
evaluated at s-jω and is given as: 

( )[ ] ( )[ ] [ ]
( )

[ ]
( )H s H j

A
j p

A

j ps j
k

kk

m
k

k
=

=

= =
−

+
−

∑ω
ω

ω ω1

*

*
 

Now it is important to remember that the residue matrix [A(s)] 
is also square symmetric because all the matrices used to 
ultimately form it were square symmetric. 
 
Now a single “ij” measurement can be written as: 
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and expanding the first three mode terms for this gives: 
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But in this form it is not clearly obvious that reciprocity exists.  
So the residue form of the equation needs to be extended. 
Recall that the residue matrix for the kth mode of the system 
can be obtained from singular value decomposition and written 
as: 
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and in this form is simply written as: 
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and can be expanded for the first three mode terms as: 
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Now in this form the reciprocity can be very easily seen.  This is 
because the residue is nothing more than the value of the mode 
shape at the ith degree of freedom times the value of the mode 
shape at the jth degree of freedom (plus a few other terms that 
are constant).  This implies that it doesn’t matter whether we 
measure force at point “i” or point “j” when we measure the 
response at the other point – the product of the mode shape 
values at the input and output location is the same.  So 
reciprocity must happen for this case.  As an example,  a simple 
3x3 FRF matrix is shown in Figure 3 for magnitude plots.  
Clearly, the reciprocity can be seen in the matrix.  Note that the 
real, imaginary and phase are also symmetric but not shown 
here for brevity.  
 

 
Figure 3 – Magnitude FRF Matrix 

 
Of course this is a theoretical presentation and must hold true.  
However, measurements may not be so cooperative all the time.  
This will be discussed at some future point in time. 
 
I hope that this discussion clears up any confusion as to why 
reciprocity must hold true.  While there were some theoretical 
equations presented, they are necessary in order to show that 
reciprocity must hold true.  If you have any more questions on 
modal analysis, just ask me.
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Do we really need an accurate updated model?  What are the effects if it is not perfect? 
I have some very good examples to illustrate this.     

 
Model updating is an important step in the development of an 
accurate system model.  If any of the components of the system 
are not modeled correctly, then the overall system 
characteristics will not be accurate.  Of course someone has to 
define what is acceptable and unacceptable in terms of response 
for the system.  But that is a different item to address.   
 
What I want to talk about here is the effect of a component 
frequency in relation to the system response.  Components are 
typically much easier to model and update than the overall 
system.  In fact, the biggest problems in developing a system 
model are the boundary conditions and the interaction of 
components in a system model.  So the thing that I want to 
address here is the relationship of components with each other 
in a system model.  Of course there are many ways to write all 
of those relationships.  What I want to do here is identify the 
relationship from a very simple representation of the various 
systems.  First the simple single degree of freedom tuned 
absorber will be considered and then the mode complicated 
multiple degree of freedom system will be addressed. 
 
So the first thing that has to be discussed is the simple 
representation of a component in terms of its mass and stiffness, 
or its modal characteristics or its frequency response 
characteristic.   Figure 1 shows a conceptualization of a finite 
element model of a component which is described in terms of its 
mass and stiffness.  But in this form, it is not easy to interpret 
how the various modes affect the component overall.  An 
eigensolution of the component reduces the complicated mass 
and stiffness into more simplistic set of single degree of 
freedom systems which are linearly independent and orthogonal 
with each other.  The lower portion of Figure 1 shows the 
component as a set of single degree of freedom systems as well 
as a set of frequency responses for each of the modes of the 
system.  So the component can be best understood if the modal 
characteristics are understood.   

MAIN STRUCTURE

Physical Space

Modal Space

MAIN STRUCTUREMAIN STRUCTURE

Physical Space

Modal Space

 
Figure 1 – Physical and Modal Representation for a Component 

 
Now what would happen to the component if another spring-
mass system were attached (but for now let’s assume that it is 
not aligned with any frequency of the system)?  Figure 2 adds 
that spring-mass system and the effects are very minimal on the 
original component modes.  But what if the spring-mass system 
is “tuned” to a particular mode? 
 

MAIN STRUCTUREMAIN STRUCTUREMAIN STRUCTURE

 
Figure 2 – Component with Untuned Spring-Mass System 
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I have some very good
 examples to illustrate this.
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Figure 3 shows the effects on the frequency response if the 
spring-mass system is coincident with one of the modes and 
Figure 4 shows the effects if two spring-mass systems are added 
to the component.  These effects are exactly what are expected 
for a tuned mass-spring absorber.  There is a dynamic 
interaction between the added spring-mass system and the 
component modes of the system. 
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Figure 3 – Component with Tuned Spring-Mass System 
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Figure 4 – Component with Two Tuned Spring-Mass Systems 

 
So from these two schematics in Figure 3 and 4, it is very clear 
that if the frequencies of the spring-mass system are specifically 
selected to be coincident with one of the modes of the system, 
there will be a dramatic change in the dynamic characteristics of 
the component.  However, if the frequencies of the spring-mass 
system are not selected correctly (as in Figure 2) then there will 
be no significant dynamic coupling between the added spring-
mass system and the component. 
 
Now that we have that concept in place, let’s consider the 
coupling of two components to form a system model.  But 
instead of considering the two components as mass and stiffness 
matrices, it is much more advantageous to consider them as 
either a collection of modal mass/spring systems in modal space 
or as a set of single degree of freedom response functions.   
 
Figure 5 shows this representation for Component A and 
Component B.  In order for the proper coupling of the two 
components to occur, the modes of each of the components 
must be properly specified.  In Figure 5, the modes of 

Component A are not close to the modes in Component B, and 
therefore, there will not be significant coupling between the two 
components.   
 
 

COMPONENT B

COMPONENT A

COMPONENT BCOMPONENT B

COMPONENT ACOMPONENT A

 
Figure 5 – Physical Coupling of Two Components 

 
But what if the modes of either one of the components are not 
correct and the actual modes are much closer to each other?  
Then there should be a significant amount of dynamic coupling 
between the two components wherever the modes of both are 
aligned.  The coupling between the two components is heavily 
dependent on the relative relationship of the frequencies of the 
two systems.  Therefore, it is imperative that the modes of each 
component be properly identified so that the correct dynamic 
interaction exists in the assembled system model. 
 
I hope that this helps to show why the modes of each 
component must be identified correctly.  The component modes 
must be updated to properly identify the dynamic characteristics 
of the component.  In just considering the mass and stiffness 
matrices, it is not apparent why the modes must be identified 
correctly.  By representing the component in the modal or 
frequency domain, the need for updating the component models 
is much more obvious.  If you have any more questions on 
modal analysis, just ask me. 
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I made a stiffness  modification to a free-free system.  The flexible modes shifted down!  What’s up? 
Now this needs to be discussed.   

 
Alright – that’s a pretty bold statement that will turn almost 
anyone’s head.  I think we need to first describe what actually 
happened in this particular case.  But rather than using the 
specific data originally presented, a simple beam can be used to 
describe what happened in this case.   
 
The way this problem was described was that a free-free system 
was tested and then the system was constrained to fix or 
constrain the corners of the system.  When the actual 
modification was performed to constrain the free-free system, 
the modes obtained were lower than the flexible modes of the 
unconstrained system.   
 
Of course, the first thing that everyone stated was that if you 
increase the stiffness of any system, then the modes must shift 
upwards because 
 

m
k

initial=ω  

 
and if the stiffness is increased then 
 

m
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+

=ω  

 
So it stands to reason that the frequencies must shift upwards – 
and the fact that the frequencies were lower just doesn’t make 
sense. 
 
So let’s start with a simple beam that was analyzed and tested in 
a free-free condition.  The first several free-free modes were 164 
Hz, 452 Hz and 888 Hz.   The unconstrained modes of the planar 
beam are shown in Figure 1 for reference. 
 

 
 

Figure 1 – Flexible Modes of Free-Free Beam 
 
Then the simple beam was tested in a pinned (or constrained) 
condition.  The first several free-free modes were 72 Hz, 288 Hz 
and 647 Hz.   The constrained modes of the planar beam are 
shown in Figure 2 for reference.  Clearly, the modes did not shift 
up as expected. 
 

 
 

Figure 2 – Pinned Modes of Free-Free Beam 
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So exactly what happened here???   
 
This is a very simple problem.  But I have heard this many times 
over many years and inevitably the same problem exists.   
 
Typically, people are concerned about the flexible modes of the 
system because those are the modes that generally cause all the 
noise and vibration problems that we encounter.  But those are 
not the only modes that are needed to describe the entire system. 
 
The basic problem here is that everyone forgot that an 
unconstrained system has flexible modes AND the rigid body 
modes.  Now most times people don’t measure the rigid body 
modes in test and they don’t include them as part of the flexible 
modes measured during a modal test.  And from an analytical 
standpoint, many times the eigensolution is performed but either 
a shifted eigenproblem is solved or only the flexible modes are 
obtained. 
 
While the rigid body modes exist, many times people ignore 
them – mainly because they are not the source of the noise and 
vibration problems that are of concern.  So Figure 3 shows the 
set of modes for the beam to more correctly include the rigid 
body modes as well as the flexible modes.  So now once we 
realize that the first modes are actually at 0 Hz from the 
analytical model or a very low frequency from a test, then the 
intuition that adding stiffness shifts the modes upwards makes 
proper sense.  Table 1 shows the frequencies of the free-free 
beam with rigid body modes along with the pinned modes 
 

 
 

Figure 3 – Flexible Modes of Free-Free Beam 
with Rigid Body Modes 

 

Table 1: Free-Free and Constrained Modes for Beam 
 Mode      Free      Constrained 
 1 0. 72. 
 2 0. 288. 
 3 164. 647. 
 4 452.  
 5 888.  
 
 
So the basic problem is that the rigid body modes can’t be 
ignored; they are a part of the total description for the beam.  
Notice now that all the frequencies in Table 1 do shift upwards 
as the stiffness is increased.  
 
One way to easily prove this to yourself is to make a simple free-
free beam model.  The next model to develop is the beam with 
two very soft springs.  Then make subsequent beam models 
where the spring stiffness is increased until ultimately the spring 
is so stiff that it is an approximation of a pinned end condition.   

 
Along the way, it would be very beneficial to look at the mode 
shapes.  When the springs supporting the beam are very soft, 
then the mode shape for the beam looks very much like a rigid 
body.   
 
But as the stiffness of the support beam increases, the 
frequencies will increase and the mode shapes will start to 
migrate from rigid body modes to modes that have some rigid 
body mode component but also start to develop some more 
flexible attributes.   
 
When the support spring stiffness gets larger and larger, the rigid 
body mode characteristic will diminish as the flexible 
characteristic becomes more pronounced.  Ultimately, the rigid 
body characteristic will disappear and the flexible characteristic 
will completely dominate the mode shape.   
 
This little exercise will then clearly show that the rigid body 
modes are critically needed to describe the modes of the system.   
 
I hope this simple example clears up any misconceptions that 
you may have had.  If you have any more questions on modal 
analysis, just ask me.
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I made a stiffness change to the tip of a cantilever beam but I can only shift the frequency so far.  What’s up?  
Now this needs to be discussed.   

 
OK.  This is another one of those problems that I see many 
people get confused about.  Let’s start with a simple cantilever 
beam and explain some basic properties that are inherent in the 
system.  
 
First, let’s start with a simple finite element model to investigate 
the effects of stiffness at the tip of the cantilever beam.  Figure 1 
shows the cantilever beam along with the cantilever beam with 
a spring at the tip and the cantilever beam with the end pinned.  
A finite element model of the beam will be used to lend some 
insight into what happens when the spring at the tip of the beam 
is varied from low stiffness to high stiffness. 
 
Table 1 shows the first three modes of the cantilever beam and 
then the change in frequency as the stiffness is increased along 
with the final pinned result if the spring was infinitely stiff.  It is 
very important to notice that as the spring stiffness is increased, 
 

 
 

Figure 1 – Cantilever Beam, Cantilever Beam with  
Tip Spring, and Cantilever with Tip Pinned 

the final frequencies converge towards the final result where the 
cantilever is pinned at the tip. 
 
So this implies that the no matter how much stiffness you add at 
the end of the cantilever beam, the frequency can only shift so 
far and then any additional increases in stiffness have very little 
effect at all – it is a point of diminishing returns. 
 
Now let’s further consider the simple cantilever beam and let’s 
look at the tip response.  The frequency response function is 
shown in Figure 2 with a drive point measurement at the tip of 
the beam where the stiffness is to be added to the beam. 
 
So now let’s look at the frequency response function and 
discuss the different parts of this function.  At the natural 
frequencies, there is a peak in the function.  Basically, this is a 
region in frequency where it takes very little force to cause large 
response.  At the resonant frequency it appears that the structure 
has no apparent stiffness.   
 
 
 
Table 1:  Cantilever Beam Frequencies with Various  

Tip Conditions (Free, Spring, Pinned) 
 
 Condition Mode 1 Mode 2 Mode 3 
 Cantilever 58. 363. 1017. 
 K=1E1 68. 365. 1018. 
 K=1E2 123. 382. 1024. 
 K=1E3 224. 546. 1092. 
 K=1E4 251. 787. 1544. 
 K=1E5 254. 820. 1705. 
 K=1E6 254. 823. 1718. 
 Pinned 254. 823. 1720. 
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Now at the antiresonances, this is a region in frequency where it 
takes excessive force and there is very little to essentially no 
response.  At the antiresonant frequency, it appears that the 
structure is infinitely stiff.  That is to say that at the antiresonant 
frequencies, there is no displacement and it appears that the 
cantilever is pinned at that point at that antiresonant frequency. 
 
 

FORCE

RESPONSE

FORCE

RESPONSE

FORCE

RESPONSE

 
 

Figure 2 – Drive Point FRF Measurement  
for the Tip of the Cantilever Beam 

 
Now if there would be a change in stiffness at the tip of the 
cantilever beam, then there would be a shift in the peaks of this 
function.  If stiffness is added to the tip of the beam then the 
peaks will shift upward.  This is shown in Figure 3. 
 
 

 
 

Figure 3 – Shift of Frequencies Due to Spring 
 

But as the stiffness is increased, there will be some limit to the 
shift in the frequency of the system.  Now if we realize that the 
antiresonance is actually the frequency at which the cantilever 
beam tip displacement is zero, then it is obvious that this is the 
frequency where the beam appears to be pinned at the tip.  This 
is shown in Figure 4.  From that schematic it is easy to realize 
that the peaks of the unconstrained cantilever beam can never 
shift past the antiresonances of the cantilever beam because this 
is essentially the cantilever constrained at the tip which is the 
pinned condition. 
 
 

 
 

Figure 4 – Maximum Shift of Frequencies with Constraint 
 
 
 

So from this discussion, it should be clear that the cantilever 
beam frequencies can only shift so far when a spring is 
considered at the tip of the beam.  Further, we can actually 
identify how far those frequencies can shift by looking at the 
antiresonances at the tip of the unconstrained cantilever beam. 
 
I hope that this discussion clears up the mystery as to why the 
frequencies can only shift so far before there is no further 
change in the frequencies.  The best way to prove it to yourself 
is to make a simple finite element model and check out the 
results.  If you have any more questions on modal analysis, just 
ask me.
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 Illustration by Mike Avitabile 
 
If I run a shaker test with the input oblique to the global coordinate system, how do I decompose the force into the specific 
components in each direction?  Wait – we need to discuss this before you take data.  
 

 
Well it turns out that you don’t really need to break the force up 
into components in the global coordinate system.  There is an 
easier way to account for this.  But first let’s discuss a few 
basics before we get to how we are going to help fix the 
problem you described.   
 
The first thing we need to understand is that even if you could 
break the input force up into two separate inputs in the global 
coordinate system, you wouldn’t actually have two separate 
independent inputs; the two inputs are linearly related to the one 
independent input applied to the structure.  So even if you could 
break it up into components there would be no advantage to 
doing that.  But let’s think about how we got ourselves into 
even thinking that we needed to decompose the force into 
separate components. 
 
Let's start this discussion with a simple structure that has mode 
shapes that are very directional in nature as seen in Figure 1.   
 
 

MODE 1 MODE 2 MODE 3

MODE 4 MODE 5 MODE 6  
Figure 1 – Mode Shapes With Very Directional Character 

 
 

Now just what do I mean by directional modes.  That means that 
the response of the structure is primarily in one direction with 
very little or no response in the other directions for a given 
mode of the structure.  Yet another mode of the structure may 
have response in a different direction than the first mode with 
little or no response in the other directions.  We can see this in 
Mode 1 and Mode 3 in Figure 1; notice that the mode shapes are 
basically in the horizontal direction with very little motion in 
the vertical direction.  But if we look at Mode 2, Mode 4, Mode 
5, and Mode 6, we see that the main motion in the shape is in 
the vertical direction with little motion in the horizontal 
direction.  
 
So if we wanted to pick a reference point on the structure for the 
modal test, then it isn’t easy to do if I restrict myself to either 
the horizontal direction (X) or the vertical direction (Y).  So 
maybe I would need to have some reference that is oblique to 
the global coordinate system that I selected for the set of 
measurements.  For the purpose of this discussion, let’s assume 
that I am only interested in the first four modes of the system.  
First let’s write the equations assuming that I will have a 
reference in one modal test for the x-direction modes and then a 
reference in a second modal test for the y-direction modes.  
(Eventually, we will write the equations for an oblique reference 
to show how to select a reference that is suitable for all the 
modes in one modal test.) 
 
The most important thing to discuss now is the importance of 
the drive point measurement and how it relates to the equations 
describing the residues and mode shapes.  Let's recall the 
equation for the frequency response function 
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We need to remember that the residues are directly related to the 
mode shapes (and the q scaling factor) for a particular measured 
degree of freedom as 

a q u uijk k ik jk=  

or for the whole set of measurements in matrix form as 
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So if we picked a particular reference such as 7x and measured 
at 24 points in the x and y directions, then the set of data would 
be written for a particular mode as 
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and then we would see that the drive point measurement at 7x 
would be the measurement needed to scale the residues to get 
scaled mode shapes using 

x7x7x7x7 uuqa =  

But we have to remember that from the reference in the x-
direction (7x), only Mode 1 and Mode 3 can be easily measued 
because these modes are in the x-diection whereas Mode 2 and 
Mode 4 are modes in the y-direction and cannot be easily 
measured if the reference is in the x-direction. 
 
In order to measure Mode 2 and Mode 4, a reference in the y-
direction is necessary.  Of course, a second test is needed to 
accomplish this.  If a reference is selected at point 20Y for 
instance, then the equation would be written relative to that 
reference and the drive point at 20Y would be used to obtain a 
scaled mode shape as discussed above and is     
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But this requires that a modal test be run twice with two 
different references.  Another approach would be to select an 
additional point on the structure at some oblique angle at an 
arbitrary point 99s for instance where a drive point 
measurement of force and acceleration is made.  The input to 
the structure is shown for illustration in Figure 2.  This 
reference can be any point on the structure at any oblique angle 
as long as that location is suitable to excite all the modes of 
interest. 
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Figure 2 – Modal Test with Oblique Input Excitation 

 
 
With this set of measurements, the set of equations relative to 
reference at point 99s and the drive point measurement would 
be 
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   and   s99s99s99s99 uuqa =  

So once the mode shapes are scaled using the drive point 
measurement, then there really is no need to include the 
reference point in the description of the mode shapes.  This 
happens to be a very convenient way to obtain scaled mode 
shapes without ever needing to include the oblique drive point 
measurement in the actual geometry description of the mode 
shapes.  But of course it is critical to remember that the oblique 
reference location must be a good location where all of the 
modes can be observed from that one reference location for this 
to work. 
 
I hope this explanation helps you to understand that you can 
pick any angle for the reference - just as long as its not the node 
of a mode.  And you can use this oblique reference location as a 
drive point for scaling the modes of the system.  If you have any 
other questions about modal analysis, just ask me.
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When the transfer function is evaluated along the frequency axis, the damping is zero.   
Does this mean there is no damping in the system.  Let’s clarify this confusing point. 
 

 
Well I find that this becomes a confusing point for many people 
so let’s try to talk about it and explain what is actually 
happening with this.  So I will discuss a few items along the 
way here as part of the discussion. 
 
First, let’s write the system transfer function in partial fraction 
form  
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and realize that the roots or poles of this function for an 
underdamped system can be written as 
 

( ) d
2

n
2

nn2,1 js ω±σ−=ω−ζω±ζω−=  
 
Because the function is complex, the roots will be a function of 
two variables, σ and ω , which are the real and imaginary parts 
of the root.  The numerator is called the residue of the system 
transfer function (and is so named because it comes from the 
Residue Theorum used to evaluate the function). 
 
Now when we plot this function, the plot is going to map a 
surface because the function is defined by two independent 
variables, namely σ and ω .  So if we hold σ constant and vary 
ω and then incrementally change σ and recompute the range 
of ω   there will be a matrix of complex numbers that are 
generated.  Because the numbers are complex, we can make a 
plot of the real and imaginary parts separately but we could also 
plot the magnitude and phase for the function.  In any event, 
this surface can be plotted in any one of these forms to describe 
the system transfer function. 
   

This is shown in Figure 1 (from Vibrant Technology webpage).  
We can discuss each of the pieces of the system transfer 
function but I really want to concentrate on the magnitude of 
this function for the discussion here.  (But we need to always 
remember that this is a complex valued function that has real 
and imaginary, or magnitude and phase, to describe the total 
function.) 
 
So when we say that we evaluate the function at σ =0, we aren’t 
really saying that the damping is zero but rather that the 
function is evaluated along the jω axis.   
 

Source: Vibrant TechnologySource: Vibrant Technology  
Figure 1 – System Transfer Function 
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Now if we write this equation evaluated this way then we can 
write the frequency response function as 

)pj(
a

)pj(
a)s(h)j(h *

1

*
1

1

1
js −ω

+
−ω

==ω ω=  

 
And if we were to look at the magnitude of the system transfer 
function evaluated along the jω axis, and project the face of that 
cut along that axis we would see the plot shown in Figure 2 that 
is projected from that slice.  This what we measure in the FFT 
analyzer - the frequency response function.  And we can see 
that there is only one independent variable ω used to describe 
that function.  We would also notice that we only have a line 
now rather than the surface described for the system transfer 
function. 

 

 
Figure 2 – System Transfer Function (Magnitude) with 

Frequency Resonse Function 
 

So now we have a handle on where this frequency response 
function comes from.  Now we want to describe the splane and 
the system transfer function surface.  Well, the surface looks 
like a tent with two poles so I want to use this as an analogy 
with a wedding with a seating arrangement under the tent.  We 
know that there are two sides to the seating arrangement – the 
bride and groom (the pole and conjugate of the pole).  Now you 
could be seated on either side depending on which side of the 
wedding party you are with.   
 
Let’s say that you are with the bride’s side of the wedding and 
you are seated in the first row-second seat.  Now when you sit 
down and look up you will notice that the tent is a certain height 
above your head (the magnitude at that particular value of σ and 
ω).  You will also notice that there is a mirror image seat on the 
groom’s side (conjugate) at the first row-second seat; and the 
height above that seat is the same in terms of its magnitude.   
 
But let’s say that someone else was seated at the second row-
third seat on the bride’s side.  Now at that point, the height of 
the tent is much higher than the first case.  And of course, there 
is also a mirror image seat on the groom’s side which has the 
same height.   
 
So each of these seats has a particulat tent height above the seat 
location.  That height maps the surface of the tent.  But you 
notice that there is one seat on both sides that corresponds to 

where the pole is located; these are analgous to the roots which 
are complex conjugate pairs.  Notice that no one can sit there 
and no one can really tell what the magnitude of the tent is at 
that location because it is undefined; the magnitude of the 
system transfer function can not be determined at the pole (root) 
of the tent because it is undefined at that location.   
 
So this tent analogy is a pretty good description of the system 
transfer function.  The value of the function is determined by 
the location in the seating plan.  The amplitude changes 
depending on location.  The system transfer function is 
undefined at the poles or roots of the system; that is where the 
poles of the tent are located and no one can sit at that location to 
determine the amplitude or height of the tent.  (We use the 
Residue Theorum to evaluate this.)  
 
And of course we all know that the first row is the most 
important row.  In fact, that is where Mr Fourier resides  
– right along the jω axis – which is the slice we took out of the 
system transfer function. 
 

GROOM                    BRIDEGROOM                    BRIDE
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4      3       2       1         1       2      3       4

POLE

CONJUGATE

 
Figure 3 – The S-Plane Representation 

 
 
So I hope these simple examples shed a little more light on the 
system transfer function and the frequency response function 
and how they are related to each other.  One last note regarding 
a recent wedding where the best man was asked to introduce the 
bridal party.  He did just fine up until he introduced (for the first 
time) the groom and bride as John and Angela – it was also the 
last time because the bride’s name wasn’t Angela!  But that’s 
another story. 
 
If you have any other questions about modal analysis, just ask 
me.
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Curvefitting still seems like black magic to me.  Can you explain transfer function, FRF and parameters to me?   
Sure – no problem. 
 

 
Well, curvefitting might look like black magic at first but I want 
to make a few simple analogies to help you understand that it is 
really fairly straight-forward and with the example I will show 
is very simple indeed. 
 
The last time we discussed some related information regarding 
the system transfer function and the frequency response 
function (FRF).  We wrote the system transfer function in 
partial fraction form for a single degree of freedom system as  
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and we also wrote the frequency response equation as 
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Now if we look at these two equations we notice in the first case 
the independent variable is “s” and in the second equation it is 
“ω” and that the “h” depends on these values.  But I also notice 
that there are two constants, or parameters that are “a” the 
residue and “p” the pole.  So these are the parameters that 
define “h” given some value “ω”; we call these modal 
parameters.   
 
Now if we look at the system transfer function or a piece of the 
system transfer function called the frequency response function, 
we need to realize that the surface of the system transfer 
function as well as the curve of the frequency response function 
are defined by only two parameters for the single degree of 
freedom system, namely the pole “p” and residue “a”.  So 
looking at Figure 1, we need to realize that only two parameters 
define that surface and line – pretty amazing. 
 

Source: Vibrant TechnologySource: Vibrant Technology
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Figure 1 – System Transfer Function and FRF 

 
Now let’s take a step back to something a little simpler and 
more commonly understood.  Let’s look at a very simple 
straight line fit of of some measured data.  We are going to 
perform a least squares error minimization for the data 
presented in Figure 2.  Now we know we can fit any line to the 
data but for this set of data it seems that a first order fit makes 
the most sense.  Of course the model we are going to use is  

bmxy +=  
and there are two parameters that define the line, namely the 
slope and y intercept.   
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So for instance, in Figure 2 the resulting least squares fit of the 
data resulted in two parameters with a slope of 12.097 and a y-
intercept of -0.019.  Also realize that this data was obtained 
from a set of measured data that had some variance and that the 
least squares regression analysis identified the best parameters 
to represent this data with these two parameters of slope and y-
intercept. 
 

 
Figure 2 Example of Simple Straight Line Fit 

 
So if we were to apply this same logic to a single degree of 
freedom frequency response function then I would fit a first 
order model of the form of a frequency response function as 
written above to the data presented in Figure 3.  And if you 
looked at this schematic it would be very easy to see that there 
is a set of data and curvefit from which two parameters are 
obtatained, namely the pole and residue.   
 
It is really the same as the straight line fit except that the data is 
complex and the line is a little more complicated.  But in 
principle, it is the same methodology.  We measure data at 
discrete data points as complex data and then fit a line of the 
frequency response function to the data to find the parameters 
that best describe the data in a least squares fashion.  
 
Now of course the data in Figure 3 is for a single degree of 
freedom system.  This same approach can be extended to a 
higher order function as shown in Figure 4.  So in this way we 
can fit multiple modes (or essentially a higher order polynomial) 
to the data described by the discrete complex data measured 
from the frequency response function.  And all the same 
arguments relating to the estimation of modal parameters can be 
made again here with the data in Figure 4.   
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Figure 3 – Conceptual SDOF Curvefit 
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Figure 4 – Conceptual MDOF Curvefit 

 
 
So if you accept the procedure that you always perform for the 
simple straight line fit, then you have to agree that the same 
procedure is applied for the modal parameter estimation process  
(but of course the data is complex and the line is slightly more 
complicated).  Essentially in both cases, parameters are 
extracted, in a least squares fashion, that describe the function. 
 
So there really isn’t any black magic at all to the curvefitting 
process.  It is really the same process that we all perform with 
simpler straight line regression analyses.  Modal parameter 
estimation is just an extention of simpler curvefitting of data.  If 
you have any other questions about modal analysis, just ask me.
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Is there any effect in impact testing when hitting harder or softer with the different tips?  This needs some discussion. 
 

 
Well there can definitely be some significant effects depending 
on which tips you are using and how hard you are hitting the 
structure.  Actually with imact testing, you really need to have 
the hammer do the work.  This is not like driving nails in a 
wood framing operation.  What I mean by this is that the 
hammer is held in your hand and your wrist is used like a pin 
joint as you swing the hammer.  I have seen some people 
perform impact tests and they are swinging the hammer 
excessively which is not really the way to do this.  (And I have 
seen some hammer tips that look like they have been through a 
nuclear detonantion they are so damaged.)    
 
From what I have seen, there are many different hammer tips 
that are often supplied with the hammer kits commercially 
available.  In particular, I want to concentrate on a few tips that 
I have seen that have significantly different force spectrums 
during various impacts with increasing levels of force applied to 
a structure.  These tips need to be used with caution.  The air 
capsule and the plastic cap on top of the hard plastic tip will be 
compared to the hard plastic tip to show some overlooked 
effects of these tips when used with different force levels.  
 
In all cases, I will impact a very large, massive, steel block and I 
will keep the applied force level to a softer level, a medium 
level and a harder level of force applied to the block.  In the first 
case, the air capsule will be evaluated, then the plastic cap on 
top of the hard plastic tips followed by the hard plastic tip.  The 
results of these impacts (time pulse and input spectrum) are 
shown in the attached figure.   
 
Air Capsule – This tip shows a dramatic change in the time 
pulse and resulting force spectrum depending on force level 
applied.  Notice that the frequency spectrum excited with an 
attenuation of 20 dB changes significantly (and the hardest hit 

excites a much wider range overall).  So that if you are 
performing an impact test and every hit for an average has a 
different level of force, the spectrum excited by that impact is 
significantly different each time.  This could have a significant 
effect in the coherence in the higher frequency ranges. 
 
Plastic Cap on Top of Hard Plastic Tip – This tip can also 
exhibit the same type of behavior in many cases.  For this 
particular test, the plastic cover was slightly longer than the 
hard plastic tip so that there was effectively a small air pocket 
included.  Again depending on the level of excitation applied 
there may be a significantly different input force 
spectrum/frequency range excited. 
 
Hard Plastic Tip – Notice that this tip shows relatively little 
variation in the spectrum force characteristics over the 
frequency spectrum excited.  There is same small variation but 
relative to the previous two tips, it is relatively small.  So the 
frequency range excited with this tip will be relatively constant 
even with relatively different impact levels applied. 
 
This effect is very important when testing structures where the 
frequency range to be excited is critical.  For the first two tips, 
the frequency range excited is very dependent on the level of 
excitation used for the test.  Care must be exercised to assure 
that a fairly consistent force strike is applied with every impact, 
for every average, for every measurement.  This is not so easy 
to do all the time.  So use care when using some of those special 
impact tips as part of your impact hammer kit. 
 
I hope this explanation helps you to understand that you need to 
be very careful when performing impact tests.  If you have any 
other questions about modal analysis, just ask me. 
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Can the shaker stinger have any effect on the FRF measurements?  Let’s take a look at this. 
 

 
When performing shaker tests, there should be concern when 
connecting the shaker to the structure under test.  Many times I 
have found that there are misconceptions in regards to this type 
of shsker testing when used for the development of frequency 
response functions for a modal test.  Often times people are 
familiar with base excitation shaker testing when used for 
qualification of equipment due to some simulation of actual 
loads or for conducting qualification testing in accordance with 
some specification.  Modal testing is a little different than these 
types of qualifications tests. 
 
Rather than directly conneting the test structure to the shaker 
armature, there is a long slender rod, referred to as a quill or 
stinger, that is placed between the shaker and the test structure.  
The intent of this stinger is to provide axial excitation along the 
length of the rod to the structure while providing very little 
lateral stiffness to the structure under test.  Figure 1 shows a 
typical shaker test set up configuration for illustration. 
 
Now I could spend a lot of time to discuss all of the different 
situations that could possibly exist but there is not enough room 
here to discuss all the possible scenarios.  At best, I can 
probably illustrate some typical testing situations that must be 
considered and show some possible frequency response 
function measurement distortions that could result from an 
inappropriate test set up with the shaker and the stinger.  
 
Case A: Let’s consider the effect of bending of the shaker 
stinger during a test.  Remember the intent is to provide only 
input excitation along the length of the stinger and to minimize 
any bending of the stinger.  Two thngs can happen when the  

stinger bends.  The stinger can impart a rotational load which is 
not measured by the force gage; remember that the force gage 
expects to see only uniform compressive or tensile loads and 
any moment will distort the force gage reading as well as impart 
a moment into the structure that is not measured as a rotational 
load.  Also, the stinger can introduce rotational stiffness into the 
structure under test which is not really part of the structure’s 
dynamic characteristics.  Figure 2 shows a measurement where 
the shaker excitation was applied at different elevations to a 
simple structure.  Clearly, there is an effect on the measured 
frequency response functions.  This should be checked at the 
preliminary stages of test set up.  
 
Case B: Now consider the situation where the alignment of the 
shaker relative to the test structure is not set up properly.  This 
is similar to the case above in that the is a bending contribution 
that the shaker imposes on the measurement set up.  Figure 3 
shows measurement distortions resulting from shaker 
misalignment.  Care should be exercised in aligning the shaker. 
 
Case C: Another consideration is related to the length of the 
shaker quill in the test set up.  Again the measurements in 
Figure 4 show that there can be differences in the measurements 
obtained.  Preliminary testing should be performed to 
understand if this effect is important or not. 
 
Case D: Finally, the type of stinger used can also have an effect 
on the measurements obtained.  Figure 5 shows the effects 
resulting from different stingers used and should be checked at 
the start of testing. 
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Figure 1 – Typical Modal Test Shaker Set Up Arrangement 
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Figure 2 – Stinger Bending Effects 
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Figure 3 – Stinger Misalignment Effects 
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Figure 4 Stinger Length Effects 
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Figure 5 Stinger Type Effects 

 
 
So in all the cases shown there is clearly an effect of the stinger 
on the results obtained.  Whether it be the position of the 
shaker/stinger on the structure, the skewed alignment to the 
structure, the length of the stinger or type of the stinger, there 
can be an effect of the bending of the stinger that affects the 
measured frequency response function.   
 
Care must be exercised in the test set up.  Unfortuantely there is 
not one clear cut answer as to which stinger configuration will 
provide the optimal results.  This is heavily dependent on the 
structure under test and the frequency range of interest.  
However, it is very important to try different scenarios to assure 
yourself that the best possible frequency response measurements 
are being acquired for the configuration eventually utilized for 
the test. 
 
I hope this explanation helps you to understand that you need to 
be very careful when performing shaker tests and that the 
stinger can have a significant effect on the overall results..  If 
you have any other questions about modal analysis, just ask me.
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I am still confused about how the SDOF in modal space is related to the physical response?   
This needs some discussion. 
 

 
Well - this is a concept that is actually very simple but does 
need some explaining to make sure it is comprehended properly.  
First let’s start with a few summary equations that we have 
presented several times before in previous articles.  Of course 
the equation of motion in matrix form is the starting point 
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This coupled set of matrix equations is then uncoupled by 
performing an eigensolution.  The modal transformation 
equation is obtained from the set of modal vectors obtained 
from the eigensolution.  The physical coordinate {x} is related 
to the modal coordinate {p} using the collection of modal 
vectors [U] 
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Substituting this into the physical equation and premultiplying 
by the transpose of the projection operator [U] will result in a 
very simple diagonal set of equations in modal space where 
every equation (modal oscillator) is orthogonal and linearly 
independent (uncoupled) from each other and is given as 
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There are several important things that need to be noted about 
this equation.  And the mode shape matrix [U] has a lot to do 
with this.   
 

First is that every equation contains only one variable to 
describe each equation – the modal displacement for each 
particular mode.  Second is that every equation is uncoupled 
from every other equation.  Third is that each equation is 
basically a very simple single degree of freedom (SDOF) 
system. Fourth is that the right hand side of the equation 
identifies the force that is appropriated to the modal oscillator 
from the physical force applied to the physical system.  Figure 1 
shows a schematic of a multiple degree of freedom system 
(MDOF) where coupling between degrees of freedom exist in 
the physical model and the resulting equivalent set of SDOF 
systems representing the modal system in modal space. 
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Fig 1 – MDOF System Schematic and SDOF Equivalent 

 
So if we write out any one equation from the modal space form 
and use an “i" subscript the “ith” equation we would get 
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So with this simple SDOF equation we can calculate the 
response due to any force applied on the equivalent system.  Of 
course we can see that the right hand side of the equation 
identifies how much of the force is appropriated from physical 
space to the equivalent modal system through the mode shape.  
With this force, then the response for the equivalent system can 
be identified.  This response can be simply found from any 
Vibrations textbook – usually this is one of the first four 
chapters in most textbooks for free response, forced sinusoidal 
response or arbitrary input response.  For sake of the discussion 
here, let’s assume that an impact is applied at one point on the 
physical system. 
 
Now that physical force will be appropriated to each of the 
modal DOF in modal space.  So if we look at the first mode 
then we could calculate the impulse response for the SDOF 
describing mode 1.  This SDOF response is then distributed 
over all the physical DOF using the modal transformation 
equation; this essentially scales the SDOF response to all the 
physical DOF using each value of the first mode shape at each 
individual DOF.  This is schematically shown in Figure 2 (for 
just a few DOF to illustrate the concept).  Now this only 
provides the part of the response of the physical system that is 
related to the contribution that mode 1 makes over all the 
physical DOF in the system; the portion of the response related 
to mode 1 is shown in blue.   
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Fig 2 – Schematic Response for Mode 1 Contribution 
 
This is not the entire physical response of the system – it is just 
the portion of the response that is related to mode 1.  Now the 
contribution of the other modes needs to also be included.  If we 
look at the second mode then we could calculate the impulse 
response for the SDOF describing mode 2 with the force that is 
appropriated to mode 2.  Again this SDOF response for mode 2 
needs to be distributed over all the physical DOF using the 
second mode shape; this only represents the portion of the 
response that is related to the second mode of the system.  This 
is shown in Figure 3 (for just a few DOF to illustrate the 
concept); the portion of the response related to mode 2 is shown 
in red.   

m

k

2

2 c
2

f2p2

MODE 2

)2(n

3

2

1

u

u
u
u

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

×
M

1

2 3

m

k

2

2 c
2

f2p2

MODE 2

m

k

2

2 c
2

f2p2

MODE 2

)2(n

3

2

1

u

u
u
u

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

×
M

1

2 3

 
Fig 3 – Schematic Response for Mode 2 Contribution 
 
This process is then continued for all the modes that contribute 
to the total response of the physical system.  Of course you have 
to include all the modes that have a contribution to the overall 
response otherwise some of the solution is lost.  The entire 
process is best seen in Figure 4.  This figure shows the physical 
equation and the modal transformation equation which allows 
the coupled physical system to be written as a set of equivalent 
SDOF systems in modal space with the equivalent modal force 
applied on all the modal oscillators in modal space.  It is 
important to realize that each mode is linearly independent from 
every other mode but that the total response is made up of the 
linear combination of the response of all the modes that 
participate in the response of the system. 
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Fig 4 – Overview of the Modal Space Representation 
 
 
I hope this explanation helps you to understand how the SDOF 
response is characterized in physical space from the modal 
space response.  If you have any other questions about modal 
analysis, just ask me.
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MODAL SPACE - IN OUR OWN LITTLE WORLD by Pete Avitabile 

I hear mode
participation all 

the time

 

What does that
really  mean ?

 

OK - lets
discuss this

 
 Illustration by Mike Avitabile 
 
I hear mode participation all the time.  What does that really mean?  OK – let’s discuss this. 
 

 
So people always talk about mode participation but maybe it 
really isn’t clear what they are referring to when they talk about 
it.  So let’s discuss what this concept is all about and put it in 
terms that might make more sense. 
 
But to put it in context, let’s write the equation of motion 
 

[ ]{ } [ ]{ } [ ]{ } { })t(FxKxCxM =++ &&&  
 
and recognize that the modal transformation is obtained from 
the eigen solution  with the physical coordinate {x} is related to 
the modal coordinate {p} using the collection of modal vectors 
[U] 
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and then further remember that the modal space equation is  
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So the most important thing to understand is that the right hand 
side of this equation has the transpose of the mode shape times 
the physical force vector that is applied on the structure.  So if 
you looked at a particular mode of interest, then you would see 
that the mode shape values have a strong effect on how much of 
that physical force is allocated or approporiated to the particular 
mode of interest. 
 
What I mean by that is that if the value of the mode shape is 
large associated with the particular degree of freedom where the 

force is applied then that particular mode will get a lot of force 
appropriated to it in modal space.  On the other hand if the value 
of the mode shape is small then there will be much less force 
appropriated to that particular mode in modal space.  And if the 
value of the mode shape is zero then there will be no force 
allocated to that mode in modal space – this means that this 
particular mode has no contribution to the response because it 
sees no force applied on that particular modal oscillator in 
modal space.   
 
So the modal transformation equation identifies how to 
uncouple all the coupled set of physical equations and it also 
identifies how much of the physical force is allocated for each 
of the modal oscillators in modal space.  The larger the force 
that is applied to a particular modal oscillator, the large the 
response (in general) and the more that particular mode 
contributes or participates in the total response of the system. 
 
So let’s try a simple 3 dof system and see what force gets 
appropriated to modal space.  Here is the model, with the 
equation of motion in physical space 
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Fig 1 – Simple 3DOF Model and Equation of Motion 

 



 

_________________________________________________________________________________________________________________________ 
I hear mode participation all the time.  What does that really mean?    Copyright 2010 
SEM Experimental Techniques – Aug 2010 Page   2 Pete Avitabile 

Now an eigensolution for this will result in frequencies and 
mode shapes as 
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Now let’s consider two different forcing functions. 
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For the first case with just f1 applied, the force on mode 1 would 
be 0.5*f1, the force on mode 2 would be 0.707*f1 and the force 
on mode 3 would be -0.5*f1.  Now there are different 
allocations of the physical force on each of the modal oscillators 
which is controlled by the value of the mode shape associated 
with the degree of freedom where the force is applied.   
 
Now for the second case with just f2 applied, the forces on each 
of the modal oscillators would be 0.707*f2, 0.0*f2 and 0.707*f2 
for each of the three modes.  Notice that mode 2 sees no force 
because the value of the mode shape is zero for the degree of 
freedom associated with the force for mode 2.  So we can say 
that mode 2 does not participate in the response of the system.  
Its modal participation is zero.  But that doesn’t mean that mode 
2 doesn’t exist – it just means that it doesn’t contribute to the 
response of the system for this particular loading scenario (but it 
certainly has contribution for the first loading condition).   
 
So let me try to give a little example to explain this a little 
better.  Let’s say that you are a cook in a restaurant.  And 
imagine that you have a lot of different recipes that you might 
make.  You also have a lot of ingredients and spices that could 
be used in all the different recipes that you make.  Here is my 
question.  Do you use all of your spices in all of your recipes 
with equal amounts of all the spices.  No.  You use varying 
amounts of spices in each recipe.  And in some recipes there are 
many spices that are never even used.  What I am trying to say 
is that you don’t use all of your spices all the time.  Only certain 
spices “participate” in each recipe and to varying amounts. 
 
Now if I am cooking some French dish then there are certain 
spices that will be more predominant then if I was making a 
Japanese dish.  But my spice cabinet still has all the spices I 
could possibly need for all the different types of dishes that I 
may cook.  But that doesn’t mean that I use every spice I have 
just because they are in the cabinet.  And one particular spice 
isn’t in every recipe (except if you are cooking Italian, then 
garlic goes in everything!)  But I think you get the idea now. 
 

BASIL AND GARLIC MINESTRONE    
3 ounces pancetta, finely chopped, 3 cloves garlic, 1 cup olive 
oil, pinch of oregano, 1/2 cup Italian tomatoes, 1 tsp chicken 
bouillon, 1  tablespoon salt, pinch of pepper, 10 ounces penna 
pasta, 3 tablespoons fresh basil, 1 cup Parmesan cheese 

 
Another good example would be that of an orchestra.  There are 
many instruments that are available in the orchestra.  Every 
possible score won’t use all the possible instruments all the 
time.  In fact as the particular score proceeds there will be 
varying contributions from each of the instruments.  Sometimes 
the horns will be dominant and sometimes the strings will be the 
strongest instrument.  And as the score progresses, each of the 
instruments will participate to varying degrees depending on the 
particular musical arrangement.  And sometimes some of the 
scores will not need any contribution from certain instruments 
(like the guy in the back with the triangle).  But the orchestra 
always consists of all the members of the orchestra – but all of 
the instruments have varying participation for each of the 
different scores that the orchestra plays. 
 

    
 
 
Well the same is true of the response of any structural system.  
The total response of the system is made up from linear 
combinations of a subset of the total number of modes that 
possibly exist in the system.  Not all modes contribute to the 
response for every forcing condition that might exist.  Only 
certain modes may contribute substantially and some others may 
contribute a little bit and yet some others may not have any 
contribution whatsoever.  This amount of contribution of all the 
modes changes depending on what loading condition is 
considered.  So certain modes have different modal 
participations depending on what loading scenario is 
considered. 
 
But the important thing to understand is that the mode shape 
plays an important part in determining the amount of force that 
is appropriated to the modal oscillator in modal space along 
with the distribution of force on the physical system.  So 
understanding the modes shapes also helps to identify the force 
applied to all the modes of the system. 
 
I hope this explanation helps you to understand modal 
participation a little better.  If you have any other questions 
about modal analysis, just ask me.

http://upload.wikimedia.org/wikipedia/commons/5/51/Orquesta_Filarmonica_de_Jalisco.jpg�
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 Illustration by Mike Avitabile 
 
Hey – I ran a test and got some extra modes I didn’t expect.  Does the overall test set up have any effect? 
This really needs some discussion 
 
The test set up can have a significant effect on the overall test 
results in some circumstances.  You must be very careful with 
this.  From what you explained to me, it seems that in this case 
the test conditions related to the test set up changed during the 
course of the test and had an effect on the modes that were 
extracted.   
 
I guess the first thing to do is to recreate some of the data that 
led you to believe that there may have been some problems with 
the test that was conducted.  When you first showed me the 
original stability diagram, you indicated that you didn’t expect 
that there would be several frequencies with very close and 
almost repeated roots.  The stability diagram in Figure 1 had 
what appeared to be very close frequencies. 
 

 
Figure 1 – Stability Diagram over 130 Hz Band 

and over 30 to 90 Hz Band 

It is very clear that there are multiple roots at each of the 
frequencies. But this was not expected for this particular 
component.  As we discussed the data you mentioned that there 
were multiple reference accelerometers but that the data from 
each reference was collected at different times and was not 
collected all at the same time.   
 
This fact alone starts to lead me to believe that maybe there was 
a change in the overall test set up between the first test and the 
second test.  Taking a closer look at that stability diagram 
especially in the range of 30 to 90 Hz in Figure 1 shows that 
there are indeed multiple poles at 36.96 Hz and 37.96 Hz with 
3Δf  spacing and multiple poles at  83.08 Hz and 83.8 Hz with 
2Δf  spacing.  But the question is – are they really separate 
modes or is it a problem with the test set up? 
 
In order to sort this out, we probably need to look at the data in 
a little more detail and try to sort out what may be happening 
with this data.  Well the first thing to do is to look at the data 
from each of the references separately.  When we do this what 
we see is that each of the individual references sees only one 
pole at each of the frequencies and that each of the references 
predicts that frequency at different values for each of the 
separate references.  This seems to indicate that there is some 
type of a shift in all the modes of the system from the time the 
first test was conducted and when the second test was 
conducted.  This is clearly seen in Figure 2 for the 30-90 Hz 
band. 
 
In order to further confirm this, the rigid body mode frequencies 
were also evaluated.  Now here is where there are some more 
obvious differences.  When evaluating the two references 
separately, clearly there is a significant shift or change in the 
rigid body modes of the system as seen in Figure 3. 
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Fig 2 – Stability Diagram for Each Reference Separately 
 

 
Fig 3 – Stability Diagram for Rigid Body Frequency Range 

for Each Reference Separately 

So the change in the rigid body modes from the two different 
tests shows a dramatic change in the frequencies.  From one 
reference set of data the rigid body modes observed were 4.3, 
6.1and 8.1Hz and from the other reference they were 5.7, 7.9 
and 10.4 Hz which is a significant shift in these frequencies 
from one test to another. 
 
After some detective work on the test set up, the cause of the 
problem was likely due to the fact the air pressure in the 
structure support system was not maintained at the same 
pressure for both tests and caused the support stiffness to 
change significantly between the two tests.  This is further 
highlighted when the sets of data are overlaid and compared 
between the two references as shown in Figure 4.  Note that the 
blue FRFs are related to one reference set of data collected on 
one day and the red FRFs are related to the other reference 
collected on a different day.  This highlights the obvious 
inconsistency in the two data sets that were collected on 
different days resulting in obvious differences. 
 

 
Fig 4 – Comparison of the FRFs from Two References 

 
So now it is very clear that there are differences from the test set 
up which resulted in not only the rigid body modes shifting but 
also the flexible modes were significantly affected by the slight 
change in the test set up conditions.   
 
Of course we could argue about which are the “real” set of 
frequencies for the structure but we really don’t know which are 
correct because the test set up does have an effect on the 
frequencies observed.  What is more important to realize is that 
it is imperative to make sure that all the data is collected in a 
consistent fashion.  This would have been best accomplished by 
collecting all of the data at the same time using the multiple 
reference impact test technique.  This would have prevented the 
inconsistency that resulted from conducting two separate tests 
on two separate days in what ultimately appears to be in two 
essentially different configurations. 
 
I hope this explanation helps you to understand the need to 
collect data in a consistent manner.  If you have any other 
questions about modal analysis, just ask me.
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 Illustration by Mike Avitabile 
 
Will the support mechanism have any effect on FRFs?  Does bungie cord vs. fishing line make any difference?   
It really depends - Let’s discuss this. 
 

 
Well, we have discussed the effects of the test set up before.   
But maybe we need to shed a little more light on this.   
 
For your specific problem, there was some concern as to 
whether or not the damping may be affected by the way the 
structure is supported – for instance, whether we use an elastic 
cord or maybe fishing wire as suggested.  In order to see what 
kind of an effect this may have, let’s  test a simple structure and 
see what effects may result from several different mechanisms 
to support the structure for modal testing. 
 
For this test, we used a simple plate that was basically hung 
horizontally from the four corners of the plate using long 
flexible elastics (rubber bands) and nylon cord (fishing wire) in 
one set of tests.  But then in a second set of tests, the plate was 
hung vertically and only supported from two corners in a 
pendulum type fashion.  In all cases, the plate response was 
measured with an accelerometer that was fixed on the plate for 
all testing and an impact excitation was used to provide the 
input to measure the frequency response function. 
 
As far as signal processing parameters are concerned, care was 
taken to assure that the time sample was long enough so that the 
response signal was essentially zero by the end of the time 
sample; this then ensured that the FFT was not affected by 
leakage and no weighting function (windows) were applied to 
the measurement. 
 
The plate along with several different support configurations are 
shown in Figure 1.  The impact hammer and accelerometer are 
also shown for reference.  Rather than discuss the results for 
each of the individual tests performed, the results will be 
discussed for all four tests conducted. 
 

 
Figure 1- Plate with elastic cord and fishing wire 

(as well as some bubble wrap pieces for other testing) 
 
Figure 2 shows an overlay of the measured frequency response 
functions as well as the results of the frequency and damping 
obtained from the rational fraction polynomial curvefit (using 
the MEscope software).  Only the first five modes were 
considered 
 
At first glance, it is very obvious that there is some difference 
between the four different frequency response functions 
obtained from the four different tests performed.   
 
In the case of the plate testing performed with the plate hung in 
a vertical orientation (in a pendulous configuration), there 
seems to be little difference in the measured frequency response 
functions; the blue frequency response function is with the 
elastic rubber bands and the green frequency response function 
is with the fishing line.   
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The frequency values are very similar for these two tests and the 
damping values are also similar but do show some differences.  
For this configuration, the results are not exactly the same but 
reasonably close to the same values (at least for the purposes of 
what is being presented here). 
 
Now when the plate is supported horizontally, a different 
situation exists.  For the elastic rubber band supports (red), the 
frequencies are very similar but the damping values are 
somewhat different with the values appearing to be higher than 
those for the vertically hung plate.   
 

 
And then when looking at the fishing line with the plate hung 
horizontally (black), there is a very clear increase in the natural 
frequency for all the modes investigated.  The damping values 
are also higher than any other configuration investigated. 
 
So from these very simple, quick tests that were run, there is 
definitely a difference in the resulting frequency response 
functions and extracted parameters depending on how the test is 
set up. 
 
I hope this explanation helps you to understand that the test set 
up can have a dramtic effect on some of the critical parameters 
of interest typically obtained from a modal test.  If you have any 
other questions about modal analysis, just ask me. 
 
 

 
 
 

 
Figure 2 – Comparison of  FRFs for two different test set ups with two different support mechanisms along with frequency and 

damping extracted from the measured frequency response functions 
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Does the structure need to come to rest between impact measurements?  Doesn’t the damping window take care of that?   
This is important - Let’s discuss this. 
 
So now let’s talk a little bit about what kind of problems can 
result from the measurement you described.  The measurement 
you made was on a very lightly damped structure and in order to 
prevent leakage most likely an exponential window is needed.  
From what you described, the measurement is likely to look like 
what is shown in Figure 1. 
 

ACTUAL IMPACT RESPONSE

RESPONSE SAMPLE 
CAPTURED

WINDOWED SAMPLE 
CAPTURED

 
Figure 1 – Impact Response for One Sample 
 

Now the upper trace shows the time response for a much longer 
sample than what you used for acquisition.  The middle trace is 
what was actually captured from the FFT for the T seconds of 
data collected.  And the lower trace is the time response with the 
window applied to the output response.  So up until this point 
everything looks reasonably fine.  
 
From what you described, the averaging was performed by 
impacting the structure and measuring the response for a series 
of many averages.  A sample of these averages is shown in 
Figure 2.  As far as you were concerned, the window was 
applied and the response was measured and averaging was 
performed to obtain the data described. 
 
 

USER PERCEPTION 
SAMPLE CAPTURED

 
Figure 2 – User Perception of Impact Averaged Response 
 
 
However, the frequency response function (FRF) that resulted  
(shown in Figure 3) did not look very good overall and the 
coherence was not very good either.  In addition, this drive 
point FRF lacks the typical measurement characteristics that is 
expected with strong resonant and anti-resonant frequencies. 
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Figure 3 – FRF and Coherence from Initial Measurements 
 
 
So what could possibly have gone wrong here.  To understand 
what happened, we need to go back to the formulation of the 
system transfer function.  When we write the equation of 
motion and perform the Laplace Transform we get 
 

 
  
and  we get fairly comfortable writing the system transfer 
function as 
 
 
 
but in order to do that we have to realize that the extra terms on 
the right hand side of the equation have been eliminated.  It 
turns out that these are the initial conditions for the 
transformation.   
 
So ignoring those terms assumes that the initial conditions are 
zero.  But the problem is that the way that the original 
measurement was acquired, the structure’s response in between 
each individual impact was assumed to be zero.  While a 
damping window was applied to the data and it looks like the 
response has been decayed to zero, that is only with respect to 
the software used to acquire the data. 
 
Actually what most likely happened is that the measurements 
were taken in close succession and the actual response of the 
structure never actually died out before the next sample was 
taken.  This is schematically shown in Figure 4.  So what 
happens is the response of the second average is contaminated 
by the remaining response of the first impact.  And the third 
average is contaminated by the remaining response of the first 
and second average.  And this continues for all the averages you 
took.  So basically the measured response of each average (after 
the first average) is not the result of the impact excitation for 
that particular average and it is the response due to other than 
the measured force for that particular average.  So that is why 
the coherence is so poor. 

SAMPLE CAPTURED WITH 
RINGING OF FIRST SAMPLE

SAMPLE 
CAPTURED

SAMPLE CAPTURED WITH 
RINGING OF FIRST AND 

SECOND SAMPLE

 
Figure 4 Impact Response from Structure Standpoint 
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To confirm that this is the case, another measurement was made 
where sufficient time was given to allow the structure to return 
to a steady state (no response) condition.  The resulting FRF 
and coherence is shown in Figure 5 and it is very clear that this 
measurement is far superior to the one shown in Figure 3. 
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Figure 5 – Good FRF and Coherence from Proper Technique 
 
 
I hope this explanation helps you to understand that the 
formation of the FRF is subject to some of the assumptions 
made in the formulation of the system transfer function, namely, 
that the initial conditions are assumed to be zero.  Once these 
restrictions are observed, then proper measurements can be 
acquired.   If you have any other questions about modal 
analysis, just ask me. 
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Why can’t I run a modal test with one big shaker and just “crank up the signal”?   
That isn’t a good idea - Let’s discuss this. 
 
OK – so we need to talk about a few things here.  Many times 
people who get involved in modal testing sometimes come from 
the “vibration qualification world” and have a completely 
different mentality compared to the “modal world”.   
 
In vibration qualification testing, a large shaker is used and a 
test article is normally hard mounted to the top surface of the 
armature and then some base excitation is applied and usually 
monitored by controlling some prescribed acceleration.  The 
device under test (DUT) is normally subjected to some 
operating environment, generic spectrum or some excessive 
environment to determine if the equipment is suitable for the 
intended service.  A typical test schematic is shown in Figure 1 
showing the shaker system and a test article mounted to a 
fixture and expander head which is all attached to the shaker 
armature. 
 
 

SHAKER MOUNTING TABLE

SHAKER BASE
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EXPANDER HEAD
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Figure 1 – Typical Shaker Qualification Test Set Up 
 

This is a completely different test than what we try to do with 
modal testing.  In modal testing, the shaker is attached to the 
structure with a long rod commonly called a stinger or quill.  
The force imparted to the structure is measured with a force 
gage or an impedance head mounted on the structure side of the 
shaker exciter set up.  This is shown in Figure 2. 
 

FORCE TRANSDUCER

RESPONSE TRANSDUCER

STINGER

SHAKER

STRUCTURE UNDER TEST

 
 

Figure 2 – Typical Modal Test Set Up 
 
 
In modal testing, the intent is to use lower levels of excitation 
and identify system characteristics – the test is not intended to 
provide operating level input excitations.  In fact, if higher 
levels are used then sometimes nonlinear characteristics of the 
structure are excited and the overall measurement becomes 
distorted and not particularly useful for modal parameter 
estimation. 
 
Now of course it also depends on what kind of structure you are 
testing.  If it is a very simple component of a larger system and 
the component itself is fairly linear then there is no problem 
using a single shaker with an appropriate force level specified. 
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But when the structure becomes more complicated with many 
components assembled together to form a system, then the 
ability to provide a force excitation to measure all the locations 
on the structure to identify the mode shapes can become more 
difficult.  This can then be compounded when the various 
components are attached with mounting devices to isolate all the 
components from each other.  The problem becomes that it is 
very hard to provide an adequate excitation from one shaker 
location and be able to make adequate FRF measurements at all 
the response points to be measured.  Then it becomes necessary 
to “crank up the signal” to be able to get measurable vibration at 
all the response locations.  When this is done, then it is very 
likely that nonlinearities will be excited and then the overall 
measurement will be degraded. 
 
I have been involved in many tests where this is the case.  Just 
recently, a test on a large propulsion system had an isolation 
system that was intended to isolated all the components for 
vibration transmission considerations.  The actual data can’t be 
shown but a laboratory structure with several components 
attached through an isolation system was used to illustrate the 
problem with using just one shaker to excite the system. 
 
The laboratory structure is shown in Figure 3 with three plate 
components attached with isolators to a larger frame structure. 
 

 
Figure 3 – Laboratory Structure with Isolated Components 

 
A single shaker was attached on the main frame and FRF 
measurements were made.  In addition, a three shaker MIMO 
test was also conducted to compare the measurements obtained.  
Figure 4 shows a typical drive point measurement (on the main 
frame in this case).  The FRF in red is related to the SISO test.  
Also shown in the figure is the same FRF (black) obtained from 
the three shaker MIMO test that was conducted with much 
lower overall excitation applied to the structure.  
 
In looking at the FRF, it is very clear that the SISO FRF 
obtained is not the same quality as the MIMO FRF obtained 
using lower overall shaker excitation levels; this is especially 
true when looking at the coherence.  A cross measurement that 

is even poorer quality is shown in Figure 5 and again the FRF 
and coherence is seen to be much worse from the SISO test. 
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Figure 4 – SISO vs MIMO FRF Drive Point Measurement 
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Figure 5 – SISO vs MIMO FRF Cross Measurement 

 
 
Now this is a very short discussion but in the next article this 
will be expanded to further illustrate that using one shaker with 
higher level of excitation is not preferred to the multiple shaker 
excitation approach with lower excitation levels. 
 
I hope this explanation helps you to understand that using one 
shaker with the “signal cranked up” will not provide a good 
measurement overall.  If you have any other questions about 
modal analysis, just ask me. 
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Is there really a difference running a modal test with MIMO as opposed to SISO? 
You bet there is - Let’s discuss this. 

 
Well I hear this question a lot.  I guess mainly it is due to the 

fact that additional hardware and software needs to be purchased 

to do MIMO testing.  And so it needs to be justified that MIMO 

is really much better than SISO.   

 

So last time we discussed the fact that using a single shaker and 

“cranking up the signal” could likely excite nonlinearities in the 

structure and that the overall FRF would likely be affected by 

this.  So from that data, it is very obvious that the single shaker 

test may not provide the best set of FRFs for modal parameter 

estimation. 

 

Another approach that I often see people try is to use one shaker 

but then move the shaker to all the different locations for the 

desired number of references.  On the surface this may seem to 

be a useable solution but there are limitations to this approach.  

The first problem is as we already discussed – the level of force 

with one shaker will need to be much higher in order to get 

adequate response at all the measurement locations in the 

structure. 

 

Now a single shaker may work for structures that are not very 

complicated with many components and substructures that are 

attached in a manner to minimize the flow of energy through the 

subsystems.  The situation is much different when the 

components are isolated from each other.  In these situations it is 

very hard to get adequate response throughout the structure with 

just one excitation source.  In these cases, multiple references 

are needed. 

 

So let’s discuss the difficulty with the data collected from a 

single shaker that is moved to the different reference locations to 

collect the multiple referenced FRF data.  Unfortunately, many 

of the tests and data sets that I have seen are not available for 

public release.  So instead, a simpler structure that contains all 

of the features typically seen in complicated structures with 

components and subsystems that are mounted to minimize the 

flow of energy in the structure (isolated) was assembled in the 

lab. 

 

The laboratory structure is shown in Figure 1.  This structure 

was assembled with 3 components mounted to a frame.  Each of 

the components was mounted with a very soft mount, an 

intermediate mount and a very hard mount.  Now the main frame 

and the attachments do have some of the typical “pesky” rattles 

and noise that plague the collection of FRF data; no attempt was 

made to minimize any of these noise sources and in fact they are 

welcome to illustrate a typical structure measurement. 
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Figure 1 – Laboratory Structure with Isolated Components 

 

The structure was tested in many different configurations and 

only a few of them are presented here to show the problem with 

the FRFs collected with single shaker set up and with a multiple 
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shaker set up.The three shaker reference locations are shown in 

Figure 1. 

 

Now separate tests were run with each of the individual shakers 

used to collect FRF data from the structure as well as a multiple 

reference MIMO set of data.  However, in order to make the 

best possible measurements, the individual SISO shaker tests 

needed more force excitation level to make suitable 

measurements; the MIMO configuration needed lower force 

levels in order to make accepatable FRF measurements. 

 

In order to compare all the measurements, several FRFs were 

compared.  In all FRFs the reference was made to the shaker 

mounted on the frame; the other references could be used and 

yielded essentially the same results as those presented next.  In 

Figures 2, 3 and 4, the FRF in red was obtained from the SISO 

test and the FRF in black was obtained from the MIMO test.  

Two measurements are shown from the frame to the attached 

components and one of the measurements was a drive point on 

the frame itself. 
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Figure 2 – FRF Component (1) to Frame (F) Reference  
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Figure 3 – FRF Component (2) to Frame (F) Reference  
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Figure 4 – FRF Frame (F) to Frame (F) Reference  

 

 

So at first glance, the data in Figures 2, 3 and 4 don’t look 

terribly different and I know that many people might actually say 

that data is just fine.  But if you start poking around and looking 

more closely at some of the reciprocal FRFs, then it becomes 

very clear that the peaks of the FRFs from the SISO tests don’t 

line up with each of the different SISO tests that were 

conducted.  This then causes a discrepancy or inconsistency 

between the different data sets.  A few of these are shown in 

Figure 5.   

 

 

607.85 696.46Hz

-9.05

15.99

d
B

( m
/s

2
)/

N

0.71

0.96

A
m

p
lit

u
d
e

370.00 415.08Hz

-2.53

8.52
d
B

( m
/s

2
)/

N

0.84

0.98

A
m

p
lit

u
d
e

338.90 429.07Hz

-33.04

-8.96

d
B

( m
/s

2
)/

N

0.52

0.79

A
m

p
lit

u
d
e

 
 

Figure 5 – Close Up of Several FRFs Showing Inconsistency  

 

 

The bottom line of all of this is that the reciprocity between the 

different data sets is not satisfied!  This will have a significant 

effect when modal parameters are extracted (and will be 

discussed in the next article). 

 

I hope this explanation helps you to understand that using one 

shaker at different locations does not necessarily provide the 

best data.  MIMO tests are needed in order to provide more 

consistently related FRF data from multiple references.  If you 

have any other questions about modal analysis, just ask me.
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So if I use multiple reference vs single reference FRFs, is there really a difference in the modal parameters? 
Let’s look at some data and discuss this. 
 
Well from a purely theoretical standpoint, you are able to 
extract modal parameters from any reference location as long as 
it is not at the node of a mode.  But of course, the theory is 
perfect and we need to consider the practicality of the 
measurements we can make on any real structure. 
 
In the last two articles, several aspects of the measurements 
were discussed.  Overall, the FRF measurements are always 
much better overall when the data is collected simultaneously in 
a MIMO test.  If a single shaker is used two issues arise that 
tend to provide FRFs that are not of the best quality for modal 
parameter estimation.   
 
In one case, a single shaker needs to have a higher excitation 
level in order to make adequate measurements but this 
invariably cause nonlinearities to be excited and generally tends 
to increase the variance and the FRF measurements are not as 
good as one would like. 
 
The second issue noted was that when multiple referenced data 
was formed from single reference tests, generally the FRFs are 
likely to not be related in a consistent fashion and the FRF 
peaks may show some slight variation in frequency.  While the 
structure may be time invariant, the test set up can have an 
effect on the measured FRFs when the tests are obtained from 
separate tests.  And then another variability can result in the fact 
that all the data is collected at different times and there may be 
slight environment changes that could compound this problem. 
 
In order to have some continuity with the two previous articles, 
the test data for this discussion will be the same data previously 
used.  Of course we noted that there were some shifting of the 
frequencies for some of the modes and that the reciprocity was 
not satisfied for all the SISO data that was collected and used to 
form the multiple reference data set. 
 

The laboratory structure is schematically shown in Figure 1.  
Three reference sets of data were collected using SISO 
methodology in three separate tests; data was also collected for 
all three references simultaneously using a MIMO 
methodology. 
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Figure 1 – Laboratory Structure with Isolated Components 

 
 
So the previous articles discussed some of the measurement 
issues.  Here what I want to do is to process some of this data to 
show some of the difficulties in identifying modal parameters.  
In all cases the stability diagram will be used to show how some 
of the variance on the data will present challenges for 
identification of the system poles. 
 
So the first thing to try is to take all three separate SISO test 
FRFs and form one set of multiple reference data for 
processing.  (And please note that I am not calling this MIMO 
data because it was actually all collected separately.)  The first 
step in the modal parameter estimation process is to identify the 
system poles.  This is usually done using the stability diagram 
with an overlay of one of the mode indicator function; for the 
plots here, the CMIF is used in all cases. 
 
Figure 2 shows the stability diagram for this case.  While this 
diagram may be acceptable to many, there is definitely some 
variation in the system poles and there is not a good strong 
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stable pole identified for every one of the system poles.  (As we 
reprocess this data, the improvement in the stability diagram 
will be seen.)   
 

SIMO Tests Combined – Overall Stabilization Plot

 
Figure 2 – Stability Diagram for Combined SISO FRFs 

 
But before we look at the MIMO data set, let’s look at the 
individual SISO data sets alone.  Figure 3 shows the three 
separate SISO test data sets processed individually before being 
combined into one multiple referenced data set.  The thing that 
is very obvious is that the stability diagram for each of the 
separate test cases produces very consistent stable system poles.  
There is no question what the system pole is when the data 
looks this good. 
 

Reference 1

Reference 2

Reference 3

 
Figure 3 - Stability Diagram for Three Separate SISO Tests 

 
So why are the individual data sets (Figure 3) so obvious as to 
what the system poles are and is not as clear cut (Figure 2) 
when all the data sets are combined?  Well remember that each 
of the individual SISO data sets were collected consistently for 
each of the individual SISO tests.  Even in light of some of the 
noise and nonlinearities that were discussed in the previous two 
articles, the identification of the system pole is not difficult at 

all.  But when all the individual SISO data sets are combined, 
there is no guarantee that the data will be consistently related 
between the three different SISO tests that were performed.  
And in fact, the shifting of the peak of the FRF measurements 
was pointed out in the previous article.  This shifting was noted 
in several measurements such as the reciprocal FRFs.  So the 
main culprit here is the fact that the data was collected in three 
separate tests and the data was not necessarily guaranteed to be 
consistently related.  This is why the stability diagram becomes 
a little more difficult to interpret and the system pole 
identification is not as straight-forward when this happens. 
 
To confirm this, the MIMO data set (where all the data is 
collected simultaneously and in a consistent fashion) is used to 
generate a stability diagram.  This is shown in Figure 4.  This 
stability diagram is much better than the one shown in Figure 2.  
Of course there are some frequencies that are still not perfect – 
but this is much better than the previous scenario where the data 
was collected separately and the consistency of the data could 
not be guaranteed.   
 

MIMO Test – Overall Stabilization Plot

 
Figure 4 – Stability Diagram for MIMO FRFs 

 
 
So the real problem here lies with the data.  The FRFs must be 
collected in a consistent manner.  The SISO test can not provide 
data with this consistency but the MIMO test generally does due 
to the nature by which data is collected. 
 
I hope this helps to explain why collecting data in a consistent 
fashion is very important for any multiple reference test.  
Collecting data from separate single input reference tests may 
not provide the best data for modal parameter estimation.  
MIMO tests are needed in order to provide more consistently 
related FRF data from multiple references.  If you have any 
other questions about modal analysis, just ask me.
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Someone told me that you can’t accept a FRF when the input spectrum has more than a 20 dB rolloff 
Let’s discuss this and consider difficulties. 
 
Well this is a very touchy topic with many people.  I remember 
back when some people claimed that there could be no more 
than 1 dB rolloff on the input spectrum.  Well this was a very 
harsh criterion and in fact this actually excited many modes well 
outside the band of interest and could potentially saturate the 
accelerometers thereby making a poor measurement. 
 
Now let’s understand why we even try to make rules to live by 
in modal testing.  Many times there may be some tests where we 
may want to provide some guidance as to typical ways to 
conduct the test.  This is intended to protect us from making 
measurements that may not be particularly useful in some 
testing scenarios. 
 
But the problem is that some of these “suggested rules” get 
interpreted as if they are cast in stone as if they were the Ten 
Commandments.  And maybe at the time the “suggested rules” 
were made might have been back 20 or more years ago when 
instrumentation was not as good as it is today and back when 12 
bit acquisition systems were very commonplace.  But maybe 
those rules are not as critically needed today with much better 
instrumentation and 24 bit acquisition systems commonly used. 
 
So while I think “suggested practices” are clearly needed, I also 
think that we need to realize that they are suggested and we 
need to understand how to interpret if the measurement is useful 
or not. 
 
So to illustrate this, a simple plate structure was tested with an 
impact excitation technique.  Two tests were performed.  One 
test with a harder tip with an input spectrum with a 10 dB 
rolloff over the frequency range of interest.  The second test 
was with a softer tip with 30 to 35 dB rolloff  - approximately 
10 dB rollover over the first third of the spectrum, 
approximately 25 dB rolloff over the next third of the spectrum 
with the remaining  rolloff  over the last third of the spectrum.  

The hard tip and soft tip input force spectrum are shown in 
Figure 1. 
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Figure 1 – Comparison of Hard Tip and Soft Tip Force Spectrum 

 
The drive point FRF for the modal test with the harder hammer 
tip is shown in Figure 2 and the drive point FRF for the test 
with the softer tip is shown in Figure 3.  Now clearly, the FRF 
with the harder tip is overall a much better measurement as 
evidenced by the coherence.  One thing to notice in the FRF 
with the softer tip is that the measurement at the higher 
frequency shows some variance on the FRF overall and there is 
a slight degradation of the coherence at the higher frequencies. 
 
Now we have to ask ourselves exactly why are we taking the 
measurements and performing the modal test.  Sometimes tests 
are performed to obtain very high quality measurements for 
very specific applications.  But sometimes measurements are 
made to get a general understanding of the generic characteristic 
shapes for the structure and maybe do not need to have the same 
high quality as some other tests that we may need to perform.   
 
Think of it like buying lumber for a home building project. We 
don’t always need knot free wood for the entire project.  
Sometimes wood of a lower quality is more than adequate for 
the project undertaken.   
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Now I would always like to take high quality measurements all 
the time but sometimes the cost involved in doing that makes 
the test prohibitively expensive.  So let’s see just how good or 
bad these measurements are.  Modal parameters were estimated 
from both sets of measurements.  The generic mode shapes are 
shown in Figure 4 for reference.  A MAC was also computed 
for the two sets of mode shapes and is shown in Table 1.   
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Figure 2 – FRF and Coherence for Hard Tip 
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Figure 3 – FRF and Coherence for Soft Tip 

Now the mode shapes are seen to be essentially the same from 
both tests.  So the FRF measurements seem to be adequate for 
the simple assessment of mode shapes for the structure. 
 
Now I am not advocating that this type of input force spectrum 
rolloff is acceptable but sometimes there is still useful 
information that can be obtained from data.  So while we have 
“suggested rules” that doesn’t necessarily mean that the data is 
not useful.  But we do need to be careful as to how we collect 
the data and interpret the results. 
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Figure 4 – Mode Shapes for Structure 

 
 

Table 1 – MAC for Two Modal Tests Performed 
Frequency 179.3 Hz 413.5 Hz 495.1 Hz 853.7 Hz 970.6 Hz 1345.2 Hz

179.3 Hz 100 0.006 0.152 0.048 32.868 0.006

413.5 Hz 0.006 100 0.015 0.123 0.002 9.974

495.1 Hz 0.152 0.015 100 0.001 0.165 0.075

853.6 Hz 0.048 0.124 0.001 100 0 0.179

970.6 Hz 32.873 0.002 0.165 0 100 0

1345.2 Hz 0.006 9.975 0.075 0.179 0 100
 

 
 
I hope this helps to explain that sometimes we have “suggested 
rules” but that sometimes we can still use information beyond 
the typical acceptable range of useful data.  If you have any 
other questions about modal analysis, just ask me.
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Sometimes when I have a double impact, I switch hammer tips to eliminate it.  Is that OK? 
Let’s take some measurements to see what impact this has. 
 
So we have talked about double impacts before but this is a 
different scenario.  On the surface it sounds like this might be a 
way to mitigate the double impact but there may be some 
ramifications as a result of that.  So let’s take some 
measurements on the same structure we discussed in the last 
article to see what impact this has (no pun intended).   
 
Last time we were discussing the rolloff of the hammer and we 
showed that the rolloff itself didn’t significantly degrade the 
resulting mode shapes of the system but that there was some 
degradation of the FRFs measured as expected. 
 
Now during that original test we were fairly careful to avoid any 
double impacts (with the harder tip).  But we have gone back to 
that same structure and acquired some additional measurements 
and made sure that some of the measurements were acquired 
with double impacts.  And in fact we took another whole set of 
data and specifically made sure that every one of the FRFs 
acquired came from impact excitation where double impacts 
were applied.  
 
For reference, the typical input force spectrum for a single 
impact and a double impact is shown in Figure 1.   
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Figure 1 – Comparison of Single and Double Force Spectrum 
 
 

While the double impact shows variation of the input force 
spectrum over the entire frequency band, it is important to note 
that there are no serious drops in the input spectrum which 
would be the major concern.  And for reference, Figure 2 shows 
the typical mode shapes for the structure we are testing. 
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Figure 2 – Mode Shapes for Structure 

 
 
Now what I am going to do is use the data set with the harder 
tip and no double impacts as the reference for the comparisons 
that we will consider here.  And I am going to acquire some 
measurements in locations of the structure where double 
impacts could possibly occur and use the softer tip to acquire 
those measurements.   (Just to make sure I document this 
properly, the outer 10 FRFs of the structure are measured with 
the harder tip and the inner 10 FRFs are measured with the 
softer tip.) 
 
For comparison, two FRFs from each hammer tip are shown in 
Figure 3 and Figure 4 for the harder tip and the softer tip, 
respectively. 
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Figure 3 – Typical FRF for Harder Impact Tip 
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Figure 4 – Typical FRF for Softer Impact Tip 

 
Now for the first comparison, the MAC was computed for the 
reference modal data set and the “hybrid” set of modal data 
where some of the measurements were made with the harder tip 
and some were made with the softer tip; the original idea was to 
minimize the double impact with the softer tip.  The MAC is 
shown in Table 1 for this case. 
 

Table 1 – MAC for Reference Test and Hybrid Data Set 
Frequency 179.270 Hz 413.356 Hz 495.121 Hz 852.661 Hz 970.418 Hz 1341.456 Hz

179.304 Hz 98.547 0.207 0.048 0.17 30.453 0.114

413.501 Hz 0.052 98.088 0.007 0.253 0.149 10.311

495.105 Hz 0.114 0.189 99.798 0.144 0.173 0.216

853.646 Hz 0.107 0.573 0.002 97.825 0.121 0.31

970.634 Hz 33.247 0.144 0.09 0.082 95.881 0.126

1345.196 Hz 0.122 9.725 0.07 0.431 0.132 97.921
 

 
Notice that the MAC for the diagonal terms ranges from about 
95 to 99 for the corresponding modes; the off-diagonal terms 
are not as critical to this evaluation because spatial aliasing is 
the main difficulty with such a limited set of data points. 
 
But remember from the last article, when we compared all the 
harder tip modal data set with the softer tip modal test there was 

essentially no difference between the modes.  So what has 
happened here? 
 
Basically, as we switched the tip on the hammer we had an 
effective change in the input spectrum which essentially 
changed the calibration for the hammer.  Because all the 
measurements were not collected with the same hammer tip, 
there is a bias on some of the measurements relative to the 
balance of the measurements.  This means that we have created 
an imbalance in the scaling of the FRFs.  So this directly implies 
that we really shouldn’t switch the hammer tip in the middle of 
the test or else there can be a bias on the FRFs collected – 
unless if we calibrate to normalize that effect in the data 
acquired. 
 
Now let’s take this just one step further and use another set of 
data.  While I am not an advocate of using double impact data, 
we have shown in the past that sometimes we might need to 
collect data with double impacts and maybe that data is not 
horrible to use – as long as we use care to make sure that all the 
data seems reasonable with good coherence.  Now I am going 
to use the data set where all the FRFs were measured with some 
type of double impact but all FRFs were acquired with the same 
hard tip for all measurements.   
 
Now another MAC was computed for the reference modal data 
and the modal data with some type of double impact at all 
measurement points.  The MAC is shown in Table 2 for this 
case.   Now notice that MAC for all the diagonal terms are all 
above 99.  So this shows that the data was actually very good 
overall and the FRFs collected with double impacts are actually 
better than the data where we tried to minimize the double 
impact by using a softer tip at a subset of locations on the 
structure.  I guess you would never expect that result but it 
makes sense if you consider that the double impact data was 
collected with a somewhat consistent input excitation whereas 
the “hybrid” data set was not. 
 

Table 2 – MAC for Reference Test and Double Impact Test 
Frequency 179.454 Hz 414.166 Hz 495.463 Hz 855.208 Hz 972.122 Hz 1346.707 Hz

179.304 Hz 99.634 0.014 0.085 0.093 33.183 0.024

413.501 Hz 0.024 99.823 0.004 0.137 0 12.293

495.105 Hz 0.039 0.036 99.906 0.034 0.093 0.058

853.646 Hz 0.1 0.175 0 99.475 0.065 0.341

970.634 Hz 33.476 0.01 0.117 0.072 99.579 0.051

1345.196 Hz 0.018 11.365 0.06 0.216 0.009 99.292
 

 
 
I hope this helps to illustrate that double impacts are maybe not 
as bad as you would have guessed.  And the switching of the 
impact tip during the middle of the test, without accounting for 
the effective change in the input force spectrum, changes the 
calibration and needs to be considered.  If you have any other 
questions about modal analysis, just ask me.
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I took a measurement one day and the next day the measurement looked different. How can that be?  
Let’s take a look at this measurement and try to see what’s happening. 
 
So we have talked about a lot of different measurement 
problems in the past but this one is really one that needs some 
attention.  Of course there are always differences between 
measurements from one day to the next or hour to hour or even 
week to week; these are typically small differences that we need 
to live with when we test structures – this is normal variability. 
 
But the measurement you showed me is quite different than 
what we normally see as variation we would expect to see.  In 
this particular measurement, there was very small variation in 
the lower frequency range and then there was a very significant 
and dramatic difference in the higher frequency range.  
 
So let’s step through this particular measurement that was made 
and discuss what happened.  The main item that we will home 
in on is that the fixturing for the test may have played a very 
significant effect in the measurement for the system. 
 
The measurement that was made was for a small wind turbine 
blade.  The blade was to be tested in a “built-in” or “clamped” 
condition.  The blade itself weighs less that two pounds and is 
attached to an 800 pound optical table.  Now the optical table is 
certainly large enough to be able to adequately simulate a built-
in condition for the blade.  In fact, an analytical model was 
available for the structure and the anticipated built in modes 
were available from the model.  While the analytical model is 
never perfect and has approximation that are made when the 
model is developed, a model for this type of simple structure is 
expected to be reasonably accurate given the simple geometry 
for the configuration.   
 
So the first frequency response function was made with the 
blade attached to the optical table.  Normal impact measurement 
methodologies were employed for the impact and response 
measurements with an FFT analyzer.  The blade was attached to 
the optical table with a solid mounting block and some threaded 

rods to attach the block (as a spacer) between the turbine blade 
and the optical table; this was necessary due to the curvature of 
the blade geometry to allow for clearance between the 
cantilevered blade and optical table. 
 
Overall the measurement looked acceptable and the coherence 
for the measurement was also acceptable.  The frequency 
response function is shown in Figure 1 with a picture of the test 
set up.  The low frequency portion of the measurement was not 
of interest and is hidden behind the picture of the test set up. 
 
So the first measurement taken appeared to be acceptable.  Now 
this measurement was taken on a Friday afternoon followed by 
additional testing to be performed the following week.  As good 
practice on Monday morning, the measurement was repeated 
prior to the balance of testing to be performed.  This second 
measurement also looked acceptable overall.  The frequency 
response is shown in Fugure 2 with a picture of the test set up.  
Again the low frequency portion of the measurement was not of 
interest and is hidden behind the picture of the test set up. 
 
But the measurement taken on Monday morning did not look 
the same as the measurement taken on Friday which had several 
people scratching their heads.  Figure 3 shows the comparison 
of two measurements overlaid. 
 
Fortunately someone recognized these dramatic differences and 
stopped testing to determine what could have possibly caused 
such a dramatic difference in the measurement.  Figure 3 clearly 
shows that the lower frequency modes are essentially the same 
with normal variation which is to be expected.  But the higher 
frequency range had a dramatic difference in the measurement, 
almost as if it was from a completely different structure.  
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Figure 1 – FRF and Test Set Up - friday 

 

 
Figure 2 – FRF and Test Set Up - Monday 

 

Foam added on rods; 
all other parameters 
kept constant

 
Figure 3 – Comparison of Friday and Monday Measurements 

Obviously the first thoughts are directed to the fixturing that 
attached the blade to the optical table.  But inspection of the 
joint and tightening and reassembly of the joint did not 
make any appreciable difference. 
 
So when I first saw this measurement, I immediately suspected 
that there was likely something different in the two tests that 
might be attributed to some sort of tuned absorber effect.  The 
reason why I jumped to this conclusion is because there is a 
general shifting of frequencies in the lower frequency range that 
could result from a tuned absorber effect. 
 
So after a little detective work and asking some general 
questions as to what could be different between the two tests, 
some thoughts emerged as to what could be the problem.  After 
a few more questions and some close interrogation of the 
pictures of the test set up, there is one thing that caught my eye.   
 
Well as it turns out, the lab manager was very concerned about 
safety and the three threaded rods that protrude from the blade 
and block attaching it to the optical table could cause some 
injury if someone wasn’t careful around the test set up.  So as a 
precaution, the lab manager had some soft foam pushed onto the 
long threaded rod.  (Now this foam is basically the soft packing 
foam that you find in packaging of electronics and is extremely 
light and really has no structural effect whatsoever.)   BUT… 
 
That foam does have a very, very small amount of mass and at 
the end of the long threaded rod has the effect of changing the 
cantilevered mode of the threaded rod.  And oddly enough, the 
effect of shifting that cantilevered rod frequency just happened 
to coincide with one of the natural frequencies of the blade.  
This then caused the two modes to split in a very traditional 
tuned absorber effect.  And this effect was very dramatic for 
sure.   
 
And if you don’t believe that this could possibly happen and 
that this was in fact the cause of the problem, then please rest 
assured that the structure was tested about five more times with 
and without the small piece of packing foam attached to the 
threaded rod and both sets of measurements from Friday and 
Monday were replicated each time the test was conducted. 
 
So the bottom line here is that fixturing in any dynamic test can 
have an effect on the measured data.  In this case the effect 
observed was very dramatic for the fifth mode of the blade.  
Care must be exercise in all fixturing for all dynamic tests 
performed.  You never know what can happen!  If you have any 
other questions about modal analysis, just ask me.
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We compare tests to fully built-in models all the time.  Can you really simulate built-in down in the lab?  
Let’s take a look at this to understand this problem. 

 
So this has been a constant item for discussion for as long as I 

can remember – and while I might forget certain things as I get 

older, this topic is one I remember very well.  It seems to 

constantly pop up as an item for discussion all the time.  Of 

course, this happens because the analytical world is quite 

different than the experimental world. 

 

In analytical modeling, we can always very simply identify a 

boundary condition to apply to our model.  We can make it 

totally free-free if we want.  But of course the real world can be 

much different than the analytical world (which is filled with 

“assumptions” that may not be possible in the real world).   

 

But at least with a free-free boundary condition we can often do 

a fairly good job of approximating that condition.  In fact, we 

often like to test this way because then there is very little 

interaction with the test fixturing and related set ups for 

conditions that are other than free-free.  (Remember in the last 

article, how a very seemingly insignificant change to the test set 

up ended up having a very significant change to the test results.) 

 

The problem is that many times we would like to validate our 

analytical models with a constrained boundary condition at the 

attachment points to our component.  From an analytical 

standpoint, this is very desireable.  But from a practical testing 

standpoint, this can be very messy from a variety of different 

perspectives.  There are all kinds of issues related to mounting 

surface flatness, bolting preloads, etc. that are of concern.   

 

But one item that is always one that can be misunderstood is, 

eaxtly how stiff is stiff and how massive is massive in regards to 

creating that so called built-in condition.  Many people will try 

to design “an infinitely stiff” support frame or test fixture.  But 

we all know that any structure will have resonant frequencies, it 

is just a matter of where they occur and what effect they may 

have on the ability to actually create a built-in condition.  The 

test fixture may be adequate for the first few lower order flexible 

modes but eventually there are fixture resonances that may 

interact with the test article. 

 

Another way to simulate a built-in condition is to provide a large 

seismic mass.  This generally tends to be a better mechanism to 

achieve a built-in boundary condition but often times people 

don’t realize exactly how much mass is actually required to 

achieve this condition.  Often times you will hear people state 

that the seismic mass needs to be 10 times larger than the mass 

of the test object.  For some reason, people think that the 10:1 

ratio is the answer for all problems.  But what we forget is that 

these “rules of thumb” evolved back in the early days when all 

we had was a slide rule for calculations.  And with that level of 

accuracy maybe that 10:1 rule was a good guesstimate.  But now 

with all the sophisticated models we can evaluate today, we 

really should rethink that 10:1 rule.  

 

In order to illustrate this, a simple example for a long beam like 

structure will be used to explain this.  We have recently 

performed some free-free testing for flapwise modes for a 9m 

turbine blade and this is an excellent article to discuss in regards 

to a mass loaded interface to simulate a built-in condition. 

 

The 9m blade was tested free-free and a very coarse beam finite 

element model was utilized to model the turbine blade for 

flapwise motion alone for the first few modes.  The intent was to 

use that free-free model and then apply a “perfect analytical 

built-in boundary condition” and compare it to a variety of 

different modes to study the effect of the amount of mass needed 

to actually anchor the blade to ground. 

 

The free-free test and analytical modes are shown in Table 1 for 

reference.  The analytical model and test performed are not 

described here for brevity. 
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Table 1 - Comparison of Model and Test Results Free-Free 

 for a 9 m Wind Turbine Blade 

Mode Model (Hz) Test (Hz) MAC 

1 7.84 7.76 99.85 

2 18.5 21.26 98.28 

3 34.52 31.34 98.85 

 

These results are considered reasonable considering the 

coarseness of the rough beam finite element model. 

 

Now the analytical model can be used to identify the “perfect” 

built-in boundary condition and will be used as a reference.  

Another analytical model will also be used to compare the 

effects of adding a very large “seismic mass” to the root of the 

blade model.  This model, with different mass conditions will be 

compared to the “perfect” reference model.  The frequencies and 

shapes will be compared to show the effects of the amount of 

mass that is needed to achieve this constrained condition.  And it 

is very important to note that the mass is not just a lumped mass; 

the mass has rotational effects and it is these rotational mass 

effects that are the most important ones for the development of a 

built-in simulation for a long overhung structure such as the 

turbine blade.  For reference the turbine blade weighs on the 

order of 400 lbs.  One approximation of a seismic mass used a 

66” x 72” and 24” thick steel plate that weighed approximately 

22,000 lbs or roughly 55 times heavier than the turbine blade.   

 

Several models were developed with various ratios of the 

lumped mass, designated as M, and the rotary mass, designated 

as MR and were compared to the “perfect” reference model, for 

both frequency and shape of the resulting model.  Table 2 

summarizes the results considering just the first mode of the 

turbine blade and Figure 1 shows the shape comparison for the 

different cases shown in Table 2.   

 

First notice that the model with just M and MR as the seismic 

mass approximation does not replicate the frequency very well; 

realize that the anchor is over 50 times the weight of the blade.  

Also notice that the curvature of the mode shape does not match 

the “perfect” reference model well.  Now doubling the lumped 

mass, 2*M, with the same rotary mass, MR, shows some 

improvement but still has differences.  And if the inertia is 

doubled and lumped mass kept the same, the results are 

approximately the same.  The curvatures are improved but there 

are still differences.  Notice that the rotary mass of the seismic 

anchor is the most critical item to cause the frequencies and 

shapes to match much better.  If the rotary inertia is increased by 

an order of magnitude, then the frequency better correlates and 

the curvature of the shape also starts to match very well. 

 

So the bottom line here is that the seismic mass needs to be very 

large in order to approximate a built-in condition and that the 

rotary mass effect is much more important due to the large 

overhung effects of the wind turbine blade.  Obviously, a 

different structure with a lower center of gravity will have 

different results but this model certainly shows the importance of 

identifying the proper characteristics necessary for the seismic 

anchor for overhung structures. 

 

Table 2 - Comparison of Different Seismic Anchor 

       Approximations and “Perfect” Built-in Condition 

 for a 9 m Wind Turbine Blade 

Properties of Anchor Freq. of Mode 1 (Hz) 

Mass Inertia With Anchor Truly built in 

M MR 5.29 4.36 

2*M MR 4.87 4.36 

M 2*MR 4.87 4.36 

M 10*MR 4.47 4.36 
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Figure 1 – Comparison of Mode Shape Curvature 

 

   

But at the end of the day you have to decide how much variation 

from the real built-in condition is acceptable and how much 

deviation in the actual mode shape is acceptable for the intent of 

the test that is being performed.  The problem is that often times 

people haven’t considered these issues in any depth and 

therefore do not have clear statements as to what deviation may 

be acceptable. If you have any other questions about modal 

analysis, just ask me.
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If you don’t excite a structure at its natural frequency, then how can you know what it is?   
This is an important item to discuss. 
 

 
Well, this is an area where I find people often get confused.  

Many times I hear people say that they have to tweak and tune 

the excitation frequency so that they get the excitation right at 

the natural frequency otherwise the frequency will not be 

identified properly.  I also hear people say that the excitation 

method must have broadband energy at all frequencies otherwise 

the system will not be excited properly.   

 

There is a misconception that the frequency of excitation must 

be exactly at the natural frequency otherwise the results are not 

valid.  Well this is not really a problem with the way we do 

frequency response testing and how we extract parameters from 

measured data to estimate the frequency and damping for a 

system. 

 

So let’s discuss some of this and help you to understand why we 

really don’t need to excite a structure exactly at its natural 

frequency when we run a test - but we do have to make sure that 

the data we collect is good data because there is no substitute for 

good data. 

 

Now let’s take a step back to something a little simpler and more 

commonly understood.  Let’s look at a very simple straight line 

fit of some measured data.  We are going to perform a least 

squares error minimization for the data presented in Figure 1.  

Now we know we can fit any line to the data but for this set of 

data it seems that a first order fit makes the most sense.  Of 

course the model we are going to use is  

bmxy   

and there are two parameters that define the line, namely the 

slope and y intercept.   

 

The data and fit of the data is shown in Figure 1.  Now let’s look 

very closely at the data.  We know that we can compute the 

slope, but did we ever really measure the slope?  Not really – we 

measured data and then fit a mathematical function to that data 

which is then used to obtain the slope – but technically speaking 

we did not measure the slope.  And let’s also look at the y 

intercept.  If you look closely you will see that we never 

measured data that directly obtained the y-intercept.  But 

certainly we would say that we could obtain the y-intercept but 

we really never actually measured it, did we?  And let’s take this 

just one step further to see if we could obtain the value of the y 

function for a given value of x, let’s say 0.707.  But we never 

actually measured the function for that particular value of x – 

but we would say that we know what it would be from the 

function we fit.  I think we are all comfortable we these 

statements and the values that we obtain – right? 

 

 

 
Figure 1: Example of Simple Straight Line Fit 
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So now let’s apply this logic to the mathematical function that is 

used to represent a single degree of freedom frequency response 

function.  We can write the system transfer function in partial 

fraction form for a single degree of freedom system as  
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and we can also write the frequency response equation as 
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First we need to realize that this function is written as a function 

of frequency and it contains two constants which are the pole, p, 

and the residue, r; these are the two parameters that we need to 

extract (just like we did for the slope and y-intercept for the 

straight line).  Now we can evaluate this function at a series of 

frequencies spaced delta f apart.  This is shown in Figure 2.  

These data points are the set of data we collect when a frequency 

response measurement is made.  We can fit a line to the data 

where the line is the complex frequency response function and 

extract the parameters of interest. 

 

I can make the same argument that was made for the straight line 

here for the frequency resonse function.  We are going to fit a 

line to the measured data and extract several key parameters that 

define that line.  These are namely, the pole and the residue.  

And just like we argued for the straight line I do not necessarily 

need a data point exactly at the natural frequency to obtain an 

estimate of the pole or residue.  As long as I have good data that 

represents the function, I can fit this simple single degree of 

freedom model to the measured data to extract the parameters of 

interest which are the poles and residues. 
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Figure 2 – Conceptual SDOF Curvefit 

 

Now of course I can extend this from a single degree of freedom 

system to a multiple degree of freedom system and the problem 

just gets mathematically more complicated – but it is the same 

process overall.  A multiple degree of freedom frequency 

response measurement is shown in Figure 3.   
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Figure 3 – Conceptual MDOF Curvefit 

 

 

Data is obtained at selected frequency spacing and there is no 

need to make sure that the frequency data points coincide 

exactly with the precise natural frequencies for the modes 

obtained from the parameter estimation process.  But surely I 

have to remind everyone that the data that is collected must be 

obtained using the best of measurement methodologies to assure 

that there is little variance between the data collected and the 

line that is used to describe the data and for the extraction of the 

poles and residues. 

 

So I hope that this little explanation helps to clarify the fact that 

the measured data does not necessarily need to lie exactly on the 

precise natural frequency for the system.  The process of modal 

parameter estimation (which is really nothing more than a very 

elaborate least squares error minimization process) where 

parameters, namely the poles and residues, are extracted.   If you 

have any other questions about modal analysis, just ask me. 
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How free does a test need to be? Does it really matter that much? 
This is an important item to discuss.   

 
Alright – now here is an item that I think everyone gets confused 

about.  It really stems from the fact that we all are familiar with 

rigid body dynamics and the concepts surrounding that.  But we 

don’t let go of those concepts easily. 

 

What I mean is that rigid body dynamics is a good 

approximation when the body is described by a center of mass 

concept and all the points on the structure can be described in 

terms of that one point.  What we then have is a point in space 

that is the only point we need to describe the entire motion of the 

structure associated with that one point. 

 

And that is a pretty powerful statement.  It means that every 

point on the geometry of the structure can be defined completely 

by that one point on the structure.  Therefore, if this was the case 

then we would say that we have a rigid body. 

 

So now what do we mean when we say we have a free-free 

system and we have rigid body modes that describe that system.  

That implies that we have no constraint whatsoever to ground 

and that the structure is essentially floating freely in space.  If 

that is the case, then we would have rigid body modes describing 

the six independent ways that the body can move in space.  

There would be three separate translation motions in the three 

principle directions as well as three separate rotations in the 

three separate directions.  Of course we have to realize that the 

six independent motions could possibly be comprised of linear 

combinations of each other as another possibility.  Just because 

we tend to think in x,y,z directions doesn’t mean that the rigid 

body motion needs to be isolated to those three directions – any 

linear combinations are also valid. 

 

OK – so now we have this rigid body mode concept down.  Now 

let’s talk about a simple beam that we might possibly model with 

a finite element model.  Let’s assume to start that the beam is a 

uniform cross section and uniform weight distribution so there is 

nothing fancy about this beam.  To further simplify the 

discussion we will only consider planar motion but there is no 

reason we couldn’t extend it to six degrees of freedom to be 

general. 

 

So let’s first describe the first few modes of this planar system.  

Figure 1 shows the first four modes of the planar beam system.  

Notice that the first two modes are the rigid body modes and that 

the next two modes are the flexible modes of the system. 
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Figure 1 –Modes of Free-Free Beam 
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Notice that the first rigid body mode is a bounce mode with up 

and down motion and that the second rigid body mode is a 

rocking mode about the geometric center of the beam.  This is 

what is expected for the free-free modes of a fully unconstrained 

beam structure. 

 

Now let’s consider that the beam really can’t float in space 

unconstrained when we test it in the lab.  And let’s consider a 

range of spring stiffnesses to apply to the two ends of te beam.  

And let’s further let the stiffnesses range from close to zero all 

the way up to a very high stiffness approaching a pinned 

condition or perfectly constrained.  This is schematically shown 

in Figure 2. 
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Figure 2 – Elastic Support for Beam 

 

Now to make this simple, we are just going to look at how the 

first mode changes as we add increasing spring stiffness to the 

ends of the beam.  We are going to look at what happens to the 

mode shape as the stiffness increases.  This is shown in Figure 3 

with the mode shape shown from top to bottom with increasing 

stiffness. 

 

The first shape plotted is the free-free beam first mode shape.  

So as we increase the stiffness at the end of the beam, the natural 

frequency will shift upwards because there was an increase in 

stiffness as expected.  So if we added just a little bit of stiffness 

the mode shape may not change appreciably.  And we will 

notice that in the second plot from the top that the mode shape is 

still very similar to a rigid body mode but that there is slight 

amount of curvature in the beam.  As we increase the stiffness 

we see that in the third plot that the shape doesn’t really look 

like a perfect rigid body mode and that the shape is starting to 

take on more of a curvature like the first flexible mode of the 

system.  By the time we increase the stiffness even more, the 

fourth and fifth plots don’t really resemble a rigid body mode 

any longer and basically the mode shape really resembles a 

flexible mode with just a tiny bit of rigid body motion. 
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Figure 3 – Progression of Mode 1 Shape 

 

 

So now the story is basically told.  The rigid body mode is only 

truly a rigid body mode when it is completely free-free.  Once 

any amount of stiffness is added to the ends of the beam, then 

the mode starts to change from a rigid body type mode to a 

flexible type mode and the proportions of rigid body and flexible 

mode is heavily dependent on the amount of stiffness added as 

well as the stiffness of the structure itself. 

 

This means that when we measure any structure in the lab in the 

so called free-free state, the actual rigid body mode obtained 

will always have some of the flexible modes included and is 

really not a perfectly rigid body mode.  Depending on how the 

test is set up and and how stiff the free-free suspension is will 

have a direct effect on just how rigid those rigid body modes 

are.  I hope this simple explanation clears up any misconceptions 

that you may have had.  If you have any more questions on 

modal analysis, just ask me.
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So what really is a drive point FRF?  Do you have to impact exactly at the same point? 
Let’s take a look at this.   

 
Drive point measurements have always raised questions in 

regards to experimental modal tests.  There are several things 

that need to be considered when conducting a test especially for 

this measurement.  So it is very important to discuss it. 

 

The drive point measurement is a very important measurement 

to be made as part of an experimental modal test.  The drive 

point frequency response function is a measurement where both 

the input force and response are measured on a structure at the 

same point and in the same direction.  Now a few things need to 

be considered when we discuss this type of measurement. 

 

For sure, it is very difficult to actually hit the structure at the 

same location where you are simultaneously measuring the 

response, so there are some practical implications that need to be 

considered.  I have seen some cases where accelerometer 

casings appear to have been subjected to physical impacts in 

order to try to take this drive point frequency response function.  

Now this is definitely not recommended as the way to take this 

measurement.  So we need to think about how to make the 

measurement and how to consider the implications of the 

practicality of actually taking this measurement. 

 

So obviously we need to try to achieve the desired result as 

closely possible without actually impacting right on the 

accelerometer itself.  So one way to achieve that would be to 

measure on the opposite side of the structure.  If the cross 

section is very stiff or a solid cross section then this would 

appear to be a possible way to achieve that result.  The only 

difference would be that the phase of the measurement would 

need to be considered so that if the positive sensing direction of 

the accelerometer was 180 degrees opposite to the desired 

measurement then the phase would need to be corrected.  And in 

just about every modal software package available, the software 

allows for the phase to be included with the specification of the 

measurement being in either the “plus” direction or in the 

“minus” direction.  So that is not really a problem (but we will 

discuss one difficulty in a few moments). 

 

The other way to achieve the drive point measurement is to 

impact alongside the accelerometer when making the 

measurement.  Now this is not truly a drive point measurement 

but if the structure is very large, then this is not a problem.  So if 

I were to take a measurement on a big wind turbine blade, then 

the effects of this small difference in the location of the impact 

would be essentially insignificant.  But if I were to take the same 

drive point measurement on a much smaller structure such as a 

disk drive or jet engine turbine blade then the size of the 

structure relative to the small difference in the actual geometric 

location of the accelerometer and the actual impact location may 

have a fairly significant change in the drive point measurement 

in that case.   

 

The effect is going to be very dependent on the change in the 

value of the mode shape over that very small distance.  If the 

mode shape doesn’t change very much then the difference in the 

actual drive point measurement and the acquired drive point 

measurement may be essentially insignificant.  But as the 

structure starts to get smaller or higher modes are considered, 

then the effects of the actual change in the mode shape can have 

a much bigger impact (no pun intended).  This can really all be 

related back to the equation describing the frequency response 

function written in terms of mode shapes for a single mode 

approximation can be given as 
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Obviously if the value of the mode shape between point “i” and 

“j” is extremely small then the change in the actual measured 

frequency response function and the drive point measurement 
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will be very small.  So it is all dependent on size and the change 

in the mode shape over the very small distance of the 

accelerometer and impact location. 

 

But let’s consider one additional case that might be a more 

common problem that needs to be addressed.  Many times a 

measurement will be made and the accelerometer is located on 

the opposite side of the structure for convenience.  If the 

structure is a solid cross section or it is very stiff then it would 

seem reasonable to make that measurement in that manner.  Or it 

might not be possible due to space constraints.  In any event, a 

simple tubular beam cross section will be used to show some 

additional concerns that need to be considered.  The beam cross 

section is shown in Figure 1 with two small teardrop 

accelerometers mounted on the structure along with a schematic 

to the right with a red accelerometer shown as the true drive 

point measurement and the blue accelerometer shown as the 

approximation of the drive point measurement that might 

typically be acquired.  Obviously the measurement here can be 

made because the FRF drive point measurement is made at the 

end of the beam where access is available; but if this 

measurement was needed at an interior location then this 

measurement of the true drive point measurement could not be 

possible.  (For reference, this an aluminum beam approximately 

60 inches long with a 1 inch by 2 inch cross section with a 3/16 

inch wall thickness.) 

 

 
Figure 1 –Schematic of the Beam Measurement 

 

Now an impact measurement was taken over a 4000 Hz range 

and also zoomed in over a 1100 Hz range to more clearly see the 

difference in the frequency response function.  Figure 2 shows 

the imaginary part of the frequency response function and the 

two traces (red for the true drive point frequency response and 

the blue for the approximate frequency response function) are 

overlaid for comparison.  Essentially there is no difference in the 

imaginary part of the function.  Remember that the imaginary 

part of the frequency response will be a peak when the real part 

is a zero for a proportionately damped system with well spaced 

modes.  Figure 2 seems to indicate that there is essentially no 

difference at all and would lead you to believe that there is no 

error in this measurement.   
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Figure 2 – Imaginary Part of the FRF 

 

However, if we look at the magnitude of the frequency response 

function we see something that indicates a different story.  

Notice that the anti-resonances do not line up between the two 

measurements.  This is directly related to a phase difference 

between the two measurements.  So while the magnitudes line up 

properly, the phase between the two measurements shows a 

significant difference.  Yet upon first looking at this simple 

beam section, the lower order modes would be expected to be 

relatively unaffected by the difference between measuring the 

exact drive point and the approximation of the drive point 

measurement, especially for the lower order modes.  But it is 

clearly seen that there is a difference.  (And just to be sure there 

was no instrumentation issues the measurement was repeated 

with both accelerometers mounted on top of each other and the 

measurement was essentially identical.) 
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Figure 3 – Magnitude Part of the FRF 

 

While the amplitudes would likely give a good representation of 

the mode shape, the more important item to observe is that if 

these FRFs were used for any frequency based substructuring 

type applications, then that phase/anti-resonance issue would 

cause difficulties in numerically processing any inconsistent data 

that might be collected at different measurement points.  I hope 

you have a better appreciation of drive point measurements now.  

If you have any more questions on modal analysis, just ask me.
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We updated a composite plate model but the properties seem to not be physical.   
Can the model be used for response studies?   Let’s take a look at this to understand this problem. 

 
So this is an area where people often get confused.  We make 

analytical models as an approximation of the characteristics of a 

system.  Many times we use modeling approximations or 

equivalencies that help to obtain the right overall characteristic 

for the model.  But it doesn’t necessarily mean that the model 

portrays the actual physical property as we may expect to see it 

as if we were to get it from a material properties table. 

 

Actually I have a very good case that may be a good one to 

present related to the modeling of a composite plate that was 

modeled with some radically different modeling strategies.  I 

really don’t need to go into all the details of the modeling 

philosophy and strategy deployed but I will only concentrate on 

the confusion of the material properties that resulted from the 

model updating performed. 

 

A finite element model of a wind turbine composite section was 

developed.  The physical structure had a balsa core and a 5 ply 

resin fiber layer (0-90° warp-weft architecture) on each side of 

the balsa.  The finite element model used a unique modeling 

strategy to capture the resin/fiber composite with a plate and 

beam formulation to capture the shear and bending 

characteristics of the fiber embedded in the resin which is 

modeled as a plate. This modeling scenario had been used in the 

past but a prototype was also fabricated to perform some modal 

tests to validate the model.  The testing was performed on a 3 ft 

x 3ft plate in a free-free condition as well as in 4 separate 

configurations with each side of the plate clamped to a 500 lb 

block to form a constrained end condition.  The material 

properties were provided from the materials group and were 

identified as being accurate for the identification of its 

characteristics.  The finite element model was developed with 

these properties identified as supplied by the materials group.  A 

free-free modal test was performed and used to study the model 

adequacy. 

 

The free-frre correlation of the first dozen modes produced very 

good MAC values but the frequency had a very consistent shift 

in frequency for all the modes of the system.  A model updating 

study produced a very significant change in the balsa material 

properties to cause the frequency difference to be minimized; the 

basic premise was that the resin and fiber material properties 

that were provided were correct.  But the balsa which is 

geometrically located at the neutral axis of the plate needed to 

have a tremendous change in stiffness in order to accomplish 

this shift in frequency; the updated balsa properties for Young’s 

Moduls essentially needed to be that of steel.  While this may 

seem unrealistic from a practical standpoint, the reality is that 

the finite element approximation made with the composite 

materials used required this in order to achieve the proper 

stiffness to represent the modal characteristics properly.  The 

results of the original free-free correlation and the updated free-

free correlation is shown in Table 1. 

 

In order to confirm that the model was a reasonable 

approximation of the system even with the unrealistic balsa 

properties identified, the plate was tested in 4 perturbed 

conditions where it was clamped on each of the 4 sides of the 

plate.  The finite element model with the updated properties was 

correlated to each of these configurations and produced 

comparable results to the free-free update models; only limited 

results are shown to keep the article brief.  Table 2 shows the 

results of the correlation of the finite element model with the 

updated properties for the stiffer and softer direction of the 

composite plate clamped to a 500 lb anchor in the lab; the model 

was made with the anchor included to best represent the clamped 

arrangement.  Clearly, the update parameters are suitable to 

predict a significant change in the boundary conditions made to 

the free-free composite plate structure. 
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Table 1:  Correlation of Free-Free Composite Plate Before Model 

Updating (left) and Correlation After Model Updating (right) 

#
FEA 
Hz

EMA 
Hz MAC

1 22.13 49.90 99.9

2 48.82 84.34 99.3

3 65.20 129.94 99.7

4 101.74 138.49 98.7

5 109.56 166.55 99.8

6 128.46 230.26 99.6

7 135.95 252.14 99.3

8 142.08 267.53 99.3

9 194.58 386.93 96.6

10 204.93 359.29 97.6

#
FEA
Hz

EMA 
Hz MAC

1 49.64 49.90 100

2 87.19 84.34 99.8

3 131.23 129.94 99.9

4 134.28 138.49 99.6

5 163.65 166.55 99.9

6 229.83 230.26 99.8

7 249.63 252.11 99.8

8 266.60 267.53 99.8

9 355.74 359.29 99.5

10 381.52 382.79 97.1

 
 

Table 2: Correlation of the Update Finite Element Model to Two 

Different Tests with Significantly Perturbed Boundary Conditions with 

the plate Clamped on One Edge 

#
FEA
Hz

EMA
Hz MAC

1 20.06 19.19 99.1

2 32.86 31.98 99.1

3 99.69 98.19 98.9

4 124.61 127.25 97.8

5 133.35 135.64 98.2

6 199.99 204.16 99.4

7 241.21 241.29 99.2

8 281.52 298.25 97.5

9 307.01 317.41 94.4

10 355.27 354.81 98.1

S
ti
ff

er

S
of

te
r

#
FEA
Hz

EMA 
Hz MAC

1 13.93 12.68 99.2

2 30.20 29.54 99.6

3 82.12 84.58 94.7

4 108.58 109.27 99.6

5 143.58 147.37 99.8

6 203.78 208.57 99.0

7 224.81 229.96 97.6

8 236.02 240.43 99.1

9 329.40 338.66 99.0

10 360.70 363.54 98.0
 

So many people might ask, how can you have such different 

material properties for the balsa approaching those of steel and 

expect the model to be reasonable.  Well that is an excellent 

question and is one that needs to be discussed.  I have a great 

example that I think you will very quickly accept.  

 

We know that an I-beam gets its significant Area Moment of 

Inertia from the flanges being offset from the neutral axis.  But I 

could reduce that down to an equivalent rectangular cross 

section to give me the same effective stiffness as seen in the 

upper portion of Figure 1.  I have certainly captured the stiffness 

properly to get the right deflection of the system.  But if you 

looked at the cross section you would say that it doesn’t really 

look like an I beam. 

 

Now in the composite plate model where we changed the balsa 

property, the effective composite materials we used did not 

really represent the true stiffness of the material.  Because the 

composite fibers are outboard of the neutral axis of the balsa, 

their effect in defining the stiffness of the system is critical.  In 

the first model we used “whimpy” material properties so to 

speak.  So the only way that the model could reflect the 

difference in stiffness is by adjusting the Young’s Modulus of 

the only element left in the model that could change – that is the 

balsa.  So the balsa had to be very stiff – almost on steroids so to 

speak.  While we may not believe that modulus from a physical 

standpoint, as far as the model was concerned, the balsa needed 

to be that stiff.  If you look at the overall EI of the balsa and 

resin and fibers as a complete unit, then the overall stiffness is 

represented correctly as well as the mass distributed correctly 

and we predicted well over a dozen modes correctly – and in 2 

different perturbed boundary conditions as well. 

 

 
Figure 1: Schematic – Equivalent Section Properties 

 

And let me take it one step further and look at the lower sketch 

in Figure 1.  Let’s say for some reason we couldn’t let the 

rectangular approximation be as high as it is and we needed to 

make it half as thick.  In order to do that I would need to change 

the stiffness somehow because the I about the weaker axis would 

not be as stiff as the thicker section.  Because the I has a t^3 

term, we would have to increase the effective stiffness of that 

thinner section by adjusting the EI term to account for the 

change.  So the E would need to be adjusted by 2^3 to make the 

overall cross section have the same effective stiffness.  But the 

real E of the material would not be that value –the model would 

need to adjust the material to compensate for the change in 

physical dimension. 

 

So the bottom line here is that we take everything into 

consideration in terms of the overall mass and stiffness 

distributions to cause the system to have the right overall 

effective representations so that the response is measured 

properly and the structure has the right overall weight as well as 

the right stiffness such that if you put a static force on it you get 

the right displacement. 

   

And as a side note, eventually the material properties were re-

evaluated with updated material testing methodologies and 

correlation to the finite element model was significantly 

improved with very acceptable frequency and shape 

correlations.  Now the material properties of all materials are 

more in line with what we may have expected.  But the bottom 

line is that any of the updated models could have been used for a 

proper estimation of system characteristics when only 

considering response of the system.  If you have any other 

questions about modal analysis, just ask me. 
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Can you explain the Complex Mode Indicator Function (CMIF) again?  What are these crossover frequencies? 
There are some concepts here that are important to discuss. 

 
Now I know I have heard many people comment on this as a 

point of confusion.  But it really is not that hard to explain and I 

have examples to put it in perspective. 

 

First let’s get some of the messy math out of the way but that is 

needed to start the conversation.  Basically, the Complex Mode 

Indicator Function (CMIF) uses the frequency response matrix 

and performs a singular value decomposition (SVD) to identify 

how many “significant” eigenvalues exist in each individual 

spectral line of the frequency response function (FRF) matrix.   

 

WOW – now that is surely a mouthful to say the least.  Let’s 

present the equation and then try to pull it apart and make some 

sense of it all.  If we collected a set of FRF data with multiple 

references, then I would have a matrix of FRFs.  And I could 

write that equation using SVD as 

 

     TVSUH   

 

And I could also write it down in expanded form to see some of 

the important pieces as 
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Now we can see that there is a matrix [U] and matrix [V] which 

contain eigenvectors (left and right hand vectors to be specific) 

and a diagonal matrix of scalar values [S] called singular values; 

an earlier article about ten years ago describes this in much more 

detail.  But of course the most important part of the SVD is that 

this can be written as the sum of each of the individual pieces 

that make up this FRF matrix. 

 

Now when we perfom an SVD and plot the singular values, we 

will get as many curves as there are references for all of the 

spectral lines in the band considered.  So if there are three 

references then there will be three singular values, namely, S1, 

S2, S3 , which will exist for all the spectral lines in the band 

considered.  Now if we plot these, then there will be three 

separate curves over that frequency band; the singular values are 

shown in the diagonal [S] matrix in the second equation.  It is 

these three lines that are of interest for CMIF (but the 

eigenvectors will also play a small roll as will be explained 

shortly).  A set of CMIF curves are shown in Figure 1.  The 

upper set of curves shows one form of the CMIF and the lower 

set of curves shows another form of the CMIF. 
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Figure 1 – CMIF (upper) and Tracked CMIF (lower) 
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Now in the CMIF in Figure 1, notice that the blue curve is larger 

than the red and green curves in the upper plot.  To interpret 

CMIF, wherever there is a peak in the CMIF, there will be an 

indication of a mode at that frequency; in the upper plot there 

are three peaks in the blue curve so there are three modes 

identified by the CMIF in this case.  If there is a second peak at 

the same frequency as the first peak then there is an indication 

that there are two modes at that frequency – but the second 

curve must peak at the same frequency as the first peak, 

otherwise it is not another mode. 

 

So what are the peaks in the red and green curve and why aren’t 

they indicators of modes?  Well these are a result of these 

crossover frequencies you asked about.  It all comes down to 

what you want to track from the singular values.  Do you want to 

track the biggest singular value or do you want to track the 

vector related to the singular value.  The lower plot in Figure 1 

tracks the vector associated with the singular value rather than 

the largest singular value.  So you can see that when we track the 

blue vector, it peaks at a lower frequency and then steadily 

declines.  We also see that the red vector starts off small and 

then peaks in the middle of the frequency band and then steadily 

declines.  And then you can see that the green line starts off very 

small and then eventually peaks as the blue and red decline.  So 

it makes a difference whether I track the largest singular value 

(upper plot) or the vector related to the singular value (lower 

plot) – it just depends on what you want to look at in the CMIF. 

 

If this still isn’t clear, I have a good example.  If you happen to 

like the horse races, then I can relate the horse race to the SVD 

for the CMIF.  Just before the horse race starts, all of the horses 

are lined up at the starting gate and they are all at the same point.  

But as soon as the race starts, different horses will end up in 

different positions and that will change as the race progresses.  

But do you want to track who is ahead or do you want to track 

your horse – it is just a matter of preference (and depends on 

whether you are betting to win, place or show, etc).  Figure 2 

shows a schematic of the race at different points during the race.  

Clearly, at different points during the race, a different horse is in 

the lead.  In terms of who wins, you want to track who is ahead 

and that changes during the race.  But you might also want to 

track your favorite horse but he may not be in the lead. 
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Figure 2 – CMIF/SVD and Horse Racing 

In the first example, there was only one prominent mode at three 

different frequencies in Figure 1.  But what would happen if 

there were multiple modes at the same frequency.  Well then the 

CMIF would show one or more of the singular values peak at the 

same frequency in the CMIF plot.  Figure 3 shows exactly this 

case where there are actually three modes at the same frequency 

at the first peak in the expanded view of the CMIF plot followed 

by three separate peaks higher in frequency – so in that 

expanded band there are actually six separate modes indicated 

by the CMIF plot.  (That would be analogous to three horses 

nose to nose and if they were at the finish line, there would have 

to be a photo finish to determine the winner.) 
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Figure3 – CMIF with Multiple Modes 

 

 

So I hope this explanation helps to clear up any confusion 

related to the CMIF and the interpretation of the curves as well 

as why the crossover frequencies exist.  

 

And for some reason, it always seems that I never pick the right 

horse no matter which way I track them.  If you have any more 

questions on modal analysis, just ask me. 
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If the frequencies between test and model are close, then is the model correlated?   
Do you really have to look at mode shapes?   This is very important to discuss. 

 
So this is yet another area where people often get confused.  So 

many times people develop finite element models and there is a 

desire to make sure that the model is reasonable.  Often times 

experimental modal tests are performed specifically for this sole 

purpose – to provide a sanity check for the model.   

 

The finite element model is developed from many different 

assumptions and there are many areas where there is question  

as to: 

- how the structure was modeled  

- what material properties were used 

- how the joints and connections were modeled 

 … and the list goes on and on.   

 

This is because the finite element model is an approximation and 

it is a modeling tool that we use to assure that a design is 

reasonable for the intended use in its particular application.  The 

model contains hundreds of approximations all of which may be 

reasonable for most designs.  Fortunately, in design, we build in 

factors of safety and stress limits and other criteria to 

compensate for that which we don’t know or understand. 

 

Many times in the finite element model there are “penalty 

factors” or “knock-down factors” that are applied to the model 

because we just are not sure that we believe the properties that 

we use for the model possibly due to the manufacturing process 

used or because of fabrication techniques that may impose loads 

and degrade the general properties of the structure, etc. 

 

The finite element models are approximations.  We use the 

models to build in a “comfort factor” in the systems we design 

and build to have a greater confidence in our design.  But the 

bottom line is that the finite element models we build are not 

perfect by any means.  They are hopefully good approximations 

of the systems we try to dynamically characterize but … often 

times the approximations are forgotten in the development of the 

model. 

 

For instance, everyone builds models that are very complicated 

and at times the complication is where the focus of concern may 

be directed.  But many times simple questions as to what is the 

Young’s Modulus or density of the material will raise an 

eyebrow as a possible source or error.  Yet many times no one 

ever weighs the test article to see if the model weight and actual 

part weight are the same.  And Young’s Modulus is always just 

accepted as the published value with no thought of the variance 

that might be expected and how it should be checked. 

 

And often times the CAD model is used for the model geometry 

generation without any real regard for what the actual geometry 

might be and how it may change the actual frequencies and 

mode shapes.  One very important case is the flatness of panels 

that are included in a finite element model.  The model may 

have the panel modeled as flat but the actual warpage of the 

plate may have a strong effect on the overall frequency 

prediction.  Figure 1 shows some scans on panels that were 

stated to be flat and modeled as such in the model, but these 

deviations played a very important part of the frequency and 

shape determination.  

 

 
Figure 1: Distorted Geometry of “Assumed” Flat Panels 
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In this particular case, the frequencies of the model matched 

many of the tested frequencies but the shapes showed essentially 

no correlation at all – so just matching the frequencies does not 

necessarily mean that the model is OK. 

 

One particular difficulty that always causes problems is when 

the experimental modal test is performed with a clamped or built 

in condition.  Where the finite element model can easily predict 

a built in or clamped condition, it is very hard to accomplish this 

in an experimental modal test set up – but people try to do tests 

this way all the time.   

 

One case involved a composite plate that was developed with 

some new fiber and the characteristics for the composite plate 

model were being questioned.  The plate was set up in a fixture 

to try to achieve a built in condition even though it was clearly 

known that the boundary condition may be difficult to achieve.   

 

Unfortunately, the analytical group assured everyone that the 

fixture was more than adequate.  And they clearly stated that it 

was “rigid”, “stiff” and  “more that adequate to simulate a built 

in condition for test”. 

 

Now the only thing that can be said here in terms of the test is 

that “It is what it is” and whatever is measured will identify the 

reality of the test set up.   The first several modes of the 

composite plate were measured and a correlation study with the 

finite element model was performed.  However, remember that 

the original finite element model fiber characteristics were not 

clearly known and the purpose of the test was to help define the 

fiber characteristics.  Of course, the first correlation performed 

showed significant differences between the test and the model.  

This was anticipated to be largely due to the fiber unknowns.  

The frequencies showed quite a bit of difference but the shape 

correlation was considered reasonable as seen in Table 1.  The 

three mode shape pairs are shown for reference in Figure 2. 

 

Obviously, the model had some fiber characteristics that did not 

represent the true stiffness of the fiber in the composite 

arrangement.  So with some minor tweaking of the fiber 

characteristics, the model was adjusted and the resulting 

frequencies were shown to be greatly improved.  The model 

frequencies were then identified and were shown to be much 

improved as seen in Table 2. 

 

But if you look at Table 2 you will notice that the MAC values 

are not shown.  Due to time and budget constraints,  no 

additional correlation studies were performed with the 

“adjusted” finite element model.  Everyone felt that because the 

frequency comparison was greatly improved that there was no 

need to further validate the model – the frequencies are close so 

“end of story” so to speak. 

 

Table 1:  Correlation of Composite Plate Model and Test Data 

 FEA EMA %Diff MAC(%) 

 (Hz) (Hz)  

1 81.3 117.4 30.8 99.5 

2 165.7 213.9 22.5 89.9 

3 165.7 232.8 28.8 80.6 

 

 
Figure 2: First Set of Correlated Mode Pairs 

 

Table 2:  Correlation of “Adjusted” Composite Plate Model and Test 

 FEA EMA %Diff 

 (Hz) (Hz)  

1 113.7 117.4 3.1  

2 233.7 213.9 9.2  

3 233.7 232.8 0.4  

 

But some time later several additional correlations were 

performed and as it turned out, the shape correlation had 

degraded significantly from the original correlation identified 

with MAC values for mode 2 and 3 much lower than before.  

While the frequencies appeared to be very close, everyone was 

happy to use the updated properties of the adjusted model.  As it 

turned out there was significant effect of the boundary condition 

of the so-called built in or clamped condition.  The frequencies 

had indeed gotten closer to the test frequencies but the fiber 

parameters of the model that were adjusted had a significant 

effect on the shapes of the first three modes – but that was never 

checked as part of the adjustment of the model.  In fact, the 

boundary condition of the fixture was not as stiff as anticipated 

by the analyst and this had a big effect on the shape correlation. 

 

So the bottom line is that the correlation clearly needs to 

compare frequencies and mode shapes.  If only the frequencies 

are considered then the model can be adjusted (or maybe 

distorted) in just about any way to achieve “matched” 

frequencies.  It is critically important that the shapes be 

evaluated as part of the correlation process to further justify and 

substantiate the correlation of the model to the test data. 

 

There have been numerous instances to substantiate this and it is 

always recommended that the correlation of the model to the test 

include frequency comparison as well as shape comparison.  The 

MAC is a first step to the shape correlation process but 

orthogonality checks are also needed for the validation of the 

model.  (Some concerns of using only MAC as a vector 

correlation tool will be discussed in a future article.)  If you have 

any other questions about modal analysis, just ask me.
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Do you really need to measure FRFs?  Or is a Transmissibility OK?   
We need to discuss this. 
 

So there are many times that transmissibility is made for 

measurements in many different situations.  This might be due to 

the fact that the data is collected during a shaker qualification 

test where the test article is mounted on a big shaker and all of 

the “device under test” accelerometers are measured relative to 

the base acceleration input to the test article. 

 

Or it may be that the measurements are made on equipment in 

operation and the force cannot be measured and only response 

measurements with accelerometers are available.   This is 

common when flight tests, vehicle test, suspension tests or 

similar tests are performed.  This might be the only data that is 

available.  But there are some slight differences that need to be 

noted.  And it is also important to make sure that we are all 

using the same nomenclature when we use all these fancy words; 

sometimes I find that the words mean different things in 

different industries so it is always important to check the 

definitions are understood. 

 

So let’s make some simple definitions to explain some of the 

differences in all the measurements we may possibly make.  If 

we make the following definitions,  

 x(t) - time domain input to the system 

 y(t) - time domain output to the system 

 Sx(f) - linear Fourier spectrum of  x(t) 

 Sy(f) - linear Fourier spectrum of  y(t) 

 H(f) - system transfer function 

 h(t) - system impulse response 

then Fig 1 shows the input-output schematic for linear spectra. 

 

SYSTEMINPUT OUTPUT
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TIME

FREQUENCY

FFT  &  IFT

 
Figure 1 – Linear Spectra  

 

And if we make these additional definitions,  

 Rxx(t) - autocorrelation of the input signal  x(t) 

 Ryy(t) - autocorrelation of the output signal  y(t) 

 Ryx(t) - cross correlation of  y(t) and  x(t) 

 

 Gxx(f) - autopower spectrum of  x(t)                     )f(S)f(S)f(G *
xxxx   

 Gyy(f) - autopower spectrum of  y(t)                     )f(S)f(S)f(G *
yyyy   

 Gyx(f) - cross power spectrum of  y(t) and  x(t)     )f(S)f(S)f(G *
xyyx   

then Fig 2 shows the input-output schematic for power spectra. 
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Figure 2 – Power Spectra  

 

So now that we have these equations defined, let’s identify some 

measurements we typically make and understand how they are 

used to compute things such as the FRF and Transmissibility for 

instance.  

 

The first thing to notice is that Linear Spectra are complex 

valued functions that have both magnitude and phase – so Sx and 

Sy are complex linear spectra.  But their companion power 

spectra, Gxx and Gyy, are not complex valued but are real valued, 

magnitude only measurements.  This is very important because 

they have no phase information associated with them.  But 

notice that the cross spectrum, Gyx, is a complex valued 

measurement that has both magnitude and phase. 

 

So let’s proceed and identify the FRF and Transmissibility.  The 

FRF is the cross power spectrum divided by the input power 

spectrum whereas the Transmissibility is just the ratio of the 

output spectrum divided by the input spectrum.  These are given 

as: 
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So while we generally say that both measure the output relative 

to the input, there is a big difference – the FRF is a complex 

function with both magnitude and phase whereas the 

Transmissibility (TR) is just the ratio of the magnitudes; this is 

very different because of the lack of phase.  But there is one 

very important difference.  Generally the FRF is measured with 

a reference to a measured force whereas the TR has no force 

measured as it is typically obtained.  This is very important 

when the data is needed for development of a calibrated model 

for model validation, structural dynamic modification, system 

model development, and forced response studies – a measured 

force is needed to calibrate the model so to speak. 

 

So now that we have all the definitions out of the way, let’s look 

at some measurements for a FRF and TR to show a few 

differences.  A simple free-free beam will be used for some 

typical measurements.  In the first measurement, a drive point 

FRF is made with an impact hammer and accelerometer.   

Figure 3 shows the Log Mag and phase for the drive point 

measurement; notice that the function is complex as shown in 

the figure.  Figure 4 shows the Log Mag and phase for a cross 

measurement from one end of the beam to the other end of the 

beam; this measurement is also complex valued. 

 

 
Figure 3 – FRF Drive Point Measurement on Beam 

 

 
Figure 4 – FRF Cross Measurement on Beam 

Figure 5 shows the autopower spectrum of the accelerometer at 

the drive point measurement location and Figure 6 shows the 

autopower spectrum of the accelerometer at the cross 

measurement location.   

 

 
Figure 5 Autopower Spectrum of the Drive Point Location 

 

 
Figure 6 Autopower Spectrum of the Cross Point Location 

 

 

Now both of the spectrum have some similar features when 

compared to the FRF measurements shown in Figure 3 and 4.  

But there is a very important piece of imformation missing 

which is the phase of the measurement.  The power spectra are 

real valued functions but do not have any phase information.   

So when relating the magnitudes to each other there is no phase 

information that can be obtained from the measurement. 

 

In order to have any directional information, there needs to be a 

complex measurement obtained so that phase is included.  Now 

don’t get me wrong here because the transmissibility can be very 

useful in many cases where no other measurement is possible.  

But we just have to make sure that we realize that there is some 

critical information needed if we want to understand the mode 

shapes of the structure.  If you have any other questions about 

modal analysis, just ask me.
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If we perform a roving impact hammer test and impact many points, is there any possibility of missing a mode?   
Well… you need to be careful where you place the accelerometer. 
 

 

I am glad you asked this question because it is a very important 

consideration when perfoming a modal test.  Let’s discuss a few 

things in regards to your question. 

 

Now a roving hammer with a stationary accelerometer is one 

way to run an impact test that is commonly used.  The other way 

an impact test can be performed is by keeping the hammer 

stationary and moving the accelerometer.  Both are acceptable 

ways to run this test and because of reciprocity, there really isn’t 

a difference from a theoretical standpoint.  In fact if you 

consider the measurements made you will fill one row of the 

FRF matrix when you have a roving hammer and you will fill 

one column of the FRF matrix if you have a roving response 

transducer.  This is shown schematically in Figure 1 along with 

the reciprocal measurements. 

 

Anytime you run a modal test, you always have to be careful to 

avoid having the reference located at the node of a mode.  This 

is the most important consideration. 

 

RECIPROCAL

MEASUREMENTS

RECIPROCAL

MEASUREMENTS

 
Figure 1 – FRF Matrix Showing Roving Impact (Red Row)  

and FRF Matrix Showing Roving Response (Blue Column) 

 

 

In order to understand this,  a few very basic equations 

describing the FRF equation need to be presented.   

Now a single FRF “ij” measurement can be written in 

summation form in terms of residues as 
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But in this residue form of the equation, it is not so easy to 

realize what the residues imply.  But if I write this equation 

using the residues expressed as mode shapes then 
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The resulting FRF for this equation might look like the FRF 

shown in Figure 2 where the two forms of the FRF formulation 

are shown (and colored in blue and red for clarity of the 

individual mode contribution for each term of the FRF 

summation); in Figure 2, the equations above have been 

expanded for the first two terms of the summation to show the 

contribution that each mode makes to the total FRF.  The 

important thing to realize is that the FRF is made up of the 

summation of each of the individual modes.   

 

When we write this equation in terms of the mode shapes, it 

becomes very clear how the mode shapes of the structure have a 

strong influence on the amplitude of the FRF for a particular “ij” 

term.  The residue is basically developed from a scaling 

coefficient, q, and the value of the mode shape at the output 

response location times the value of the mode shape at the 

input excitation location.  With that said, I think it becomes 

very clear that if either the output location or input location 

mode shape value is zero (that is, located at the node of the 

mode), then there will be no amplitude for that particular mode. 
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Figure 2 – FRF Summation  

 

So now that we realize this, it is also clear that any time we 

measure at the node of a mode then there will be no apparent 

amplitude in the FRF measurement related to that mode – and it 

doesn’t matter if it is the excitation or response location.  

 

And I should also point out that if the reference is located very 

close to the node of the mode then the amplitude of the FRF will 

be very low for that particular mode.  Actually the 3rd mode 

shown in green in Figure 2 is a prime example of that.  That 

amplitude is low compared to the 1st and 2nd mode because the 

value of the mode shape for the input and/or output location is 

much smaller than that for the 1st  and 2nd mode; that’s why the 

amplitude is much lower. 

 

But as far as the original question you asked, what really matters 

is the reference location - whether it be the stationary hammer as 

a reference or the stationary accelerometer as a reference.  If the 

reference is located at the node of a mode then there will be no 

apparent response in the FRF for that particular mode.   

 

Now in order to conduct a good modal test, we need to have a 

pretty good idea of what the mode shapes are for all the modes 

of interest so that a proper reference can be selected.   

 

But many times in more complicated structures or structures 

with very directional modal characteristics, it may be very hard 

if not impossible to select one location where it is easy to see all 

the modes from that one reference location.  That is why so 

many times, we conduct modal tests with several references.  

This way we have the ability to see all the modes from a 

collection of different reference locations.   

 

Often times, we will use 3 accelerometers when we have a 4 

channel acquisition system (or 7 accelerometers if we have an 8 

channel acquisition system), and perform a roving hammer 

impact modal test with stationary accelerometers at different 

locations on the structure.  That way we have a much better 

chance to make sure that we can see all the modes from all the 

different reference locations.   

 

Hopefully we can pick 3 (or 7 locations) from which all the 

references are not located on the nodes of modes for all the 

references.  In fact you might think that it is almost impossible to 

pick that many references and have all of them be on the node of 

a mode all simultaneously. 

 

Well as luck might have it, there was one modal test I saw where 

there were 9 references used with a roving impact hammer. Your 

first thought might be how could you possibly have a problem 

with missing a mode with 9 references.  And wouldn’t you know 

it, that all 9 accelerometers all happened to be all located on the 

node of one of the modes of the structure.  Figure 3 shows this 

very unbelievable test that was run where, with 9 references, one 

of the modes of the structure was missed. 

 

 
Figure 3 – Plate Mode Missed with 9 References  

 

 

I hope that this helps to explain that you need to be very careful 

when identifying the reference for a modal test.  If you have any 

other questions about modal analysis, just ask me.
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let‘s discuss this further

 
 Illustration by Mike Avitabile 
 

So now I have another question…if the hammer impacts a node, then there is no response elsewhere?   
That seems incorrect.  OK… let’s discuss this further. 

 

So last time we discussed how the roving hammer test is a great 

way to run a modal test but that you needed to be very careful to 

not place the  reference accelerometer at the node of a mode.  

We also discussed that it didn’t matter how many points we 

impacted if the reference transducer was at the node of a mode 

then we would not see that mode. 

 

So in answering the question I also stated that the same would be 

true for a stationary hammer test with a roving accelerometer.  

You still needed to make sure that the stationary hammer input 

at the reference location was not at the node of a mode – or else 

you would not see any response from that mode. 

 

After we finished discussing it you seemed to not be comfortable 

with the fact that you could hit the structure at a node point and 

the structure would not move at that point and you mentioned it 

was counter-intuitive to you.  So let me give a few more 

examples to try to get you more comfortable with this fact. 

 

I will use a simple free-free beam and a simple plate to try to 

drive home some additional points for you.  Let’s first recall the 

FRF equation we wrote last time which can be in terms of the 

residues or mode shapes.  But in this residue form of the 

equation, it is not so clear so I prefer the mode shape form of the 

equation because it is there that you can clearly see the effect of 

the mode shape on the peaks in the FRF for each of the modes. 
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This equation is very clear in that the amplitude of the FRF is 

very much controlled by the value of the mode shape at the 

output response location times the value of the mode shape at 

the input excitation location. 

 

So now let’s consider a simple free-free beam.  A series of 

measurements will be made at 15 equispaced points along the 

length of the beam.  The measurements will be made and then 

the FRFs will be plotted in a waterfall plot so the shape can be 

clearly seen.  And in order to see this, it is very important that 

we use the imaginary part of the FRF to map the mode shape.  

We may want to recall that the imaginary part of the FRF will be 

a peak at the natural frequency while the real part of the FRF 

will be a zero; this is true only for displacement and acceleration 

measurements.  Now FRF measurements were made over a wide 

frequency band but I want to zoom in to just around the resonant 

frequency for the first and second mode for this free-free beam. 

 

Figure 1 (blue) shows the waterfall plot of the imaginary part of 

the FRF for all 15 measurments with a frequency band around 

the 45 Hz first mode.  Figure 2 (red) shows the same plot but 

with a frequency band around the 140 Hz second mode.  In both 

plots the peak of the imaginary part of the FRF is circled for all 

the measurements made on the beam.  In Figure 1 (blue), it is 

very clear that the shape is that of the first free-free flexible 

mode of the beam whereas Figure 2 (red) very clearly shows the 

second free-free flexible mode of the beam.  The most important 

thing to note right now is that the amplitude of the imaginary 

part of the FRF for mode 1 changes sign from positive to 

negative back to positive as you traverse down the length of the 

beam.  At some point it crosses zero.  At this location, there is 

no response for that particular mode.  And it doesn’t matter if it 

identified with a hammer input or accelerometer output.   

The FRF will be zero at that point for that mode. 
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Figure 1 Waterfall plot of the Imaginary Part  

of the FRF showing the First Mode Shape 

 

 
Figure 2 Waterfall plot of the Imaginary Part  

of the FRF showing the Second Mode Shape 

 

So the node of the mode is a special location where there is no 

output for that mode.  And it doesn’t matter if you measure with 

an accelerometer or impact with a force hammer – there is no 

response because the value of the mode shape at either the 

output response point or at the input excitation point is zero and 

therefore there will be no peak amplitude for that mode.  But 

there may be some response at that point due to the other modes 

of the structure which may not be related to the node of those 

other modes. 

 

So in the case of the roving hammer, if the accelerometer is 

located at the node of a mode then it doesn’t matter how many 

points are used for the hammer excitation, there will be no 

contribution to the response due to that particular mode.   

 

And the converse is also true.  If you have a stationary input that 

is located at the node of a mode, it doesn’t matter how many 

points are measured with the response accelerometers, there will 

be no contribution to the response due to that particular mode. 

 

 

 

So now let’s extend it from the beam to a plate to see the same 

effect.  A rectangular plate has been used in previous articles 

and is used here for this example.  Figure 3 shows 6 FRF 

measurements around the perimeter of the plate where the first 

peak is related to the first bending mode of the plate (blue) and 

Figure 4 shows the same information but highlights the second 

mode of the plate (red). 
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Figure 3 Plate Bending Mode 
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Figure 4 Plate Torsion Mode 

 

So in looking at Figure 3 and 4, the same statements can be 

made regarding the node of the mode and the impact or response 

location.  The mode shape can be simply described by plotting 

the imaginary part of the FRF.  The function has positive and 

negative values depending of the mode shape of the structure.  

There must be a zero crossing at some point which corresponds 

to the node of the mode – this implies a point of zero response 

for that particular mode.  And the response is zero at the node of 

the mode whether the measurement is related to the response 

accelerometer location of the hammer impact location – but just 

for that particular mode.   

 

I hope that this helps to further explain these questions you had.  

If you have any other questions about modal analysis, just ask 

me.
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Someone told me they used a Hanning window for an impact test.  That doesn’t seem right…Can that distort data?   
Now… sit down and listen carefully so you don’t make this mistake. 
 

 

So…where do I start here???  First, let’s just try to understand 

how things like this happen.  Many times people take 

measurements in very difficult situations where the measurement 

conditions are not optimal to say the least.  There are many 

instances where measurements are not the pretty textbook 

figures that we all wish we had for our measured frequency 

response functions. 

 

There are plenty of situations where the system is in a very noisy 

environment, or the measurement transducers are not optimal, or 

the excitation is not sufficient to provide a measurable response, 

etc.  And these are just some of the issues we face taking 

measurements.  And please let’s not forget that there may be 

nonlinearities (our arch-enemy) and complicated damping 

mechanisms (our arch-enemy’s best friend) that all compound 

the measurement situation. 

 

And because we have these types of difficulties and because we 

see them so often, we come to expect that all of our 

measurements are always going to have all of these difficulties.  

And then it becomes the rule, rather than the exception, that we 

come to expect this is just the way a measurement should be all 

the time. 

 

But is that really so?  Do all of our measurements really have 

such poor qualities all the time?  Or is it just that we have 

become complacent and assume that’s the way it should be? 

 

So let’s start by looking at the measurement that you provided in 

Figure 1.  Oh my…..that is a really bad looking measurement.  

And at first glance I know that all of us could argue that this is 

from a nonlinear system, with a complicated damping 

mechanism, with a noisy environment with transducers that are 

the best that can be used to obtain this measurement and so on. 

 

MODE

 
Figure 1: An example of a really bad measurement 

 

But the real question is maybe why is this measurement so poor? 

Is it really from a nonlinear system?  Is there really a 

complicated damping mechanism? Is there really a noisy 

environment?  Are the transducers really that bad? 

 

Or are all these just easy excuses that we can say because we 

really don’t know or have just become accustomed to such poor 

measurements and assume “that’s just the way it is”. 

 

I can’t really comment on the measurement above other than you 

mentioned that it was from an impulsive excitation and that the 

measurement was made with a Hanning window applied – 

because that’s the way it has traditionally been done.  So the 

question is if this is really the right way to make this 

measurement. 

 

So let’s procede with a typical impact measurement on a general 

structure; actually this is a composite rib stiffened spar type 

structure that has been used before in other measurement 

situations.  So the first thing we will do is to make a 

measurement with what would be the appropriate measurement 
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dignal processing parameters and then retake the measurement 

but use a Hanning window to show dramatic differences. 

 

This first frequency response measurement (FRF) is shown in 

Figure 2 along with the coherence and the input excitation and 

output time responses.  Now for this particular configuration, 

there really isn’t any need to use a window on the input or output 

because the measurement is completely observable within the 

sample interval and satisfies the periodicity requirement of the 

fourier transform process.  Notice that the coherence is very 

good and the FRF is also very good for this measurement.   

And just to be clear if any window was to be applied then it 

would be the exponential window for the response. 

 

IMPACT FORCE
(FIRST 25% OF BLOCK)

RESPONSE
(FIRST 25% OF BLOCK)

COHERENCE

FREQUENCY RESPONSE FUNCTION

 
Figure 2: An example of an impact measurement with appropriate 

signal processing parameters applied  

 

 

Now… let’s make a measurement and apply a Hanning window 

on the measurement which is shown on the left column in Figure 

3.  Now please make sure you understand this is not the way to 

take this measurement but I am going to show exactly how bad 

this measurement can be.  The input excitation and time 

response are the same but you can see that the FRF and 

coherence for this measurement are terrible – and terrible is an 

understatement of how bad this measurement actually is. 

 

But what is confusing is that the time signals really don’t look 

terrible by any means.  Well what you have to realize is that the 

signals that are shown are the raw measured data and do not 

show the effects of the windows on the data.  So it is not really 

showing how the data has been affected by the Hanning window 

applied in the time domain – but certainly the frequency domain 

shows a dramatic degradation of the measured FRF and 

coherence.   

COHERENCE

FREQUENCY RESPONSE FUNCTION

IMPACT FORCE

RESPONSE

IMPACT FORCE

RESPONSE

 
Figure 3: An example of an impact measurement with totally 

inappropriate signal processing parameters applied  

 

 

In order to understand what happens when the Hanning window 

is applied, the right column in Figure 3 shows the two time 

signals with the Hanning window also displayed with the 

window appropriately scaled to visually compare with the 

measurements made.  Now if you look closely at Figure 3 you 

will quickly see that the Hanning window is going to seriously 

attenuate the beginning of the time record of the input excitation 

and output response – and in fact will essentially weight all the 

important information regarding the transient response to zero 

thereby leaving a measurement which is essentially a 

measurement of the noise in the system.  This now becomes very 

clear why the FRF and coherence in Figure 3 are so poor – the 

measurement has been essentially reduced to noise. 

 

But if you weren’t paying attention or have been misguided to 

think that this is just the way measurements typically look, then 

you might think that this was “the best measurement that can be 

obtained under the circumstances”.  But the reality of the 

situation here is that the signal processing parameters to process 

the data have been totally, incorrectly specified and the 

measurement has been completely distorted by this. 

 

I understand that there are measurement situations where there 

are difficulties due to all the reasons mentioned but that does 

not give you the right to inappropriately process the data and 

cause additional errors “because you think it doesn’t make a 

difference”.  In the case shown here, all the distortion was due to 

incorrectly processing the data and, in so doing, totally good 

data was converted into terrible, ugly measurements that are not 

acceptable under any circumstances. 

 

I hope that this helps to explain the questions you had.  If you 

have any other questions about modal analysis, just ask me.
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An eigensolution gives us frequencies.  But how do we get mode shapes?   
Now let me explain this. 
 

 

OK.  I think the first thing that we have to say is that the 

eigensolution actually gets us both the frequencies and mode 

shapes.  The mathematical process of the eigensolution can be 

performed a number of different ways.  There are what are 

called direct techniques and indirect techniques for the solution.   

 

For smaller matrices, the direct techniques decompose the set of 

equations to get all of the eigenvalues and eigenvectors.  

Techniques such as Jacobi, Givens and Householder are 

common methods that are used.   

 

But when the matrices get larger, like those of the large finite 

element model that are generally developed today, then an 

indirect technique is used where only a few of the lower order 

modes are obtained.  Techniques such as Subspace Iteration, 

Simultaneous Vector Iteration and Lanczos are some of these 

indirect techniques that are used. 

 

But I really don’t want to make this article a math class or really 

get into the details of the solution sequence.  So let’s discuss the 

eigensolution and what we are attempting to do when we find 

the frequencies and mode shapes.  I want to explain it so it 

makes sense to you. 

 

So let’s write the eigensolution in general form. 

 

        0xMK   (1) 

 

The first thing that I want to say is that the eigenvalues can be 

found from the determinant of the matrix.  Well, that 

determinant will really be nothing more than a high order 

polynomial whose roots are the eigenvalues.  Now numerically 

those can be obtained from any root solving algorithm such as 

Secant Method or Newton-Rapson Method as a few well known 

approaches.   

So the eigen equation and a typical polynomial that may result is 

shown in Figure 1.  The function zero crossings are the roots 

where the polynomial is zero. 

 

 
Figure 1: Graphical Representation of Roots of Determinant 

 

Now that gives us the frequencies of the set of equations and the 

next step is to determine the mode shapes.  Well, if you take the 

first eigenvalue,  = 1
2
, and substitute it into the eigensolution 

equation, then you can solve for the {x1} vector because you 

know [M], [K], and 1
2
.  The solution for that vector is 

straightforward using any decomposition scheme such as Crout-

Doolittle, Cholesky, LDL decomposition to name several well 

known popular approaches. 

 

So that {x1} vector is actually the mode shape for that particular 

frequency that was used to solve the set of equations.  Figure 2 

shows this schematically for the first free-free mode for a simple 

beam; note that blue is used to identify this as the first mode of 

the system.  And if you follow through with the equation in 

Figure 2 you will notice that the elastic forces are equal to the 

inertial forces in the way they are written.  We could also say the 

the beam is in dynamic equilibrium at that frequency which is 

1
2
 .  And if you looked at the system from an energy 

perspective you could see why there are node points where the 

system oscillates about those points and there is equal positive 

and negative parts of the shape to keep it in equilibrium.   
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Figure 2: Schematic for eigensolution for mode 1  

 

 

Of course now we need to do the same thing for the second 

frequency.  If you now take the second eigenvalue,  = 2
2
, and 

substitute it into the eigensolution equation, then you can solve 

for the {x2} vector because you know [M], [K], and 2
2
.   Now 

the {x2} vector is actually the mode shape for the second 

frequency.  Figure 3 shows this schematically for the second 

free-free mode for a simple beam; note that red is now used to 

identify this as the second mode of the system.  Again let’s 

follow through with the equation in Figure 3 in red you will 

notice that the elastic forces are equal to the inertial forces in the 

way they are written.  We could also say the the beam is in 

dynamic equilibrium but now at the frequency which is 2
2
 .  

And just like we did with mode 1, we will see that the node 

points are locations where the system oscillates about those 

points and there is equal positive and negative parts of the shape 

to keep it in equilibrium. 

 

We then continue this process for all the modes of interest.  Of 

course the way I explained it may not be the way the different 

solution algorithms actually decompose the matrices and obtain 

the final answer.  But the way I have explained it will probably 

give you a much better overall idea how the frequencies and 

mode shapes come from the system set of equations. 

 

 

 
 

Figure 3: Schematic for eigensolution for mode 2  

 

 

So it is important to realize that the eigensolution is used to 

obtain what is called the eigenpair – that is, the frequency and 

the vector associated with the eigen-equation.  This is in fact the 

mode shape. 

 

Now another thing to realize is that the mode shapes are linearly 

independent and the mode shapes are also orthogonal with 

respect to the mass and stiffness matrices.  This is a by-product 

of the eigensolution.  This is a very important fact that is often 

used when we check our finite element model with measured 

experimental data.  We perform a type of orthogonality check, 

often called a pseudo-orthogonality check, to compare the 

measured experimental vectors with those obtained from the 

eigensolution. 

 

I hope that this helps to explain the questions you had.  If you 

have any other questions about modal analysis, just ask me.
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Do you need to mount triaxial accelerometers at all locations?  That can result in more channels needed and more cost.   
Let’s discuss this and think about it. 
 

 

Well, let’s talk about this as well as a few other things that relate 

to how your structure is instrumented. 

 

First, let me say that triaxial accelerometers are very useful in 

many, many applications.  They allow for a very compact 

package to be used to monitor all three directions from one 

physical mounted transducer on a structure.  Yes, I do use them 

but as it turns out I really don’t use them all the time and there 

are many cases where I absolutely will not use triaxial 

accelerometers and we will discuss some of the reasons why. 

 

First of all, we all realize that we can “make” a triaxial 

accelerometer by mounting three separate accelerometers onto 

one mounting block.  Now of course this is not as elegant as a 

triaxial accelerometer, but it is one simple and economical way 

to accomplish this.  And of course it also means that you can buy 

three separate accelerometers which are just about the same 

price as the triaxial accelerometer.  But remember that there is 

one different distinction. 

 

When I mount the triaxial accelerometer on my structure under 

test and I really only need to measure one direction, then I have 

wasted two accelerometers for all practical purposes.  And if 

someone else needs to make some measurements, you have three 

accelerometers tied up for each measurement location whether 

or not you use all three.  Now if you had three separate 

accelerometers then you wouldn’t be tying up all the 

accelerometer inventory!  Now this may sound silly but when 

you don’t have a lot of accelerometers and all of them are 

triaxial, then you have tied up a lot of instrumentation if you 

really only needed a single axis accelerometer.  I have seen some 

laboratories that have bought all triaxial accelerometers and 

when there are multiple tests to be run, all the instrumentation is 

tied up on one test. 

 

OK.  So now let’s discuss a few more things.  Let me first start 

with a simple free-free beam test.  (You know that all of us 

“educators in academia” all test beams all the time.)  So if we 

want to test a simple beam and find the modes in transverse 

bending in only one direction, then we would have a test set up 

with something like that shown in Figure 1 where there are 15 

measurement locations along the length of the beam. 

 

FIRST FREE FREE FLEXIBLE MODE

SECOND FREE FREE FLEXIBLE MODE  
Figure 1: Schematic Planar Beam Modal Test  

 

Now if all I had was traxial accelerometers, I would be tying up 

45 measurement transducers and really only needing 15 of those 

for the measurement at hand.  Now of course you could argue 

that I might need to also test the other planar beam bending 

direction too and would need another 15 accelerometers for that.  

But I still would have 15 measurement transducers that are not 

utilized if I really didn’t need the axial direction too. 

 

And again you would probably say that this is an academic 

situation and you may really need all those triaxial 

accelerometers for a typical application.  So I will agree but let 

me show a few cases where you might want to rethink this.   
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Recently we have done quite a few big wind turbine blade modal 

tests where the main interest is the bending in two directions 

referred to as the flapwise and edgewise modes of the anchored 

wind turbine blade.  (And so realize this is nothing more than a 

“really big” beam for all practical purposes.)  Figure 2 shows the 

schematic for a 9 meter wind turbine blade test with some 

accelerometer configurations.  Notice that there are only 

measurements in 2 directions (x and y) because the axial 

direction is really not of interest.  This test was run with a very 

portable 8 channel system with 7 accelerometers and one 

hammer.  When the test was run the first set of measurements 

were made with 7 accelerometers at 7 points but all in the x-

direction.  Then the accelerometers were all reoriented to the y-

direction for the second set of measurements.  Eventually the 

accelerometers were all roved to all the points of interest.  Now 

one advantage of using single axis accelerometers here was that 

all the cables remained attached to the accelerometer and DAQ 

as they were reoriented and then roved to all points.  In this way, 

there was never a concern that there were any cable swaps 

resulting in a mismatch between accelerometer location or 

direction.  Had all triaxial accelerometers been used then there is 

a much greater possibility of getting cabling screwed up. 

 

 
Figure 2: Schematic for 9 Meter Wind Turbine Blade Test  

 

Another wind turbine blade test was performed for a turbine 

blade that was in the 50 meter long range.  This test also was 

only really interested in the flapwise and edgewise modes of the 

blade but several argued that it may be necessary to also 

measure the axial direction too.   Figure 3 shows the blade test 

with cabling configuration and expected mode shapes for the test 

along with a related measurement. 

 

But the axial direction is very stiff compared to the two flap and 

edge motions and the displacement is very small.  Now I will say 

that in this test we actually did mount triaxial accelerometers just 

in case we finally needed to measure all three directions but 

fortunately many realized that there was very little to measure in 

the axial direction.  But there was another very important 

concern that many never really consider.  

 
Figure 3: Schematic for Large Wind Turbine Blade Test  

 

The flap and edge motion is large and an accelerometer 

sensitivity of 100 mv/g is very suitable for the motion in these 

two flexible directions.  However, the motion is very small in the 

axial direction and a sensitivity of 1V/g or higher is necessary in 

order to make a good measurement.  The problem with a triaxial 

accelerometer is that the sensitivity in all three directions are 

nominally the same – so the measurement in the axial direction 

with a triaxial accelerometer with 100 mv/g would be plagued 

by noise and poor signal strength and for all practical purposes 

would not provide a suitable measurement at all!   

 

So here is where I end this article with the very clear statement 

that for this last test scenario, I would be much better off with 

three separate accelerometers with sensitivities that are suitable 

for the motion to be measured for the test of the large wind 

turbine blade.  A triaxial accelerometer would not be the wise 

choice for this test with everything considered.   

 

But I will point out that we did mount triaxial accelerometers for 

this test but it was mainly to allow us to pre-cable the entire 

blade before it was hoisted up on the test stand for the test.   

And yes I did have one accelerometer direction that we never 

measured during the test.  And in fact we only measured two 

directions with flap and edge for test and never wired up the 

axial accelerometer channel for any of the measurement 

locations.  And if I had wired up all three directions of each 

triaxial accelerometer, then I would have needed more DAQ 

channels than what were available on my acquisition system 

used.  But I used the triaxial accelerometer “just in case”!!! 

 

I hope that this helps to explain the questions you had.  If you 

have any other questions about modal analysis, just ask me.
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Does gravity come into play when testing to find frequencies?  Does orientation make a difference?   
This is something that needs to be discussed. 
 

 

There are several different things to discuss in regards to this.  

There are several different things that may come into play when 

performing a modal test and we need to talk about this for sure. 

 

Generally, from a theoretical standpoint, the effects of gravity 

will not have an effect on the frequencies and mode shapes for 

most of the situations we face.  That is because the equations we 

write for the definition of the system are written about a static 

equilibrium standpoint and the effects of gravity are not 

necessarily an influence (but in a moment I will discuss practical 

situations where this is not necessarily true). 

 

Let’s consider a simple beam as shown in Figure 1.   Now when 

we make the finite element model of this beam, it really doesn’t 

matter which way we orient the beam relative to gravity and 

there generally will not be any difference in the frequencies if 

we chose the cross section orientation on the top right or the 

cross section orientation shown on the lower right.  The 

frequencies computed will be the same because gravity is not 

considered and we are assuming that the structural configuration 

is evaluated about the static equilibrium point and that there is 

essentially no significant deformation of the structure due to the 

effects of gravity.  (At least that’s what we are assuming when 

we make the finite element model.) 

 

But it is that last statement that needs some additional 

considerations.  Figure 2 shows several configurations that may 

need to have some additional discussion.  The first configuration 

is the one shown in the middle section in Figure 2.  Here the 

beam is assumed to be oriented along the neutral axis and there 

is no significant deflection of the beam.  In this case the beam 

orientation really makes no difference at all.  The tested 

frequencies will not be affected by the orientation of the beam 

relative to gravity. 
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Figure 1: Schematic of Beam for Modal Test  

 

 

 

BEAM ALIGNED WITH HORIZONTAL NEUTRAL AXIS

BEAM BOWED UPWARDS DUE TO PRELOAD

BEAM BOWED DOWNWARDS DUE TO GRAVITY  
Figure 2: Schematic of Beam in Several Configurations  
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But now let’s consider the configuration in the upper portion in 

Figure 2.  In this case an axial load has been applied to cause the 

beam to bow upwards.  When this happens then there really is an 

effect on the stiffness of the beam.  The stiffness is increased 

because of the upward bow of the beam.  And we know that this 

is expected to be true.  The arched configuration is actually 

stiffer than the flat configuration.  Just consider any bridge span 

and the girders are always slightly arched because that is a stiffer 

configuration.  So if a compressive preload is applied and the 

beam deflects upward, then this arched configuration is slightly 

stiffer than the nominal undeformed configuration. 

 

So the lower configuration in Figure 2 shows a deformation due 

to the gravity load.  It stands to reason that the deflection due to 

gravity will have an effect on the stiffness especially for very 

flimsy lightweight configurations such as wind turbine blades.  

Now if the beam is rotated and the stiffer cross section is now 

taking the load due to gravity, then the deflection will be 

significant lower and the effects of gravity are minimized 

significantly. 

 

So theoretically, the gravity load does not create an effect 

because the assumption is that the deflection is small and the 

gravity effects are insignificant.  But if the static deflection is 

more pronounced due to the flexible nature of the structure then 

the assumption may not be a reasonable one to make.  Then the 

orientation of the beam can have a significant effect. 

 

So when might this become a concern.  Well, for large wind 

turbine blades, the structure is very flexible and the orientation 

of the blade cross section (flap vs edge) can have a significant 

effect on the effective stiffness of the blade due to the 

orientation of the blade with respect to gravity. 

 

So Figure 3 shows two wind turbine blade configurations and 

both are sensitive to the orientation of the blade with respect to 

gravity.  The turbine blade is strongly affected by the orientation 

with regards to gravity and the natural frequencies will be 

affected by the orientation.  Looking at the blade it is very 

obvious that there is a difference in the two orientations.  The 

flap (weaker axis) direction is much more sensitive to the effects 

of dead weight than the much stiffer edge direction.   

 

But there is another consideration that many often overlook.  

The dead weight loading causes a deflection in the structure as 

expected.  But that dead weight deflection may cause some 

significant loads on some of the internal members – these loads 

may cause enough deflection in the spars and ribstiffening 

internal structures that they are deflected into a configuration 

that is much different than the nominal dimensions on the design 

drawings.  These deflections will basically cause the internal 

stiffening members to have a much different stiffness that that of 

the nominal dimensions based on the design drawing 

dimensions.  This is very similar to the preloaded beam shown in 

the upper portion of Figure 2 which is much different than the 

nominal dimensions. 

 

 
Figure 3: Schematic for 9 Meter Wind Turbine Blade Test  

 

The ribstiffened airfoil panel configuration in Figure 4 is a very 

good example of a cross section where this may be of concern; 

the sketch on the right shows a simple wing configuration where 

the left wing (blue) has essentially no deformation due to gravity 

but the right wing (red) shows significant deflection due to 

gravity.   For this thin, flimsy panel configuration (red), the dead 

weight or structural loading can cause deflections which may 

warp the rib stiffened interior structural panels – and this loading 

may cause significant deflection to result in a geometry that is no 

longer following the nominal dimensions identified on the CAD 

drawings.  Therefore the stiffness of these internal ribstiffening 

members may be very sensitive to the orientation of the test 

structure when considering gravity loading.  

 

 

 
Figure 4: Ribstiffened Panel Airfoil Configuration  

 

So usually we don’t have to consider the effects of gravity unless 

these effects cause significant deflections and seriously  change 

the geometry defining the finite element model.   

 

I hope that this helps to explain the questions you had.  If you 

have any other questions about modal analysis, just ask me.
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So I am still confused about the MAC?  What is a “good” value for MAC?   
Now I am going to tell you things you may not want to hear! 
 
 
This is a subject that I find many people have a hard time 
understanding and accepting.  Many would like to act like an 
ostrich and “stick your head in the ground” and hope that the 
problem will go away.  Well…I am about to show some things 
here that many people have a hard time accepting.  But first let 
me just start with a few words concerning correlation and 
orthogonality because there is a big difference between the two 
and many would like to think that the Modal Assurance Criteria 
(MAC) is the same as the orthogonality check – but in fact they 
are dramatically different. 
 
As a formality, the two equations describing the MAC and 
Orthogonality, respectively, are: 
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And the first thing to point out is that the MAC is really nothing 
more than a vector dot product that is scaled such that the values 
will range between 0 and 1.  And if the value of the MAC is 
close to 0.0 then we say that there is little correlation between 
the two vectors.  And if the value of MAC approaches 1.0 then 
the two vectors are very similar.  But you notice that the word 
orthogonal was never used.  Only the word similar was used. 
 
Now the orthogonality is a mathematical property that results 
from the eigensolution of the mass and stiffness matrices that 
describe the system.   A by product of the eigensolution is that 
the vectors are “linearly independent” and the vectors are 
“orthogonal with respect to the mass and stiffness matrices 
simultaneously”.  So the orthogonality is a property that is 
guaranteed as a result of the eigensolution.  The MAC has no 
such guarantees with that calculation. 

The orthogonality check is a much more rigorous check that is 
performed and often times it is mandated as part of the 
certification process in the aerospace and military applications.  
The analytical/finite element model mode shapes are often 
compared to the measured experimental vectors from test.  The 
governing bodies have mandated that the mass orthogonality of 
similar vectors must be greater that 90% or 95% and that 
different vectors must have values no higher than 5% to 10%.  
That is to say that the diagonal terms of the mass orthogonality 
matrix must be greater than 90% and all the off-diagonal terms 
must be lower than 10%.  Now in these industries, the MAC is 
not typically used for the validation of the model because the 
orthogonality is a better correlation identifier. 
 
Now what about other industries.  Well there really isn’t a 
mandate or governing body so many times companies or 
industries have “good practices” that are generally followed.  
The MAC really resulted from a test environment where test 
engineers wanted to identify if the measured shapes from one 
test to the next were similar, or one prototype was similar to a 
production configurations or … (on and on with many different 
ways that we can use the MAC).   
 
So why didn’t they use the orthogonality check.  Well, 
remember the MAC started from the testing guys and back 30-
40 years ago, the test guys didn’t have access to a mass matrix;  
only a few of the analytical engineers had access to very 
primitive finite element modeling tools.  Plus the MAC was an 
easy calculation to perform.  Let’s face it, they didn’t have the 
mass matrix and didn’t want to bother with the much more 
intensive mass orthogonality check.  The test guys were just 
trying to get some simple comparisons. 
 
But then everything “grew up” and all of a sudden we had 
people using the MAC to correlate the finite element mode 
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shapes with the measured test data.  And all of a sudden we had 
people “correlating” models using MAC and then they started to 
use some of the same general criteria that were developed with 
orthogonality checks. 
 
But often times I will hear people saying that they will accept 
MAC values for correlated vectors with values that are lower 
than 90% and sometimes accept correlation values as low as 
80% because “we are working with real structures and not 
simple academic examples”.  Well I am not so sure that I agree 
with that mentality because there is no mass matrix involved in 
the MAC calculation. 
 
I want to show two examples to show some MAC values that 
result from modes that are clearly not similar at all.  The first 
case is to compare the rocking rigid body mode of a free free 
beam with the first cantilever mode.  Figure 1 shows that there is 
about 60% similarity indicated by MAC. 
 

Free-Free Beam 
Mode Shapes

Cantilever Beam 
Mode Shapes

 
Figure 1: Mode Shapes for Free-Free Beam (left) and  

Cantilever Beam (right)  
 
Good Golly Miss Molly!  These two vectors have nothing to do 
with each other but MAC shows 60% correlation.  How could 
that possibly happen.  Well if you look lower right inset in 
Figure 1, you will see that the values of the cantilever mode 
shape from the base to midspan of the beam are very small and 
their contribution in the MAC calculation are very small.  And if 
you look at the mode shape from the midspan to the tip of the 
beam, the values are much larger and with the naked eye you can 
see that the rocking rigid body mode looks quite similar.  And 
that is what the MAC is indicating.  But we know these two 
modes are not similar at all.  Now you may argue that I have no 
right to compare these modes, but I did just to illustrate what a 
60% MAC indicates.  How bizarre is that !!!!! 
 

Now let’s proceed on with two cantilever beams – one with a 
uniform mass distribution and one with an additional lumped 
mass at the center of the beam (20% of the weight of beam).  
Now if I looked at the MAC between Mode 1 and Mode 2 with 
the uniform mass distribution, the MAC will show little 
correlation as expected.  But when the MAC is performed on the 
beam with the additional lumped mass, the MAC between Mode 
1 and Mode 2 is almost 80%.  Missy Molly cannot believe this at 
all.  But if you look at the uniform beam modes in the upper 
right portion of Figure 2 and compare them to the modes in the 
lower right portion in Figure 2, you start to see the same type of 
issue as discussed in the first case.  The mode shape values close 
to the built in end have very little contribution to the MAC.  And 
the values of the shape towards the end of the beam for Mode 1 
and Mode 2 look very similar.  And that is what MAC is 
indicating again.  But we know that these two modes are 
orthogonal to each other but the MAC completely breaks down 
here.  However, the mass orthogonality clearly identifies the 
vector status because the proper mass distribution was included 
in the orthogonality check.  The MAC has no way to account for 
the uneven mass distribution for this case.  

 

MAC ~ 0%

MAC ~ 80%

1

2

3

1

2

3

 
Figure 2: Cantilever Beam Mode 1 and Mode 2  

with Uniform Mass Distribution and Center Lumped Mass  
 

So I hope you can see that the MAC values can be deceiving.  
The MAC has no mass matrix.  That is its biggest strength and 
its biggest downfall.  Now don’t get me wrong…I use MAC all 
the time to help with sorting out model and test results.  But I am 
very leary when the supposedly “correlated modes” have MAC 
values that do not have very strong indicators.  
 
I hope that this helps to explain the questions you had.  We will 
likely talk more about MAC in a future article.  If you have any 
other questions about modal analysis, just ask me.
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So what is the best way to make a free-free test set up … because nothing is really free-free.   
Alright … let’s discuss some non-traditional ways to do this. 
 
 
Alright … so many people always ask me what is the right way 
to set up for a free-free test.  Well there is no right way but 
certainly there can be very poor ways to do this.   
 
The most common way is to use bungie cords (or something 
similar depending on the weight of the structure).  I have seen 
missiles supported from bungie cords as well as large wind 
turbine blades.  I have seen airbag systems deployed in many 
different instances.  Well, I could go on and on with all the 
different ways we could do this.  But the bottom line is that you 
have to make sure that the boundary conditions are not intrusive 
on the system under test.  The boundary condition should have 
little effect on the flexible modes of the system.  When this is 
done, then we can say that the test set up has very little effect on 
the flexible modes of interest in the test structure. 
 
But we actually need to check that to make sure that the test set 
up does not have an effect on the flexible modes of the system.  
We need to set the structure up with one set of support locations 
and then retest the structure with a different set of support 
locations or change the stiffness of the support at the support 
location (possibly by using twice as many bungie cords or 
changing the pressure in the air bag support system for instance).  
If the flexible modes of the system do not change appreciably 
then the support condition likely has little effect.  But there 
might still be some effect from the boundary condition and it 
needs to be carefully checked. 
 
So as an example, I have two structures that were recently tested 
and some very non-traditional boundary conditions were used.  
The first is a smaller lighter weight structure that has some very 
closely spaced frame bending and torsion modes whereas the 
second structure is a much heavier anchor plate used for some 
shock response spectrum testing work. 
 

The support for the first structure was actually inspired from a 
phone conversation with a close colleague where he had 
mentioned in class that you could use almost anything for an 
isolation system.  A student asked what extremes could be taken 
and he quickly, as a funny remark, said “I don’t care if you use 
marshmallows if you want”.  Well hearing that I decided to test 
one of our standard lab structures with various sized 
marshmallows; very small mini-marshmallows and very large 
jumbo marshmallows were used to perform a modal test for our 
frame structure in the lab.  This particular frame is designed to 
have the first bending and first torsion mode to be very, very 
close in frequency to the point of being almost repeated. 
 
So the first test (Test #1) was set up with 4 jumbo marshmallows 
located at the four mid-section of each leg of the frame which 
corresponds to the node points for the torsion mode.  The second 
test (Test #2) was set up with 10 mini marshmallows distributed 
around the frame.  These two tests were performed and the first 
thing that was noticed was that the bending and torsion modes 
were swapped depending on which of these first two tests were 
used.  So a third test (Test #3) was set up where the jumbo 
marshmallows were located at the corners of the frame. 
 
The rigid body modes were definitely affected by the 
arrangement of the marshmallows.  But it is important to note 
that the flexible modes also showed a little frequency difference 
in each of the different configurations.  So the boundary 
condition does have a little effect on the flexible modes of the 
system.  But more importantly, the sequencing of the bending 
and torsion modes occurred differently in Test #1 and Test #2.  
So it is very important to realize that the support condition may 
have an important effect on the frequencies of the modes as well 
as the organization of the modes.  Notice that Test #2 and Test 
#3 however, have the same organization of the mode sequencing 
for these two tests.  So not only do we need to be cautious about 
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the shifting of frequencies, we also need to be concerned about 
the organization of the modes due to the test set up.  Figure 1 
shows the results of the first two modes for the three different 
test set up configurations along with the photo of the structure 
with marshmallow support and typical drive point measurement 
for each configuration. 
 
 

Test #1 Test #2 Test #3

Mode #1 Mode #1 Mode #1
231.8 Hz 235.7 Hz 229.9 Hz

Mode #2 Mode #2 Mode #2
232.0 Hz 237.5 Hz 233.3 Hz

 
Figure 1: Results of Frame on Marshmallow Support  

 
Now the second structure is a shock response spectrum plate 
structure that is available in the lab.  The structure is mounted up 
onto an air-piston floatation system.  But before the air-piston 
system was available, a very quick modal test was needed to 
validate the model and make some preliminary shock 
predictions.  Without the air-pistons to support the plate, a very 
crude floating support was devised.  Now at a university, money 
is always limited so a pratical, economical support needed to be 
provided.  After some long thought one day, a brilliant idea 
came upon me.  That handy old toilet plunger seemed to be a 
very good possibility for the support of the shock plate.   
 
The hardware store was quite surprised when I appeared at the 
cash register with 6 toilet plungers.  Our 250lb shock plate was 
tested with two configurations – one with 3 plungers located at 
the locations of the air-pistons and one with 6 plungers.   
 
And the results of this test were very good.  The rigid body 
modes in both configurations were very good and the flexible 
modes were similar as seen in Figure 2 (left) for the three 
plunger configuration and in Figure 2 (right) for the six plunger 

configuration.  And the results were so good that a recent visit 
from a European colleague sparked the question where could he 
buy some of these plungers on E-Bay (to which I replied to just 
go down to your local hardware store and buy some brand new 
ones – they really only cost about $5 per plunger and were a 
bargain compared to some of the more expensive configurations 
that people have concocted).  
 

 

 
Figure 2: Results of Anchor Shock Plate on Toilet Plungers  

 
 
So you can see that there can be a number of different and very 
simple mechanisms to create the free-free test configuration.  
But you do need to be mindful of the fact that the boundary 
condition may cause some shifting of the frequency that may be 
important to the further use of the data for subsequent analyses 
and that the boundary condition may have an effect on the 
organization of the different modes of the system as was seen in 
the first test arrangement for the frame structure. 
 
I hope that this helps to shed some light on the questions you 
had.  You can see that from marshmallows to toilet plungers, 
many different support conditions can be used to accomplish the 
support for the system under test – you just need to be careful 
and check your measurements.  If you have any other questions 
about modal analysis, just ask me.
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MODAL SPACE - IN OUR OWN LITTLE WORLD by Pete Avitabile 

So before you end this
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Why sure …
So here is my Top Ten 
list of important items

 
 Illustration by Mike Avitabile 
 
So before you end this Modal Space series … can you provide some last pieces of advice? 
Why sure … So here is my Top Ten list of important items. 
 
 
Well, if you look back over all the articles, there is plenty of 
information that will help you to be careful when you are 
involved in a modal analysis project – whether it be analytical or 
experimental.  But surely there are some really important items 
that you need to be aware of when working in this area.  While 
there are many items that could be listed, I am going to make a 
Top Ten list (because ten seems like a good number to pick).   
So let’s count down these items that I have selected as some of 
the “top” things to watch out for.   
 
So in David Letterman style    “Here we go” 
 
 
Number 10 … 
Why are you performing this test 
Why ask why?  
Well that is because it is the most important question to ask….. 
 
So let me elaborate on this a little bit here.  Many times we 
conduct tests because someone believes that the test will solve 
some problem or that it is a test that someone “thinks” will solve 
a problem.   
 
I have no problem performing a test but many times people 
really do not realize what the test may or may not provide.  That 
is the reason for me to always ask “Why” do you want to run this 
test.  Is there an operating problem?  What additional items are 
expected from the test?  What frequency range is really of 
interest?  How many modes are really of concern?  And on and 
on.  So it is really important to find out as much as you can 
before you run the test to make sure everyone is all “on the same 
page” in terms of what the test will provide. 
 
And I say it that way because I have seen many, many instances 
where people have “claimed” to understand the test and are 

adamant about they want from the test and have been very clear 
as to what they wanted.  But then once the test results are 
provided, then there are questions as to why the test does not 
answer the questions of interest.  And sometimes the disconnect 
occurs because sometimes the words we use may mean different 
things to different people.  So generally I always ask very 
specifically what people want to know and I very specifically 
ask what they mean (with an explanation) by each of the things 
that they have requested from the test.   
 
And as an example I remember a group of young engineers in 
the automotive industry want to “learn” how to do modal testing 
and how to “correlate” to a finite element model for a simple 
brake rotor configuration.  All the right questions were asked 
and it seemed like a very good effort to try to understand the 
very basic material and learn how to take some baby steps to 
understanding what is necessary before undertaking a much 
more complicated system.  OK – so it seemed like all the right 
discussions were made and everything considered. 
 
But before the project started, this goup of young engineers 
wanted to make a presentation to their management as to what 
they were about to undertake – again a very good thing to do to 
get everyone to “buy into” the project.  Everything still seemd to 
be going smoothy until they introduced the project in this way. 
 
“Hello everyone.  This will be a project that will perform testing 
on a brake rotor to correlate to a finite element model.  The 
results of this project will solve our brake squeal problem”.   
And that was the first time they ever mentioned brake squeal.  
So suffice it to say, the squeal problem and what was originally 
discussed, were completely disconnected. 
 
So why ask why?  That is exactly why!!! 
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Number 9 … 
Selection of appropriate test points 
Often times I see people start a modal test and they get all 
wound up selecting all the points for measuring and make an 
elaborate geometry file and get all the coordinates lined up – but 
they haven’t taken a single measurement.   
 
Before you go head over heels making a geometry, go out and 
make a measurement first.  Actually make a few measurements.  
Check different measurement locations and in different 
directions.  This is critical especially if you really don’t know 
what all of the modes of the system might be.  It doesn’t make 
any sense to select all the points until you have some idea what 
all the modes might be for the system.   
 
Often times, the points you think you need to measure may not 
actually be the best locations depending on the modes of the 
system.  Somehow, in my mind, I think that the FRF will tell you 
so much about the structure and frequencies that you really need 
to worry about that first. 
 
Then maybe take just a handful of measurements to make sure 
you really do know what the mode shapes might be for the 
structure.  Once you are sure you know what all the mode shapes 
might be, then you can select many more measurements but with 
the understanding of what the shapes might be.  Too often I have 
seen people identify 100 to 150 points, run the modal test, 
curvefit the data, and then all sit looking at the mode shape only 
to realize that they placed all their measurements on a portion of 
the structure that really has very little to do with the modes of 
interest for the structure. 
 
Also make sure that your reference location for your FRF 
measurements is at a location(s) where you are sure that you can 
see most if not all of the modes.  Certainly if all the modes 
cannot be seen then it is imperative that additional references be 
used.  When performing impact testing it is always advisable to 
use as many references as possible.   
 
If you have a 4 channel system then you should have one 
channel for the hammer and three references on the structure.  
They don’t have to be oriented into each of the three directions – 
X, Y, Z.  But you want to make sure that they are all located to 
see as many of the modes of the system as possible. 
 
If you have an 8 channel system then use 7 references if you are 
doing a roving impact test.  You might think it is overkill but it 
really doesn’t take much additional effort to collect the data and 
it never hurts to have more data. 
 
And you think with 7 references you would get all the modes – 
well most times you would think so.  But I can recall one test on 
a large symmetric composite plate structure where 9 reference 
accelerometers were used to run the test.  But as it turned out 
one of the higher modes was missed because all of the 9 

accelerometers ended up located at the nodes of this higher 
mode.  Who would ever guess you could be that unlucky.   
(I recommended that this guy never go gamble in Las Vegas 
because his luck was obviously bad.)  The higher order mode 
and the measurement locations for the 9 accelerometers are 
shown in the Figure 1. 
 

 
Figure 1: Nine measurement locations unfortunately  

all located at the nodes of this particular mode 
 
Number 8 … 
Hammer tip selection 
Now selecting the proper hammer tip can sometimes be 
confusing to the novice.  Basically what you want to do is make 
sure that you select a hammer tip that will excite a frequency 
range similar to the range of frequencies that will be excited 
when the structure is in service.  Of course that means that you 
have to have some idea what frequency range is really important.  
I remember back many years ago when we started doing some 
modal testing on baseball bats, there was a very long discussion 
as to what would be the best tip to use.  I explained that you 
needed to have a hammer tip that would excite a similar range of 
frequencies as those excited by the actual ball hitting the bat.  
The next day when I arrived in the lab the students had taken a 
baseball and put a 10-32 tapped stud into the baseball and then 
screwed that onto the hammer.  Of course, this was a brilliant 
idea because it is as close as we can get to the actual impact 
scenario for the ball hitting the bat.   
 
But you also have to remember that the hammer tip is not the 
only thing that controls the input force spectrum.  The local 
flexibility of the structure can also play a critical role in the 
actual force spectrum imparted into the structure for the modal 
test.  So you really need to look at this closely.  And by the way, 
you can take those published curves you get from the hammer 
manufacturer and just put them aside because those are all 
generated by impacting a massive, stiff steel block which is 
never what we actually have when we perform a modal test. 
 
Another critical item in impact testing that is often not taken 
seriously is that the hammer must impact the structure 
consistently with the same point impacted in the same direction 
for every measurement.  If this is not done then the FRF will 
have some variability between each measurement which will 
result in reduced coherence.  On a large structure this may not be 
hard to do.  However, on a smaller structure this can be difficult.   
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One test for a golf club head utilized a unique tripod/hammer 
configuration to consistently impact the same point in the same 
direction for every measurement as seen in Figure 2. 
 

CLAMP

CONTROLLABLE IMPACT 
TEST SETUP

HAMMER

SWIVEL
JOINT

STRAW 
SLEEVE

 
Figure 2: Impact hammer test configuration 

 
 
Number 7 … 
How free does it need to be  
Well there have been a few articles on this subject.  The most 
important thing to realize is that your test article is actually your 
structure plus all the instrumentation and support condition.  
Your finite element model of your structure can be modelled as 
free but the reality is that there are soft springs that really need 
to be included in the model to properly account for the support 
system for your structure along with all the instrumentation 
added.  Many times this does not affect the overall test but in 
many cases this is actually very important to include in your 
analysis of the structure.   
 
But what you really want is for the rigid body modes of your 
structure to be reasonably well separated from the flexible 
modes of the structure and have little modal overlap or coupling 
between the rigid body modes and the flexible modes.  While 
this is very easy to say, often times this is not so easy to achieve.  
Most times I recommend that the finite element model include 
the effects of the support structure in the model so as to get a 
clear understanding as to how the test set up might interact with 
the test article.  While the finite element model may not be 
perfect, the model is a great way to study the effects of stiffness 
changes in the support structure and the corresponding effect on 
the flexible modes of the system overall. 
 
But if there is no model available, then this needs to be checked 
when the test is set up to identify exactly what the interaction 
might be for the test configuration.  This might take some extra 
effort but it is a critical part of the test set up that needs to be 
documented and identified. 
 
So a test where this was of concern was when missiles are tested.  
It is very hard to get them into a free-free condition.  So the best 
we can do is to test the missile hung from a gantry and perform 
the test with the missle supported at the nodal locations for the 

first flexible mode; then the support condition is not very 
intrusive because it is supported at the node of the mode.  Figure 
3a shows a typical missile configuration with Dilbert performing 
the impact test here; Figure 3b shows a smaller missile 
undergoing shaker modal testing. 
 

 
Figure 3a: Impact test on missile hung at locations  

that are close to the nodes of the first bending modes 
 

 
Figure 3b: Shaker test on missile hung at locations  

that are close to the nodes of the first bending modes 
 
 
Number 6 … 
Some other common blunders 
There are always some of the most simple things that often get 
overlooked.  These are the simple sanity checks to make sure 
that everything is set up properly. 
 
Make sure all your cables are good and have not been crimped 
or bent.  Make sure all the connectors are tightly connected.  
Often spurious signals, especially with the impact hammer, may 
be the result of a loose cable connection. 
 
Of course make sure all your signal conditioners are turned on.  
And make sure that you understand if your transducers are either 
voltage or ICP.  I have seen many tests run where the ICP 
transducers were set as voltage transducers and the 
measurements are essentially useless.  Of course you would have 
expected that the measurements would not look good but if you 
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go into the measurement process assuming that you have a very 
complicated, nonlinear, heavily damped system then you are 
expecting your measurements to not look good.   
 
Of course if your measurement system is not set up properly 
your measurements won’t look good and therefore you may 
think that this is the best you can do – even though your 
measurements are terribly wrong. 
 
You also have to realize that if you only own one hammer that 
does not mean that it is useful for ALL the tests you plan to 
conduct.  I have seen people violently wailing away on a large 
structure with an impact hammer that is clearly too small to 
excite the structure and insufficient to conduct the test.  (And 
believe me I have seen some hammer tips that appear that they 
have been exposed to a nuclear explosion they are so severly 
battered to death.)  Get an appropriate sized hammer to conduct 
the test you need to perform rather than try to use an 
inappropriate hammer for the test. 
 
Another important consideration is in regards to the size of the 
accelerometer that is used.  Mass loading can be a very 
important consideration.  There have been many articles written 
to understand these effects.  This needs to be addressed and 
documented.  Just because it is the smallest accelerometer that 
you own does not mean that the mass loading is not of concern.  
And it is not just the mass of the accelerometer relative to the 
total mass of your test structure, it is the mass relative to the 
effective mass of the structure where it is mounted.  An 
accelerometer weight at a very stiff/massive location on a 
structure is different than that same accelerometer mounted on a 
thin lightweight flimsy panel in the same structure.   
 
And one more important item is that you need to make sure that 
you have not saturated your transducers in which case they will 
not be able to provide useful measurements.  I have been party 
to tests where people have bought very sensitive transducers 
because they think they are “better” but then only to find out that 
their structure is very responsive and the response saturates the 
transducer. 
 
 
Number 5 … 
Double impacts  
Now we really do want to avoid double impacts if at all possible.  
But there will be many instances where we just can’t avoid them.  
So try your best to impact with single impacts.  But if you do 
have a double impact, then the thing to do is look at the input 
power spectrum of the force hammer.  As long as the force 
spectrum is reasonably flat and there is no significant dropout in 
the force spectrum and the FRF/Coherence looks good, then 
most likely the measurement will be adequate for the test to 
identify the frequencies and mode shapes.  
 
But of course you can ask how flat does the force spectrum need 
to be and how much of a drop in the force is tolerable.  And 

these are good questions to ask.  I would rather not see the force 
spectrum drop more than 5 to 10 db but as long as the coherence 
is good then the FRF may be acceptable for a measurement. 
 
I know some people might argue and say that much of a drop is 
totally unacceptable.  But if you look back in some of the 
articles we have shown that the frequencies and mode shapes 
were actually very acceptable when comparing a test with no 
double impacts and a test with several or even quite a few 
double impacts.  But you still need to be very careful to make 
sure that the data is useful. 
 
And just for the record, there were a few articles that discussed 
double impacts and one article where multiple impacts were 
intentionally applied to the structure for a “burst impact” 
excitation test.  While that was shown on an academic structure, 
over the past year we actually tested a large radio telescope and 
a large (50 meter plus) wind turbine blade and very cleary 
showed that the multiple impact technique provided far superior 
results.  The measurement in Figure 4a/4b shows the result of an 
FRF measurement on a very large wind turbine blade with the 
coherence.  The first measurement (4a) is made with a single 
impact and clearly the variance on the FRF measurement and the 
coherence show that the measurement is contaminated with 
noise.  But the next measurement (4b) shows the result for the 
multiple impact and it is very obvious that the FRF and 
coherence are dramatically improved with the multiple impact 
test technique used.  Of course you need to be careful to make 
sure that the entire input and output are observed within one 
sample interval of the FFT time window, but if that is done then 
the measurement can be very much improved. 
 
 
Number 4 … 
Windows 
I am sorry to say that as far as I am concerned, no window is a 
good window – any window distorts data – windows are a 
necessary evil.  These are strong statements that I live by. 
 
Do everything possible to assure that your input signal and 
response signal are either periodic in the sample window or 
entirely captured within the sample interval.  If you can do this, 
then you don’t need to use any window. 
 
When performing impact testing, always try to change the 
acquisition parameters such that the signal can be completely 
observed in one sample interval of the measurement process.   
If this can be done then there will not be any leakage and a 
window is not needed.  Figure 5 shows how simply changing the 
sample time, the need for a window can be eliminated. 
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SINGLE IMPACT
 

Figure 4a: Single impact FRF for large wind turbine blade 
 

MULTIPLE IMPACT
 

Figure 4b: Multiple impact FRF for large wind turbine blade 
 
 

T = N      t ∆ 

T = N      t ∆ 

 
Figure 5: Window required for shorter time sample in blue  

can be eliminated by changing the time sample in red 

 
And actually the same is true for shaker testing.  But in this case 
we try to create a sample of data which is completely measured 
within one sample of collected data (the same as was done in the 
impact just described).  OR, in shaker testing the other option is 
to create an excitation signal that forms a response that repeats; 
if this can be done then the system will get to steady state 
response and then the Fourier transform will be satisfied and 
leakage will not be a concern and a window will not be needed. 
 
In shaker testing many signals will create this situation and are 
used often in shaker testing.  These signals are specialized for 
modal testing – pseudo-random, random transient, burst random 
and sine chirp are all signals that were created specifically for 
this type of modal testing.  Figure 6 shows the most commonly 
used burst random excitation which provides an excitation that 
starts and ends within one sample interval of the time sample for 
the FFT and therefore does not need a window because there is 
no leakage of concern.  And providing that the response also 
starts and ends within the time sample then a window is not 
needed on the response either.  So this excitation has no leakage 
and therefore no windows are required. 
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Figure 6: Example of shaker excitation (burst random)  
which provides a leakage free FRF measurement 
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Number 3 … 
Modal impact test set up ritual 
So every time I set up to perform an impact test, there is a ritual 
that I usually go through to make sure that I can make the best 
possible FRF measurements.  There isn’t a specific set of steps 
that I take every time I do this but there are certainly key things 
that I do every time I make a measurement.  Of course, I am 
talking about taking a measurement on something that I have 
never tested before or something that is completely new to me.  
(If it is a structure that I test every day then maybe some of these 
steps will not be needed because I have apriori information 
which gives me a good understanding of what is expected). 
 
So when I start a measurement I never take anything for granted 
and I start with a measurement with a frequency bandwidth 
which is higher than the frequency range that everyone 
“believes” is the frequency range of interest.  I then use a 
hammer tip to excite the structure over this range of interest and 
I always check the input power force spectrum applied to the 
structure under test.  Of course, while I make this first 
measurement I may need to adjust the voltage level for the 
hammer input as well as the accelerometer responses.  This may 
need to be done manually unless if your acquisition system has 
provision to “autorange” all of the response levels.  Of course at 
this point I may need to change the hammer tip to excite the 
appropriate frequency range of interest and then check to make 
sure that all the proper response ranges are still appropriate as 
the different hammer tips are studied. 
 
Once we have a good input excitation then we will start to look 
at the response and FRF and coherence.  But the first thing to do 
is to look at the response decay to see if the entire response can 
be captured within one time sample of the measurement.  If this 
is satisfied, then we do not need to apply a window.  If it is not 
satisfied then we may want to consider a longer time window.  If 
this is not possible then we may need to apply a window, which 
in this case would be an exponentially decaying window. 
 
Once this is done then we would want to take several averages to 
look at the FRF and coherenece.  If this is an acceptable 
measurement then the next step would be to change the hammer 
tip to excite a slightly lower frequency range – remember that 
when I started this process, I selected a higher frequency range 
than what may have been prescribed for the test.  So this is a 
good opportunity to make sure that the hammer tip is actually 
exciting the frequency range of interest (because the frequency 
range is still set for the higher frequency range).  But now that 
less input force is being applied to the structure, then it is 
important to make sure that all the voltage ranges are still set 
properly, that the damping window if originally used is still 
necessary along with other parameters set for the initial set of 
tests.  Once this is all checked then a measurement would be 
made to assess the FRF and coherence. 
 
Following this then the frequency range of the FFT analyzer 
could be changed to the lower frequency range associated with 

the actual softer hammer tip excitation range of the last 
measurement.  And again all the same parameters would need to 
be checked to make sure that an appropriate level is set a good 
measurement is obtained. 
 
So for the measurement process I just described you can see that 
all of the parameters need to be checked each time I change each 
and every one of the individual items that can change.  
Remember that I have the ability to change the bandwidth of the 
measurement, the number of spectral lines, the hammer tip and 
the use of windows, if needed.  All of these need to be 
considered when making the measurement.  And I keep 
changing all these parameters until I am happy with the 
measurement that has been made.  At this point I would start to 
collect sets of measurements for the experimental modal test. 
 
 
Number 2 … 
Ui times Uj 
 
Now this is probably the biggest item to consider.  So what does 
this mean.  Well let’s write an equation down to explain what 
this means.  The FRF can be written in terms of residues or in 
terms of mode shapes (and has been used in many different 
articles in this series) as seen in Figure 7. 
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Figure 7: Frequency Response Function written on a mode by mode 
basis using the residue formulation and the mode shape formulation 

 
 
The lower equation is the common way that it is normally 
written in most of the literature.  This is useful but only if you 
really understand what a residue is.  The upper equation is 
actualy the same equation but with the residues expressed in 
terms of mode shape information.  Specifically the residue 
(which is directly related to the amplitude of the frequency 
response measurement) is related to the value of the mode shape 
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at the input excitation location times the value of the mode shape 
at the output response location for a particular mode of interest 
and will determine the amplitude of the frequency response 
function for tht particular mode; and of course the effects of all 
the modes are the linear summation of all the modes of the 
system. 
 
So what does this tell me?  Basically it gives a very clear 
definition of the peak amplitude of the FRF is related to the 
values of the mode shape for a particular mode at the input-
output location.   
 
Often times people will ask me why the amplitude of a particular 
mode is very low for a particular measurement.  Well…this 
equation tells me that for that particular mode either the input 
excitation or output response (or both) is a very small value and 
probably close to the node of a mode.  If you want to see that 
mode with a more pronounced peak in the FRF then you really 
need to change the input and/or output location to be at a place 
where the mode shape values are much larger and away from the 
node points. 
 
And actually if you want to conduct a test and select good 
locations for measurements, then you really need to look to see 
where the mode shapes are large for each of the modes of the 
system.  The finite element model is a very good tool to use to 
help decide where to place all of your transducers.  While the 
model may not be perfect, certainly it is a reasonable 
representation of your structure under test.   
 
And I think if you look at a good number of all the articles in 
this series, you will find that this is a theme for many of the 
articles written.  Firmly understanding this principle will be a 
great asset to your understanding of many questions that arise in 
the conduct of an experimental modal test. 
 
Actually the students in the lab have a list of their top ten things 
from their perspective of what I always say… 
 

 
 
And you can see that #2 and #3 and the follow up #4 pretty 
much say that this is one of the critical rules of modal and that it 
is likely the answer to many of your questions. 

Number 1… 
Thinking is not optional  
 
OK so now let’s talk about the “Numero Uno” item.  And that is 
to realize that you really need to think about what you are doing 
all the time when you are doing testing or analysis.  None of this 
is mundane and thinking is required.  This is not like you are 
working at Burger King where everything is all so very clearly 
defined.  Burger, fries, coke…push the button and the price is 
determined without you needing to think at all.   
 
Once you stop thinking and just blindly follow a set of rules then 
you are likely to fall into the hand of the Modal Monster and 
your results may not be useful if you have encountered any 
problems that really required your attention and some thinking 
to realize what may have happened with your measurement. 
 

 
 
Don’t let the Modal Monster rule you – understand what you are 
doing – think always – question assumptions – be vigilant when 
you are making measurements and conducting modal tests.  For 
sure go back and read all the articles.  There are many important 
issues that may help answer some of your questions and 
concerns. 
 
I hope that this last bit of advice helps many of you.  If you have 
any other questions about modal analysis, just ask me. 
 
 
Author Commentary: This will be the last article that will be 
published by SEM in Experimental Techniques; this series has 
existed for 17 years.  I hope that the information has been useful 
to all those people working in the analytical and experimental 
modal analysis area. 
 
While the series will end in Experimental Techniques, the 
Modal Space articles will continue to be published on the web at 
the Structural Dynamics and Acoustic Systems webpage 
http://sdasl.uml.edu and more specifically at 
http://sdasl.uml.edu/umlspace/mspace.html  
 
Thank you for all the comments, questions, emails, and support 
over this duration of this series in Experimental Techniques.   
I will continue to publish more information as time goes on until 
all your questions have been answered.

http://sdasl.uml.edu/
http://sdasl.uml.edu/umlspace/mspace.html
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