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Abstract. 

Order tracking is a very common method to analyze the response characteristics of 
rotating machinery to their rotating inputs.  Unfortunately, many of the order tracking 
algorithms that are commercially available are considered proprietary by their 
developers.  In an effort to produce a mostly complete reference and understanding of the 
characteristics of these methods many of them are documented in this dissertation.  Two 
new order tracking methods are developed and documented which have the ability to 
separate both close and crossing orders.  The Time Variant Discrete Fourier Transform  
(TVDFT) is developed and shown to be a very powerful and versatile order tracking 
method as well as a very computationally efficient algorithm.  With the ever increasing 
speed of computers, post-processing of time domain data is becoming popular.  A post-
processing application which is very computationally demanding in its current 
commercial implementations is adaptive resampling, commonly used to resample data 
from the time to the angle domain.  A new adaptive resampling method is developed that 
is based on an upsampled interpolation filter that is very computationally efficient.  It 
should be noted that all order tracking and adaptive resampling methods rely very heavily 
on an accurate tachometer signal.  For this reason, the processing of tachometer signals is 
included in this dissertation.  Finally, a new set of analysis tools formulated around the 
singular value decomposition (SVD) and the Complex Mode Indicator Function (CMIF) 
algorithms are developed to compute virtual measurements from order tracks.  These 
tools also provide the ability to estimate linearly independent operating shapes from a set 
of operating shapes based on order tracks.  A virtual measurement called a Mode 
Enhanced Order Track (MEOT) is developed which should prove useful in estimating 
natural frequencies and damping from order track measurements.  All new methods and 
several of the traditional methods are evaluated using both analytical and experimental 
datasets.  The experimental datasets include the analysis of data acquired on an 
automobile operating on a chassis dynamometer, including the separation of the inputs 
from the left and right wheels.  The final result of this dissertation is a complete reference 
and suite of tools for analyzing many rotating equipment noise or vibration problems. 
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Chapter 1 

 

 

1 Introduction. 

1.1 Rotating Machinery Problem Solving. 

Experimental problem solving approaches commonly used to solve noise and vibration 
problems on automobiles and rotating machinery generally fit into two distinctly different 
classifications.  The first of these classifications is defined by techniques that attempt to 
characterize the dynamic properties of the machine under study.  Modal analysis is one of 
these techniques.  The second of these classifications is defined by techniques that 
attempt to characterize the response signals measured while the machine is in operation.  
Order tracking is one of these techniques. 

Techniques that attempt to characterize the dynamic properties of a machine are usually 
preferred because the processed results of these techniques have true physical meaning 
with respect to the dynamic properties of the structure.  Characterizing physical 
properties of a structure allows an analytical model of the structure to be constructed for 
design analysis.  Modal analysis is the most commonly utilized method for characterizing 
the dynamic properties of a structure.  Over the last thirty years there has been much 
research time and energy devoted to understanding and further developing methods and 
algorithms to more easily determine the modal parameters of structures.  These modal 
parameters are determined under the assumptions of time invariance and system linearity.  
These assumptions can be invalid when characterizing rotating machinery since 
oftentimes bearings are not linear or time invariant in nature. 
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The techniques that attempt to characterize the structure of response signals measured 
while a machine is in operation have the disadvantage of not being based on physical 
models of the system.  The parameters estimated by these techniques may or may not 
have significance in actually attempting to characterize the dynamic properties of a 
structure.  However, an advantage these techniques possess is that there is no assumption 
made on the linearity of the structure. 

The most commonly used methods for characterizing the response signals acquired on 
operating rotating machinery fall under the classification of order tracking.  Order 
tracking is the estimation of the amplitude and phase of a response of a machine to a 
rotating input that is allowed to vary in both amplitude and frequency over time.  There 
are several basic methods that have been developed to perform digital order tracking.  
Nearly all of these methods have been in use for less than 25 years and several for under 
a decade.  Since these techniques have only recently been developed, there has not been a 
large amount of literature published that clearly explains and compares the details, 
performance, and implementation of these algorithms. 

1.2 Background. 

Digital order tracking techniques range in complexity from simple FFT based techniques 
to much more complicated adaptive filtering techniques.  Generally, the more 
theoretically complicated the technique, the more computationally demanding the 
algorithm.  This leads to the more complicated algorithms being implemented in special 
hardware or software which is expensive and therefore in limited use. 

1.2.1 Fourier Transform Based Order Tracking. 

The simplest of the digital order tracking techniques are based on performing Fourier 
transforms on time domain data.  The transformed data is then displayed in either a 
waterfall or colormap format to obtain a global view of the frequency domain response.  
Orders of interest are estimated through determining the average frequency of each order 
over which the FFTs were performed and extracting the corresponding frequency lines 
from the FFTs.  Limitations of Fourier transform based techniques are many and can be 
significant.  The two largest limitations of these techniques are limited order resolution at 
low rpms and slow sweep rates.  Both of these limitations have been thoroughly explored 
and documented [ref. 1-4,24]. 

The FFT based techniques can be used to obtain either constant frequency or constant 
order bandwidth results.  Regardless of which bandwidth option is chosen, the Fourier 
transforms are performed over the time determined by the blocksize of the transform.  
The blocksize of the transforms is not related to the rpm of the machine.  This 
independence of the blocksize and rpm is what leads to many of the limitations of the 
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technique.  There is also no special processing performed to minimize leakage, other than 
the application of standard windows.  The theory behind many of the limitations of time 
based sampling and Fourier transforms for analyzing operating data is presented in 
Appendix A. 

1.2.2 Computed Order Tracking. 

A method developed to overcome the limitations of the Fourier transform based 
techniques is the computed order tracking technique based on synchronous resampling.  
This method was developed and patented by Potter at Hewlett Packard in 1989 [ref. 5-
11].  The method is the digital equivalent of using an encoder attached to the rotating 
shaft of interest, or a frequency synthesizer with a low count pulse per revolution 
tachometer pick-up, to drive the sample clock of the ADC and an analog tracking anti-
alias filter. 

Computed order tracking, as developed by Potter, is based on digitally resampling data 
acquired with an equal time interval, constant Δt, to data obtained with an equal angular 
interval, constant Δθ.  The resampling is computationally demanding.  The result of the 
process is the transformation of time/frequency data to angle/order data.  Orders sweep 
across multiple frequency bins in the frequency domain, while in the order domain these 
same orders are stationary with respect to frequency.  This allows leakage free estimates 
of orders by using the standard Fourier transform and an appropriate blocksize.  The 
theory of angle domain sampling is presented in Appendix A for completeness. 

A Fourier transform performed on angle domain data calculates estimates of order 
domain amplitudes and phases.  Any order that falls on a spectral line in this transform is 
estimated as leakage free, if the transform is performed over an integral number of 
revolutions of the machine.  A computational advantage of this transform can be realized 
if a discrete Fourier transform is calculated for each order of interest.  Not computing the 
full spectrum implies that an overall observation of the data cannot be obtained from a 
waterfall or colormap plot, but can result in a large computational savings. 

A study of the limitations and behavior of the computed order tracking techniques was 
performed by Fyfe and Munck [ref. 12].  This study of errors and limitations is 
satisfactory for many of the errors that are related to tachometer signal processing and 
acquisition.  The tachometer processing which is evaluated is the method that Potter 
published.  This method is based on fitting a local polynomial to every three tachometer 
pulses.  The local estimation technique is required for the real time implementation that 
HP has implemented in their dynamic signal analyzer systems.  Many of the limitations 
beyond the tachometer signal processing which Fyfe and Munck have evaluated are for 
various digital resampling techniques, none of which are believed to be what Potter has 
implemented, or very practical in a computational sense.  The exact interpolation method 
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that Potter uses in his patented technique is not published and is considered to be 
proprietary by Hewlett Packard. 

Recently LMS has implemented an adaptive resampling algorithm for performing the 
transformation from the time domain to the angle domain, or any other domain, for which 
there exists the necessary reference signal, as a post processing procedure.  This 
implementation of adaptive resampling first upsamples the Δt data by a given amount, 
typically sixteen. A linear interpolation is then performed on the upsampled data to obtain 
the desired Δθ data [ref. 13,14].  This method is very computationally demanding since 
the length of the original data set is first made sixteen times longer before the linear 
interpolation is performed.  The signal to noise ratio of this procedure is determined by 
the amount of upsampling performed prior to the linear interpolation. 

Implementing the adaptive resampling procedure as a post processing option allows other 
analysis in addition to order tracking.  Once the data is resampled to constant Δθ, many 
standard digital signal processing procedures may be used for analysis flexibility.  For 
example, standard digital filters become constant order bandwidth order filters when 
applied to angle domain data.  This allows “what if games” to be evaluated for sound 
quality or fatigue analysis.  The data may also be transformed from the angle domain 
back to the time domain for further analysis after modification in the angle domain. 

Another recently implemented technique of computed order tracking has been developed 
by Bruel & Kjaer [ref. 15,16].  This technique is again considered to be proprietary and 
many details of the actual implementation are not published.  The implementation allows 
a type of zoom processing in the order domain that can give better order resolution while 
analyzing higher orders [ref. 15].  This implementation is similar to Hewlett Packard’s in 
the fact that it is implemented in hardware. 

1.2.3 Kalman Filter Based Order Tracking. 

Vold and Leuridan developed an approach for order tracking based upon the Kalman 
filter from controls theory [ref. 17].  The method, while being computationally 
demanding, is much more flexible in use than any previously developed order tracking 
technique.  The main advantages of Kalman order tracking are the abilities to separate 
very close orders and to extract the actual time domain representation of the orders [ref. 
18].  The time domain representation of the orders is extracted without phase bias and 
therefore can be used for sound quality analysis and what if games. 

The disadvantages of the Kalman order tracking are the computational load and the 
harmonic confidence factor determination.  The harmonic confidence factor is a 
weighting factor that must be defined for the least squares solution process.  The 
weighting factor controls the performance of the filter.  It determines the bandwidth and 
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convergence speed of the filter.  Unfortunately, no straight forward technique exists for 
determining the value of this weighting factor to obtain consistent results for all datasets. 

The original Kalman order tracking filter has been recently compared to other signal 
processing techniques in a series of papers [ref. 28-30].  These papers compare both the 
Kalman order tracking filter and the resampling based order tracking to various other 
digital signal processing techniques for the analysis of different types of data. 

Vold has extended the concept of Kalman order tracking with the Vold-Kalman tracking 
filter [ref 19].  This filter is a slightly different formulation of the original Kalman order 
tracking filter and extends the capabilities to include the separation of crossing orders as 
well as better separations of close orders [ref. 20,21].  The filter shape may be varied 
through the use of a higher order filter implementation.  The filter uses a more user 
friendly approach to determine the harmonic confidence factor.  However, experience is 
still required to obtain accurate results. 

1.2.4 Non-Commercial Order Tracking Techniques. 

There are other order tracking techniques that are not implemented in commercial 
software or hardware.  These methods include using a time variant zoom transform to 
shift the frequency of the order of interest to DC, followed by applying a low pass digital 
filter or performing an FFT and zeroing frequency lines above a frequency near DC.  
These methods result in time domain order extraction similar to the original Kalman 
order tracking filter. These techniques were developed by Vold and Leuridan as part of 
the development of the Kalman order tracking filter [ref. 22,23]. 

The complex exponential algorithm that is commonly used in modal analysis has also 
been studied as a method for order tracking [ref. 26].  The disadvantage with this 
algorithm is the necessity to determine the number of orders present in the data before an 
accurate result can be obtained.  Typically there is no easy or automated way of 
determining this model order. 

The maximum entropy technique has also been evaluated as an order tracking technique.  
This method proved to have the same basic limitation as that of the complex exponential, 
the determination of the order of the optimum FIR filter [ref. 27]. 

1.2.5 Frequency Domain Order Tracking. 

Weber explored a frequency domain order tracking technique that used multiple input 
frequency response function estimation theory to estimate the response of an automobile 
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to rotating unbalance forces [ref. 25].  This technique Fourier transformed tachometer 
signals from different rotating components and response channels.  The Fourier 
transforms of the tachometer signals were treated as inputs to the structure and the 
appropriate input crosspower matrix calculated.  The crosspowers between each assumed 
input, or tachometer signal, and each response were then calculated and a multiple input 
H1 calculation performed.  This procedure estimates the portion of each response caused 
by each rotating input monitored by a tachometer signal.  This method should accurately 
separate the contributions of each rotating input under arbitrary operating conditions.  
This method is not restricted to operating on simple run-ups or run-downs, but can 
operate on any arbitrary combination of run-ups and run-downs. 

1.2.6 Tachometer Signal Processing. 

Tachometer signal processing is a very important portion of order tracking analysis.  Any 
order tracking results can be thought of as only being as accurate as the tachometer signal 
that was used to estimate the instantaneous frequency of the order in the analysis process.  
The most important acquisition channel in any test is the tachometer channel.  If the 
quality of the tachometer channel is poor, the results from all other channels will be poor 
or in the extreme case completely unreliable.  The higher fidelity the order tracking 
method the more important the tachometer channel. 

Historically, tachometer channels were conditioned with a tracking ratio tuner.  The use 
of the tracking ratio tuner or phase locked loop to condition the tachometer signal 
resulted in a stable clean tachometer signal for input into the data acquisition or tracking 
filter hardware.  The disadvantage of this type of tachometer signal conditioning is the 
limited sweep rate which results from the use of a phase locked loop.  To overcome these 
sweep rate limitations digital tachometer processing methods have been developed. 

Potter developed the concept of fitting a local polynomial to consecutive tachometer 
pulse arrival times to enable the real time computed order tracking which Hewlett 
Packard patented and implemented in their hardware [ref. 5-11].  This method of 
processing tachometer signals was thoroughly investigated for errors by Fyfe and Munck 
[ref. 12].  The error analysis is both quite in depth and at the same time not completely 
accurate due to the interpolation methods that were evaluated.  While the investigation 
accurately shows trends in errors, it is not evident whether the magnitudes of the errors 
are realistic. 

Vold and Leuridan developed a tachometer processing technique that fits multiple cubic 
splines to estimated tachometer pulse arrival times of an entire time history 
simultaneously.  The method divides the entire time block into multiple blocks.  Splines 
are then fit to each block with continuity enforced across the blocks.  This methodology 
works very well and is used in both the Kalman order tracking and the LMS 
implementation of adaptive resampling.  Fitting the splines to the tachometer pulse 
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arrival times averages out many of the small inconsistencies in rotational speed and a 
smooth rpm curve is estimated.  Errors can still exist in the rpm estimate if there is a 
drop-out in the tachometer signal or if an extra tachometer pulse is recorded. 

Vold extended the concept of spline fitting the tachometer signal with the implementation 
of the Vold-Kalman order tracking filter.  The advances in this new spline fit algorithm 
include the ability to relax the slope continuity between blocks to allow for more realistic 
rpm estimates near gear shifts where the rpm changes very drastically.  The ability to 
reject rpm estimates from either missed tachometer pulses or extra tachometer pulses is 
also present in the second generation spline fitting algorithm.  This is done through 
obtaining a first estimate of the splines for each block.  Rpm estimates that are outside a 
pre-defined band relative to this original spline fit are then discarded.  Having discarded 
outliers, the spline fit is repeated for an improved rpm estimate.  This implementation is 
currently considered to be the state of the art and works very well. 

1.3 GOALS OF DISSERTATION. 

This dissertation seeks to extend current order tracking capabilities and to determine 
more computationally efficient methods of implementing current methodologies. 

The first objective of this dissertation is to explain the theory and implementation of the 
currently employed order tracking techniques.  These methods will also be contrasted and 
compared using identical datasets for all methods.  The end result of this study will be a 
concise and complete reference for understanding current order tracking methodologies. 

It has been shown that the resampling based order tracking techniques are superior in 
most cases to the FFT based techniques but suffer from a large computational penalty.  
This dissertation seeks to address this issue along two separate avenues.  The first thrust 
of research will be in identifying the most efficient and accurate means of digitally 
resampling data from the time domain to the angle domain.  Current post processing 
implementations of adaptive resampling are very computationally demanding.  It is 
believed that an efficient means of adaptive resampling will lead to more widespread use 
of the signal processing and analysis advantages of this technique. 

The second avenue that will be pursued in obtaining resampling based order tracking 
results efficiently will be the investigation of an alternative method of processing the 
data.  It is shown that the kernels of the Fourier transform can be resampled, as opposed 
to response channel resampling.  This method gives amplitude and phase estimates nearly 
identical to the current resampling methods but does not allow for “what if games” with 
angle domain data. 
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A deficiency in current tachometer signal processing techniques is evident if a tachometer 
signal generated by a magnetic inductance probe is analyzed.  Oftentimes, a signal 
generated by a magnetic inductance probe varies in amplitude as a function of the 
rotational speed of the machine.  The varying amplitude is not processed accurately if a 
constant trigger level is used to determine when each tachometer pulse occurs.  One 
solution to this problem that will be evaluated in this dissertation is the development of 
an algorithm that adaptively varies the trigger level as a function of total signal 
amplitude. 

Currently the only method that can separate crossing or very close orders is the Vold-
Kalman order tracking filter.  This filter is computationally demanding but provides time 
domain outputs for what if games.  This dissertation will evaluate other methods of 
separating both close and crossing orders that are more computationally efficient than the 
Vold-Kalman order tracking filter.  Both frequency and order domain approaches will be 
evaluated to separate close or crossing orders. 

The frequency domain approach will be an extension of the technique that Weber 
developed.  The order domain approach will be based on an order domain 
implementation of the multiple input H1 frequency response function estimator. 

Finally, the estimation of linearly independent operating shapes will be evaluated using 
SVD techniques similar to those used in the CMIF modal parameter estimation procedure 
[ref. 54-56].  This estimation of linearly independent operating shapes is a new 
contribution to the field and should provide more information into the dynamic properties 
of a structure than is commonly achieved from order tracking analysis.  Currently, 
operating shapes can be obtained from order tracking many response channels and 
animating the amplitude and phase of the results at each rpm.  These estimated shapes are 
not currently processed in any manner to attempt to obtain a set of linearly independent 
shapes. 

1.4  CONCLUSIONS. 

This dissertation will result in a complete reference for current order tracking techniques, 
as well as the development of several new methods for processing rotating machinery 
response data.  These new methods will include new order domain and frequency domain 
methods of analysis capable of separating close and crossing orders.  Finally, an 
evaluation of methods to obtain linearly independent operating shapes from the processed 
order tracked data will be undertaken.  All methods are evaluated with analytical and 
experimental datasets. 

For completeness, appendices are included to provide a short introduction to the digital 
resampling processes necessary for the adaptive resampling procedures and for the theory 
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and significance of angle domain sampling and processing versus time domain sampling 
and processing. 
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Chapter 2 

 

 

2 Current Order Tracking Techniques. 

Currently used order tracking techniques range from very simple and basic in nature to 
very complicated and computationally demanding.  A brief summary of the basic analog 
order tracking technique is presented for completeness.  All other commercially available 
order tracking techniques are also presented in this chapter with an explanation of the 
basic techniques as well as a summary of each technique’s advantages, limitations, and 
disadvantages. 

2.1 Introduction to Order Tracking Analysis. 

The analysis of non-stationary noise and vibration signals on rotating machinery is 
commonly performed through the use of digital order tracking techniques.  Order 
tracking is the analysis of frequency components whose frequency is related to the 
rotational frequency of the operating machine.  The frequency components will be time 
varying if the machine is not operating in a stationary condition.  The analysis of non-
stationary components requires additional information for accurate results to be obtained.  
This additional information is usually presented in the form of a tachometer signal 
measured on a reference shaft of the machine. 

An order is a time varying phasor that rotates with an instantaneous frequency related to 
the rotational frequency of the reference shaft.  A graphical presentation of this time 



Page 12 

varying phasor is given in Figure 2.1.  It can be seen that the rotating phasor will produce 
a sinusoidal function with varying frequency.  The different rotational positions of the 
phasor are meant to show how the phasor produces a sinusoid they are not at consecutive 
sample points. 

Time
 

Figure 2.1  Graphical representation of time varying phasor. 

A single order may be mathematically defined by the time varying phasor described by 
Equation 2.1. 

))/(2sin(),()( ktpkitkAtX φπ +=     (2.1) 

where:  A(k,t) is the amplitude of order k as a function of time. 
 φk  is the  phase angle of order k. 
 p is the period of primary order in seconds. 
 t is time. 
 k is the order being tracked. 
  k =  0 DC offset. 
  k < 0 Negative frequencies. 

Multiple orders are normally present in a dataset acquired from an operating machine.  
The combination of orders may be described mathematically by a summation of time 
varying phasors.  This combination is expressed in Equation 2.2. 
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An order commonly possesses frequencies that are integer multiples of the primary 
frequency of the reference shaft.  However, non-integer multiples of the primary 
frequency may be generated if gearboxes or pulley systems are present in the system.  
These systems can have non-integer rotational speed relationships that can cause 
fractional orders that are close to one another in frequency.  Fractional orders are also 
generated by bearing or gear defects.  Oftentimes, it is this situation that makes the 
analysis of orders difficult.  Another source of non-integer multiples of the primary 
reference signal are from other input sources.  Oftentimes, a machine may have multiple 
uncoupled rotating components that generate forces.  Examples of multiple inputs are the 
4 wheels on an automobile, engine and transmission, when they are not rigidly coupled, 
and many other combinations of components. 

Order functions can be generated by any rotating input on an operating machine and may 
vary in amplitude and/or frequency as a function of time.  This amplitude varying 
property causes considerable problems in any type of order tracking analysis.  Until 
recently, all order tracking techniques considered the amplitude of an order to be semi-
constant over the analysis period used to estimate the amplitude and phase of the order.  
This assumption can cause considerable errors in the analysis. 

The most common method to visualize order estimates is through the use of both 3-
dimensional waterfall and colormap plots and 2-dimensional x-y plots.  The 3-
dimensional plots are typically plotted with frequency along the x-axis, time or rpm along 
the y-axis, and amplitude along the z-axis.  These 3-dimensional plots are typically called 
rpm spectral maps or Campbell diagrams.  The 2-dimensional x-y plots are often plotted 
with the x-axis as either time or rpm and the y-axis as amplitude.  Oftentimes, a 2-
dimensional plot will contain the amplitude profiles of multiple orders and an overall 
energy level in the frequency range analyzed.  These 2-dimensional plots are typically 
called order slice plots.  The advantage of plotting either the 3-dimensional or 2-
dimensional plots as a function of time instead of rpm is that both run ups and run downs 
can be visualized simultaneously without confusion. 

2.2 Analog Order Tracking. 

Prior to Potter’s development of computed order tracking based on digital resampling in 
1990, purely digital order tracking methods were not often based on synchronous 
sampling and therefore not considered order tracking in the strictest sense.  Non-
synchronous sampling based digital order tracking was accomplished through standard Δt 
based Fourier transforms.  Prior to the widespread adoption of the computed order 
tracking methods, analog order tracking was performed in many cases where the Fourier 
transform was limited by sweep rates.  Computed order tracking in one form or another is 
now very widely used since the cost of the necessary DSP chips for the computationally 
demanding algorithms has drastically dropped in price over the last few years.  This 
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section explains the basic analog order tracking method and is primarily included for 
completeness of documentation of order tracking methods. 

Originally analog order tracking methods required no digital equipment whatsoever.  
These original analog order tracking methods used a tracking bandpass filter whose 
output was input into an x-y plotter to plot the amplitude of an order as a function of rpm.  
The frequency of the tracking filter and the x axis of the plotter were driven by a 
tachometer or encoder signal.  The tracking bandpass filters were very expensive and 
could process only limited sweep rates.  These purely analog order tracking methods are 
no longer used in industry except possibly in very special cases. 

A derivative of the original analog order tracking, while still requiring expensive 
equipment, is still used today by many diesel engine manufacturers, and in some cases 
where the DSP chips and sampling rates of the current DSAs are not sufficiently fast to 
provide the desired results.  The diesel engine manufacturers continue to use this pseudo-
analog order tracking because they already possess the required equipment and very often 
are only interested in a few channels of data. 

While called analog order tracking, these methods are not completely analog in nature, 
however from hereon they will be referred to as analog order tracking to be consistent 
with industry terminology.  Analog order tracking methods use a tracking low pass filter 
to prevent aliasing.  This tracking filter is inserted into the acquisition system before the 
ADC.  The ADC clock is driven by an external sample clock signal of some type to 
attempt to sample the signal synchronously with the rotation of the machine.  Once the 
data is anti-alias filtered and synchronously sampled, a discrete Fourier transform is 
performed over an integer number of revolutions.  This technique originated shortly after 
the FFT became widely used, the earliest reference which was found was 1972, however 
it is believed to have originated long before this time [ref. 48-53].  A schematic of the 
hardware necessary to perform this type of order tracking is shown below in Figure 2.2. 
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Figure 2.2:  Analog order tracking hardware schematic. 

The expensive component in an analog order tracking system is the tracking analog 
lowpass filter required to prevent aliasing in the sampled data.  The frequency of the 
tracking filter is required to vary based on the rotational speed of the machine being 
analyzed.  The cutoff frequency of the filter is varied such that the same number of orders 
are allowed to pass through the filter regardless of the rotational speed of the machine.  
Another limitation of the tracking filter is the transient characteristic produced by varying 
the cutoff frequency of the filter.  Oftentimes, the cutoff frequency cannot be varied at 
high rates because the filtered data will contain transient phenomena from the filter 
settling at each cutoff frequency.  This limitation of the filter can limit the sweep rate that 
a machine may undergo and still result in valid data. 

To build a tracking filter whose amplitude and phase frequency response characteristics 
are constant with an arbitrary cutoff frequency is both complicated and expensive.  
Considering that in many cases it would be desirable to order track more than one 
channel of data simultaneously, the cost of the required filters increases dramatically.  In 
tracking multiple channels simultaneously, the filters used must be amplitude and phase 
matched with one another.  This amplitude and phase matching becomes very difficult 
and therefore very expensive with tracking filters.  To reduce the cost of this system, data 
is usually recorded on a tape recorder and played back one channel at a time through the 
same tracking filter.  This procedure guarantees amplitude and phase matching between 
channels, since only a single filter is used for all channels.  However, it linearly increases 
the analysis time with the number of channels processed. 

To drive the frequency of the tracking filter, a reliable tachometer signal is required.  The 
tachometer signal is also required to allow the data to be acquired synchronous with the 
rotation of the operating machine.  Just as in all order tracking methods, the higher 
quality the tachometer signal, the higher quality the resulting data will be.  The 
tachometer signal may be generated by an encoder mounted on the rotating shaft of the 
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machine that generates a pulse count the same as the desired synchronous sample rate.  
Another common method of generating a tachometer signal is with the use of a 
tachometer signal and a tracking ratio synthesizer.  The tracking ratio synthesizer is an 
expensive piece of hardware, however there is only one needed for each rotating shaft 
and not one per general acquisition channel.  The hardware schematic for the latter type 
of system is shown in Figure 2.2. 

While the encoder method requires less actual hardware, it is often difficult to mount an 
encoder on a rotating shaft.  The encoder also does not allow the engineer the ability to 
change the sample rate or cutoff frequency of the tracking filter, since it has a fixed 
number of output pulses per revolution.   The advantage of an encoder is that there is no 
intermediate estimate of the rotational speed of the rotating shaft and therefore no errors 
in the synchronous sampling of the data. 

While the encoder does not require any intermediate speed estimation, this is not true 
with a tracking ratio synthesizer.  A tracking ratio synthesizer estimates the period 
between two consecutive tachometer pulses.  This period is then used to generate the 
external sample frequency used to trigger the ADC in the acquisition system until the 
arrival of the next tachometer pulse.  Inherent is this sampling procedure is a single 
tachometer pulse lag of the sample frequency with respect to the actual rotational 
frequency of the machine.  This characteristic can limit the sweep rate that the machine 
may undergo and still obtain accurately sampled data.  Figure 2.3 shows a plot of the 
actual rpm vs. the assumed rpm of a tracking ratio synthesizer and gives a graphical 
representation of the difference between the actual and assumed rpm values [ref.7].  
Where the two curves are close to one another, the lag error will be small. 
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Figure 2.3:  Actual versus estimated revolutions from tracking ratio synthesizer. 
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The error introduced by the sample frequency estimation lag will be small if the sweep is 
linear and/or slowly varying.  This results in long sweep times and can exclude a sweep 
condition that may be necessary for troubleshooting.  Oftentimes a faster sweep rate may 
be necessary to simulate an actual operating condition, such as a speed sweep in the low 
gear of a transmission.  These low gear sweeps can be very rapid and must be simulated 
with rapid sweeps if powertrain mounts are to be loaded in a realistic manner. 

If the tachometer signal is not accurate, the anti-alias filter will not be operating with the 
proper cutoff frequency and the sample rate of the data will be incorrect.  An incorrect 
sample rate will lead to many of the errors that order tracking analysis was developed to 
minimize.  The largest of these errors is leakage.  Aliasing may also occur if the anti-alias 
filter is not operating with the proper cutoff frequency. 

2.3 Time Domain Sampling Based Order Analysis. 

The simplest and oldest method of digital order analysis is through the use of the standard 
Fourier transform.  This method came into use early in the FFTs history.  Again, the 
earliest reference found was 1972 but it is known that the method was in use before that 
time [ref. 48-53].  The Fourier transform is typically applied as a fast Fourier transform 
(FFT) because of its computational speed, therefore from this point on it will be referred 
to as an FFT based technique. 

The advantage of the FFT based order analysis is its simplicity and computational 
efficiency.  FFT based order tracking does not require any special hardware and can 
easily be implemented in either a real time or post-processing calculation.  However, 
there are severe disadvantages in using the FFT to analyze time varying signals.  These 
disadvantages are due to the constant frequency sampling approach and constant 
frequency kernel which are used to acquire and analyze the data, respectively. 

2.3.1 Fourier Transform Based Order Analysis Theory. 

The sampling theorem that the FFT is based on is the well understood and documented 
Shannon’s sampling theorem presented in Equation 2.3. 
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where: Δf is the frequency resolution of the resulting frequency spectrum. 
 T is the total sample time analyzed. 
 N is the total number of time points over which the transform is performed. 
 Δt is the time spacing of the time samples. 
 Fsample is the sample frequency of the data. 
 Fnyquist is the Nyquist frequency. 
 Fmax is the maximum frequency which can be analyzed. 

As can be seen in Equation 2.3, the sampling theorem is based on acquiring data samples 
with a uniform time spacing, Δt.  The equation also shows that the sampling theorem is 
not related in any way to the behavior of the rotating machine.  This implies that the 
result from the transform is based on frequencies and not orders.  This property is further 
shown by the transform itself that is presented in Equation 2.4. 
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where: x(nΔt) is the nth discrete data sample. 
 fm is the frequency of the sine/cosine terms, mΔf. 
 am, bm are the estimated Fourier coefficients. 

The properties of the sampling, kernels, and the type of data that the FFT is well suited to 
analyzing are shown graphically in Figure 2.4.  The kernels of the FFT are the constant 
frequency constant amplitude sine and cosine functions for each Δf.  This figure also 
shows that the kernel has the same form as the constant frequency data that it was 
developed to analyze.  Mathematically, a transform works well if the form of the kernel 
matches that of the data.  Clearly, the form of the FFT kernel does not match time 
varying data. 
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Figure 2.4: Graphical representation of Fourier transform, its properties, and 
sampled constant frequency data. 

FFT based order tracking performs sliding FFTs on time domain data.  The average rpm 
over which the transform is performed is also calculated.  This average rpm is then used 
to estimate the frequency, and therefore the frequency bin, of the orders of interest for 
each estimated spectra.  Once the frequency bin of an order is known, the amplitude and 
phase of the order can be extracted from the FFT spectra.  Since the order is not in any 
way locked to the Fourier transform, the order will not necessarily fall on one spectral 
line.  For this reason, oftentimes multiple spectral lines are summed around the center bin 
determined from the average rpm.  Since multiple spectral lines are being summed to 
arrive at an amplitude/phase estimate, the correction factor for the window applied to the 
data, usually a Hanning, is typically the energy correction factor. 

Three different strategies are normally used to determine the number of bins to sum on 
each side of the estimated order spectral line to calculate the amplitude and phase of an 
order.  The first sums a constant number of spectral lines, regardless of the rpm or the 
frequency of the order, resulting in a constant frequency bandwidth order slice.  While 
this strategy of extracting an order is a commonly used method, its results do not usually 
correlate well with other more advanced order bandwidth types of order tracking. 
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The second strategy that can be used to extract the order information from a series of FFT 
spectra is to sum the frequency bins around a given order to obtain a constant order 
bandwidth result.  A constant order bandwidth is determined from the frequency of the 
primary or reference order that the tachometer measured directly.  The 1st order frequency 
can be multiplied by a factor that results in a constant order bandwidth.  This then results 
in a different number of frequency bins being summed for different rpm values.  This 
method usually produces a result that is close to the result obtained with other constant 
order bandwidth order tracking methods. 

The last strategy that may used to extract order information from a series of FFT spectra 
provides a constant percentage bandwidth result.  Like the constant order bandwidth 
procedure, this method sums a different number of frequency bins for each rpm value.  In 
this case however, the number of bins not proportional to the frequency of 1st order, but 
instead proportional to the frequency of the order being extracted.  A graphical 
representation of all three of these bandwidth strategies is shown in Figure 2.5. 

Constant Frequency
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Figure 2.5: Graphical representation of different bandwidth strategies for FFT 
based order tracking. 

Regardless of which strategy is employed to obtain the order estimates, the phase 
estimate must still be correlated to the tachometer signal if all of the data is not 
simultaneously acquired.  The phase must be estimated by performing exactly the same 
analysis procedure on the tachometer signal that is performed on the data channels.  The 
resulting phase of the tachometer channel is then subtracted from the order estimates of 
the response channels.  Any channel may be used as the phase reference channel.  
Typically the phase reference is the tachometer channel since it has physical meaning.  
Using the tachometer channel as the phase reference also means that an additional 
channel does not need to be acquired with every acquisition for phase matching the 
results, the tachometer channel must be acquired for other purposes as well. 
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2.3.2 Fourier Transform Based Order Tracking Limitations and Errors. 

The FFT based order tracking technique has limitations based on the constant time over 
which the transform is performed, regardless of the rpm of the machine.  This constant 
integration time of the FFT leads to many disadvantages when the FFT is used to analyze 
time varying signals. 

The constant frequency bandwidth of the FFT results in a varying number of orders 
present in each FFT spectra if the speed of the machine is changing.  There will be a 
higher number of orders present in the spectra than at high rpm values at low rpm values.  
This implies that the maximum frequency of the highest order of interest must be 
calculated at the highest rpm of a sweep and that bandwidth used for the entire sweep. 

One limitation that all Fourier transform based techniques possess is based on the 
assumption that all sinusoidal functions are constant in amplitude over the time that the 
transform is performed.  The assumption of constant amplitude leads to underestimates of 
the amplitudes of the order if the order’s amplitude varies over the integration time.  The 
transform will give an average amplitude over the integration time.  This can clearly be 
seen from the kernel presented in Equation 2.4.  Underestimate of the amplitude can be 
severe if a lightly damped resonance is excited by the order.  The resonance may first 
increase in amplitude, peak, and then decay in amplitude, during the integration time.  An 
example of the differences in the estimated amplitude of a varying amplitude sine wave 
with different analysis blocksizes is shown in Table 2.1 for the sine wave presented in 
Figure 2.6. 
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Figure 2.6: Varying amplitude sine wave. 

Table 2.1 was generated by using 4 different blocksizes, all centered around the center of 
the block of data.  It can be seen that the difference in the amplitude estimates varies from 
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3.8099 to 4.5476.  All estimates were obtained using a Hanning window to minimize 
leakage. 

BLOCKSIZE AMPLITUDE 
 ESTIMATE 

512 4.5476 

1024 4.4850 

2048 4.2923 

4096 3.8099 

Table 2.1: Amplitude estimate vs. Blocksize for time function shown in Figure 2.6. 

A leakage error is also present in all orders that are estimated with an FFT based 
technique.  Since the orders can vary in frequency during the integration time, the orders 
will not be stationary on one spectral line of the transform.  There is also no provision in 
the FFT techniques to analyze an integer number of revolutions to minimize the leakage 
error.  For this reason a Hanning window is normally applied to reduce leakage.  The 
sampled waveform that results when a constant Δt sample rate is used and the frequency 
is allowed to vary is shown in Figure 2.7.  Obviously, this sampled waveform does not 
resemble the form of the kernel of the Fourier transform.  This leads to both the leakage 
and smearing problems that hinder the use of the FFT as an order tracking method. 
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Figure 2.7: Varying frequency sine wave sampled with a constant Δt. 

The varying frequency of the order relative to the constant frequency kernels of the 
Fourier transform can limit the sweep rate.  The sweep rate and the order being analyzed 
control the rate at which the frequency of the order varies.  If the order is to be analyzed 
accurately, this variation in frequency must fall within the bandwidth which is extracted 
from the FFT spectra.  This limitation on the sweep rate can be estimated with Equation 
2.5 [ref 2]. 

TRPM rpm
sweep *

60
Δ

=      (2.5a) 

energy
sample

sweep W
F

NMaxOrderRPM
Binsband +=

**
  (2.5b) 

where: RPMsweep is the frequency which the primary order sweeps over in the total 
sample time. 
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 Δrpm is the difference between the maximum and minimum rpm in the total 
sample time. 

 Binsband is the number of bins that the energy of the maximum order of interest 
is smeared over. 

 MaxOrder is the maximum order of interest. 
 Wenergy is a correction for the energy bandwidth of the applied window (Hanning 

window = 1.5). 

The relationships given in Equation 2.5 can then be used in conjunction with Equation 
2.6 to determine the actual order resolution obtained with a defined set of sampling 
parameters and a given sweep rate with the Fourier transform. 

N
BinsbandMaxOrdero )*2*(=Δ     (2.6) 

where: Δo is the actual order resolution. 

After determining the sweep rates and order bandwidths that can be analyzed with the 
Fourier transform, it becomes obvious that the Fourier transform is not ideally suited to 
order tracking.  At low rpm values, the orders will be close together in frequency.  The 
Fourier transform does not account for this and therefore close orders may not be easily 
separated.  At the high rpm values, the orders are very well separated in frequency.  This 
implies that a shorter integration time, T, may be analyzed and the orders still separated.  
Analyzing the data with a shorter integration time would result in a better estimate of the 
peak amplitude that an order contains because the averaging time of the FFT would be 
shorter. 

2.4 Angle Domain Sampling Based Order Tracking. 

The second most common order tracking methods in use in commercial software and 
dynamic signal analyzers are the digital resampling based order tracking methods.  These 
methods are the digital equivalent of the analog order tracking methods that use a 
tracking anti-alias filter and a frequency ratio synthesizer as an external sample clock.  
The digital resampling based methods are implemented in a completely digital manner 
with only a single frequency analog anti-alias filter, and are frequently referred to as 
computed order tracking methods. 

The first published material on this type of digital order tracking method was by Potter, et 
al from Hewlett Packard [ref. 5-11].  Hewlett Packard considers the exact implementation 
of the technique to be proprietary and as such has not published many of the details.  
Both the small and large channel count dynamic signal analyzers that HP manufactures 
have this type of order tracking available either as a standard feature or as an option.  
Recently many other dynamic signal analyzer manufacturers have begun to offer a type 
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of resampling based order tracking.  Again, these manufacturers consider their exact 
implementation to be proprietary and have not published their methods of 
implementation. 

2.4.1 Auto-variate Discrete Fourier Transform. 

From a historical perspective, the first primarily digital based angle domain based order 
tracking method was the Stepped Blocksize Auto-variate Discrete Fourier Transform.  
This method was developed to overcome many of the leakage and sweep rate limitations 
of the basic FFT order tracking technique. 

To improve the results of analog order tracking with a frequency ratio synthesizer, Van 
der Auweraer et al. developed a method called the auto-variate discrete Fourier transform 
with stepped sampling [ref. 1].  The main principle behind the auto-variate DFT is to vary 
the blocksize, of the DFT, of oversampled angle domain data to ensure that the DFT 
transform is always performed over an integer number of revolutions. 

The data acquired for the auto-variate DFT is oversampled by a large factor.  A frequency 
ratio synthesizer is used to attempt to acquire evenly spaced angle domain sampled data.  
However, the sample clock that is generated from the frequency ratio synthesizer is much 
higher than necessary based on the highest order to be analyzed.  The use of the very high 
sample rate is three fold.  The first reason for employing a very high sample rate is to 
allow the use of one fixed frequency analog anti-alias filter.  By oversampling low rpm 
data by a large factor, no aliasing will occur even if the anti-alias filter’s frequency is set 
to allow the acquisition of an order at a much higher rpm.  The second reason for 
oversampling the data by a large factor is to accurately estimate the arrival time of each 
tachometer pulse, this is necessary for the auto-variate DFT computation.  The last reason 
the data is acquired with a high sample rate is to improve the odds of having an integer 
number of revolutions occur at an actual data sample instead of between samples, which 
will minimize the leakage problem. 

The auto-variate DFT is accomplished by pre-computing the DFT kernels for various 
numbers of samples both above and below the target blocksize and storing them away for 
efficiency.  Upon acquiring the number of revolutions of data required to obtain the 
desired order resolution, the tachometer signal pulse arrival times are re-analyzed to 
determine what the actual rotational speed of the machine was.  This re-analysis allows 
the exact number of data samples to be determined which were acquired over an integer 
number of revolutions.  The DFT is then computed over this number of data samples 
from the pre-computed DFT kernels.  Hence, the blocksize of the DFT is adaptively 
changed to account for the lag inherent in the frequency ratio synthesizer.  Adaptively 
varying the DFT blocksize minimizes leakage at the cost of the size of the required 
buffers to store the oversampled data prior to the DFT and the pre-computed DFT 
kernels. 
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If the blocksize of the DFT must be varied from the target blocksize, there will be a 
leakage error.  The leakage error occurs because the data is not sampled with an equal 
angular spacing.  Obtaining equal angular spaced samples was the goal of using a 
frequency ratio synthesizer.  The data samples are not evenly spaced because the speed of 
the machine is changing in the acquisition of each block of data.  If the speed had not 
changed, the DFT size would not need to be varied.  Since the data is not sampled with an 
equal angular interval, the DFT will not be computed correctly.  Remember that the 
kernel of the DFT is generated with equal angular spacing between samples.  This 
implies that at each sample instance the phase of the order of interest and the phase of the 
DFT kernel will vary with respect to each other by a small amount.  The sample by 
sample phase variation between the order and the kernel causes a leakage error.  The 
leakage error will be much smaller than if the auto-variable DFT is not employed. 

This approach will especially increase the accuracy of order estimates that are near the 
Nyquist order and all order estimates with high sweep rates where the lag of the 
frequency ratio synthesizer is most pronounced. 

2.4.2 Digital Resampling Based Order Tracking Theory. 

The resampling based order tracking methods acquire digital data with a uniform Δt after 
anti-alias filtering with a single frequency analog anti-alias filter.  The uniformly sampled 
time data is then digitally resampled to the angle domain through the use of an adaptive 
digital resampling algorithm.  These adaptive digital resampling algorithms are what is 
considered proprietary by the dynamic signal analyzer manufacturers.  A summary of the 
steps required to do this angle domain transform and processing are shown in Figure 2.8. 

Constant Δt data Adaptive digital anti-alias filter

Adaptive resample from time to angle domain

Perform angle domain FFT

Tachometer data Obtain time instants of
equal angular intervals

Sample rate must be >
2*max_order of interest!

 
Figure 2.8: Flow chart of adaptive resampling process. 
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The philosophy behind adaptively resampling the uniform Δt data to a uniform angular 
interval, Δθ, is given in Appendix A.  The uniformly spaced angle data is then processed 
using the Fourier transform to obtain amplitude and phase estimates of the orders of 
interest.  The significance of angle domain sampling is that this data has the same 
properties as a stationary sine wave sampled with uniform time intervals.  The adaptive 
resampling from the time domain to the angle domain transforms non-stationary time 
domain data into stationary angle domain data that can then be analyzed with standard 
digital signal processing methods.  The result of resampling a varying frequency sine 
wave is shown in Figure 2.9.  This figure shows that the chirp function, which is shown 
in Figure 2.7 sampled with a uniform Δt, appears to be a sine wave after angle domain 
resampling.  This function now matches the form of the Fourier transform kernel, which 
implies a more accurate analysis of the signal is possible. 
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Figure 2.9: Chirp function resampled to angle domain. 

To enable the transformation from the time domain to the angle domain, a reference 
signal of some type must be measured to allow the determination of the times of the 
uniform angular intervals.  This reference signal is typically a tachometer signal 
measured on a reference shaft of the operating machine.  Through the use of numerical 
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integration and an interpolation algorithm, this tachometer signal can be processed to 
obtain the time instants of the uniformly spaced angular points.  This tachometer 
processing is explained in detail in Section 2.7. 

The time instants of the angular intervals are then used with a digital interpolation 
algorithm to obtain the estimates of the response channels at these points in time.  Several 
different interpolation algorithms may be used to estimate these new data samples.  
Several of these techniques are summarized in Section 2.8. 

The angle domain data is then analyzed with the use of angle domain Fourier transforms 
to obtain amplitude and phase estimates of the orders.  The time domain sampling 
relationships must be reformulated into the angle domain to understand the sampling and 
resolution of these Fourier transforms.  The reformulated sampling equations are given in 
Equation 2.7.  Further discussion of the development of this relationship is given in 
Appendix A. 
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    (2.7) 

where: Δo is the order spacing of the resulting order spectrum. 
 R is the total number of revolutions that are analyzed. 
 N is the total number of time points over which the transform is performed. 
 Δθ is the angular spacing of the resampled samples. 
 Osample is the angular sample rate at which the data is sampled. 
 Onyquist is the Nyquist order. 
 Omax is the maximum order that can be analyzed. 

As can be seen in Equation 2.7, there are analogous quantities for each of the time 
domain sampling parameters.  In the angle domain, the order resolution is related to the 
number of revolutions that the machine turns through over the transform period.  It 
should also be noted that the minimum sampling rate needed to avoid aliasing is two 
samples per cycle of the highest order of interest, the same as that required with time 
domain data. 

The kernels of the Fourier transform are also reformulated in terms of the uniform 
angular intervals.  These kernels are presented in Equation 2.8. 
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where: om is the order which is being analyzed, mΔo. 
 am is the Fourier coefficient of the cosine term for om. 
 bm is the Fourier coefficient of the sine term for om. 

The result from this angle domain Fourier transform is that the orders fall on spectral 
lines, regardless of the speed variations over which the transform is applied.  The 
transform is usually applied as a discrete Fourier transform (DFT) instead of an FFT for 
computational speed and flexibility.  The DFT allows the transform to be performed for 
only the orders of interest.  Another advantage of using the DFT is the fact that the 
transform can be applied over the number of points which corresponds to an integer 
number of revolutions of the machine’s rotation, as opposed to being restricted to a 
power of two samples.  Since the data is sampled in the angle domain there is a constant 
number of orders present in the data regardless of the rotational speed of the machine. 

The advantages of the resampling based order tracking are leakage free estimates of 
orders which fall on spectral lines as well as an order resolution which is of constant 
order width.  The constant order resolution is beneficial because the integration time is 
shorter at higher rpm values.  This property is desired since orders will change frequency 
more rapidly at higher rpm values and therefore are more likely to change amplitude 
more rapidly as well.  In addition, the order resolution is now independent of rpm.  This 
allows closer orders to be analyzed at low rpm values where they are close together in 
frequency.  

2.4.3 Digital Resampling Based Order Tracking Limitations and Errors. 

Resampling based order tracking, while being more accurate than the FFT based order 
tracking, still has limitations and errors associated with it. 

An obvious limitation with any FFT is the finite defined order resolution.  This presents a 
problem if there are orders present that do not fall on spectral lines.  These orders are 
difficult to analyze with an FFT approach.  Practically, the Fourier transform for a 
spectral line on each side of the actual order can be calculated and these results summed.  
This approach compromises the order resolution.  If the DFT is used to analyze an order 
that does not fall on a spectral line, the transform will not conserve energy!  Energy is not 
conserved because the kernel of this order will not be orthogonal with the kernels of the 
orders that fall on spectral lines. 
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The limitation of the FFT that was discussed in Section 2.3.2, the analysis of non-
stationary amplitude data, is still present with the angle domain Fourier transform.  The 
resampling process does nothing to overcome this limitation other than allow the 
transform to be applied over a shorter period of time at the higher rpm values.  The 
transform is applied over a shorter time at higher rpm values because a shaft requires less 
time to rotate through the desired number of revolutions. 

The finest order resolution that may be analyzed in real time is typically limited by the 
amount of memory that is present in the acquisition system.  To implement the digital 
resampling in real time the acquisition system must buffer not only the raw time sampled 
data but also the resampled angle domain data prior to performing the desired DFTs.  
This implies that the memory buffer must be large since it must also contain the time data 
which has not been digitally anti-alias filtered.  In some cases the limitation may be the 
speed of the DSP processors in the acquisition cards.  This limitation is fading quickly 
with the increased speed of the latest DSP processors. 

Another restriction with resampling based order tracking is that orders may only be 
tracked relative to one rotating shaft.  This restriction also implies that orders that cross 
one another can not be analyzed accurately.  Orders which cross another may be 
generated by two different rotating components which are not rigidly coupled to one 
another.  This may occur across a torque converter in an automatic transmission or in a 
constant variable transmission.  To separate the crossing orders or orders that are not 
relative to the same shaft requires the use of multiple tachometer signals, one for each 
independent input to the system.  Resampling based order tracking can not use multiple 
tachometer signals to estimate the response of the system due to the multiple inputs 
present. 

It will be seen that several of the limitations and errors associated with the resampling 
based order tracking can be overcome by other more recently developed order tracking 
methods. 

2.5 Kalman Filter Based Order Tracking. 

An order tracking method that overcomes many of the limitations of order resolution is 
the Kalman filter based order tracking.  The Kalman filter methods allow the extraction 
of the time history of the order as well as the estimate of the amplitude and phase of an 
order.  The Kalman filter was first adapted to order tracking by Vold and Leuridan [ref. 
17,18].  Since this original implementation, Vold has continued to develop more 
advanced filters with additional capabilities [ref. 19-21]. 
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2.5.1 Original Kalman Order Tracking Filter. 

The Kalman filter approach to estimation requires that a priori information of some type 
be known [ref. 31,32].  To use the Kalman filter to extract order information from data 
requires information about the order to be extracted.  In this case, the frequency is known.  
The frequency of the order is estimated from processing the tachometer signal and a 
knowledge of what order is to be extracted.  The tachometer data is processed by 
estimating a set of splines through the tachometer periods.  These splines provide an 
estimate of the instantaneous frequency for each time sample.  This procedure is 
presented in detail in Section 2.7. 

The a priori information is used to formulate the structural equation of the Kalman filter.  
The structural equation is an equation that describes the mathematical characteristics of 
the order to be extracted.  An equation that can be used to mathematically describe a 
sampled sine wave is given in Equation 2.9.   This equation is the structural equation used 
in the original second order Kalman order tracking filter. 

( ) ( ) ( )( ) ( )( ) 021cos2 =Δ−+Δ−Δ−Δ tnxtnxttnx ω    (2.9) 

where: x(nΔt) is the nth discrete time sample. 
 ω is the instantaneous frequency of the sine wave. 

Equation 2.9 describes a sine wave whose frequency and amplitude is constant over three 
consecutive time points.  The frequency of an order is allowed to vary with time, which 
implies that the frequency of the sine wave is not constant.  The structure equation is then 
re-written to account for this, shown in Equation 2.10. 

( ) ( ) ( )( ) ( )( ) ( )ntnxtnxttnx εω =Δ−+Δ−Δ−Δ 21cos2    (2.10) 

where: ε(n) is the nonhomogeneity term. 

The nonhomogeneity term is used to describe the amplitude and frequency variations 
from a perfect sine wave.  Mathematically, if a sine wave is amplitude modulated there 
must be other frequency components present in the data.  These additional frequencies 
are sidebands which allow the amplitude of the sine wave to change with time.  If the 
amplitude is to change quickly, then more frequency information must be allowed to pass 
through the filter and the nonhomogeneity term must be larger.  The standard deviation of 
this nonhomogeneity term is defined as sε(n). 

The second equation that the Kalman filter is based on is the data equation.  The data 
equation describes the relationship between the order, x(n), and the measured data, y(n).  
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The measured data contains not only the order of interest but all orders generated by the 
machine and random background noise.  This equation is written in Equation 2.11. 

( ) ( ) ( )nnxny η+=      (2.11) 

where: η(n) is the nuisance component. 

The nuisance component, η(n), is the portion of the signal containing the non-tracked 
orders and random noise.  The standard deviation of this term is denoted sη(n).  If the 
nuisance term is large it indicates that a significant portion of the measured signal, y(n), 
is attributable to non-tracked orders and random noise. 

The structure and data equations are combined into a set of linear equations to solve for 
the amplitudes of the order of interest.  A minimum of three data values are required to 
satisfy the structure equation and therefore to solve for the order.  The structure and data 
equations are written in matrix form in Equation 2.12.  
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A weighted solution to this problem is formed by ratioing the standard deviations of the 
structure and data equations.  This ratio is shown in Equation 2.13. 
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Applying the ratio as a weighting function to the solution of the matrix problem results in 
Equation 2.14. 
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Assuming an isotropic error that is consistent with a minimum variance unbiased solution 
with locally zero mean error terms gives Equation 2.15.  Assuming a different error 
model will alter the tracking characteristics of the filter. 
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Equation 2.15 can be expanded into a least squares solution if multiple estimates of the 
order amplitude and phase are of interest, this formulation is used to extract the time 
history of an order.  The least squares formulation shown in Equation 2.16 will solve for 
m points of the order time history. 
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Normally, the least squares formulation is formulated to solve for all points of a time 
history simultaneously.  This formulation is technically a Kalman smoothing algorithm, 
as opposed to a filtering algorithm, because it can use time points both before and after 
the desired time point to obtain the order estimate [ref 31,32]. 

Equation 2.16 can be solved through a normal equations approach, which will result in a 
tightly banded diagonal matrix that must be inverted.  This inversion can be done with 
either a forward/backward substitution approach or a direct matrix inversion. 

The choice of the weighting factor, r(n), which is the inverse of the Harmonic Confidence 
Factor(HCF) in the LMS implementation of this Kalman filter, defines the tracking 
characteristics of the filter. 

Choosing a relatively high value for the HCF weights the structure equation more heavily 
in the solution process.  Weighting the structure equation heavily results in a filter shape 
which is very narrow and allows very little sideband information to pass through the 
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filter.  Without sideband information, the amplitude of the filtered sine wave must change 
very slowly.  A relatively high HCF then gives a very sharp filter with very good 
frequency discrimination.  The tradeoff for this performance characteristic is a filter that 
does not allow the filtered order to change amplitude quickly. 

Choosing a relatively low value for the HCF has the effect of weighting the data equation 
more heavily in the solution process.  Weighting the data equation more heavily results in 
a filter that does not possess as sharp a rolloff and therefore is not as frequency 
discriminating as the high HCF filter.  Using a low HCF allows the amplitude of the 
filtered order to vary much more quickly than the high HCF filter.  This behavior may be 
necessary around lightly damped resonances or in fast speed sweeps where the frequency  
and amplitude of the order must be allowed to vary quickly. 

Figure 2.10 shows the filter shape when tracking different normalized frequencies.  While 
the filter shape looks very similar from one frequency to another, the same HCF was used 
for all frequencies, the filter’s peak amplitude changes as a function of frequency.  A 
Flattop window was used to generate this plot in an attempt to eliminate any leakage 
from the results.  It can be seen that the filter’s amplitude is lowest at the center of the 
block and highest at both ends. 
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Figure 2.10:  Effect of tracked frequency on original Kalman filter's shape. 

The amplitude convergence time tradeoff with the HCF is shown in Figure 2.11.  A sine 
wave was generated that was set to 0 amplitude near the center of the time block to 
generate a signal with a severe amplitude change.  This waveform was tracked with two 
different HCF values, 100 and 1600, to show the effect of HCF on tracking amplitude 
changes.  The higher the HCF the slower the filter is to converge to the correct amplitude 
of the waveform.  This is consistent with the necessity of requiring sideband energy to 
allow the amplitude of the waveform to change quickly. 
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HCF = 100
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Original Signal

 

Figure 2.11:  Effect of HCF on ability to follow rapid amplitude change, HCF=100, 
1600. 

2.5.2 Vold-Kalman Order Tracking Filter. 

Vold both simplified and extended the original Kalman order tracking filter into the 
Vold-Kalman order tracking filter [ref. 19].  This extended filter can be formulated with 
different numbers of poles to alter its bandpass characteristics.  The filter may also be 
applied in either an iterative or direct solution to separate the contributions of very close 
or crossing orders. 

Vold realized that the second order formulation for the structure equation, presented in 
Equations 2.9 and 2.10, could be written in an equivalent complex first order form.  The 
complex formulation for the structure equation is shown in Equation 2.17. 

( ) ( ) ( ) ( )ntinxnx εω =Δ−+ exp1     (2.17) 

The exponential term in this equation is the angle that the order rotates through in one 
time sample, Δt.  If the amplitude of the order does not change in the sample period, ε(n), 
the nonhomogeneity term, will be 0.  This form of the structure equation has several 
advantages over the original second order formulation.  The data may be pre-multiplied 
by the exponential function, or phasor, which varies with time.  The phasor’s frequency 
exactly matches the frequency of the order at all time values.  This pre-multiplication is 
shown in Equation 2.18. 
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exp ω     (2.18) 

where:  yDC(t) is the frequency shifted time history. 
 k is the order of interest. 

Equation 2.18 shows the phasor in time-varying form.  Multiplying the data by the time-
varying phasor centers the order of interest about DC.  This operation simplifies the 
structure equation to the form shown in Equation 2.19. 

( ) ( ) ( )nnxnx ε=−+1      (2.19) 

This simplified structure equation for the order is simply a relationship where ε(n) 
represents the amplitude change of the order from one time sample to the next.  The order 
is then simply a DC amplitude profile, in other words, the extracted order at this phase is 
the demodulated complex amplitude profile. 

One key advantage to this form of the structure equation is that frequency is not present 
in the equation and therefore it is obvious that there is absolutely no frequency or slew 
rate limitations. 

The Vold-Kalman filter uses the same data equation as the original Kalman filter, except 
in this case the data, y(n), is actually the phasor shifted data, yDC(n).  This filter also uses 
the same definition for the weighting function and error terms.  The matrix formulation of 
the structure and data Equations is shown in Equation 2.20.  
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The normal equations form of the matrix equation is a tri-diagonal set of equations which 
may be solved very efficiently using a forward/backward substitution method.  If a 
forward/backward substitution method is used for solution, further computational 
advantages can be gained if the same weighting factor is used for either multiple orders 
or multiple channels of data [ref. 33,34].  The forward substitution portion of the solution 
is independent of the data and relies only on the normal equations matrix of the left hand 
side of the equation.  The forward substitution may then be performed and stored for 
repeated application of the backward substitution to solve for the multiple orders or 
channels of data.  This computational advantage means that for additional orders or 
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channels after the initial order or channel, the number of calculations necessary to solve 
for the orders is reduced by a factor of 2! 

The order amplitude/phase profile that is estimated by Equation 2.20 is not a time-
varying phasor that represents the order, as was estimated by the original Kalman order 
tracking filter.  This first order formulation will estimate the amplitude/phase envelope 
that must be re-modulated to remove the tracked order from the original data.  Re-
modulation is performed by multiplying the estimated amplitude/phase profile by the 
negative time-varying phasor in Equation 2.18, used to de-modulate the original data.  
The estimate is only the positive frequency component of the order.  The negative 
frequency component must also be accounted for.  The complete re-modulation equation 
is shown in Equation 2.21 for both the positive and negative frequency order 
components. 

( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛= ∫

t duuiktxtx
0

expReal*2~ ω    (2.21) 

where: ( )tx~  is the re-modulated order function. 

This re-modulated order function can be subtracted from the original time history of the 
data to analyze the data without the presence of the extracted order. 

The effect of tracked frequency with the Vold-Kalman filter is shown in Figure 2.12.  It 
can be seen that tracked frequency has no effect of the filter shape or amplitude, this is 
opposed to the original filter formulation that possessed a different amplitude at different 
frequencies.  Independence of tracked frequency relative to the sample rate is a large 
improvement in the usefulness of the filter, this allows a weighting factor to be chosen 
independent of the frequency tracked. 
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Figure 2.12:  Effect of frequency on Vold-Kalman filter. 

Figure 2.13 shows the effect of different weighting factors on the shape of the Vold-
Kalman filter.  The higher the weighing factor the better the sideband suppression and the 
slower the amplitude of the tracked order will vary.  Weighting factors of 100, 400, 700, 
1000, 1300, 1600, and 1900 were used to create this figure.  Note that regardless of the 
weighting factor the amplitude at the center frequency is identical. 
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Figure 2.13:  Effect of weighting factor on Vold-Kalman filter shape, wf=100, 400, 
700, 1000, 1300, 1600, 1900. 

An additional capability of the Vold-Kalman filter is the ability to reformulate the filter 
as a higher order filter in order to have a broader passband region while improving the 
sideband rejection.  This filter has a flatter top relative to the single point peak which the 
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first order filter possesses.  The penalty paid for these improved filter characteristics is 
computational complexity.  A higher order formulation requires the solution of a more 
heavily banded matrix as opposed to the first order’s tri-diagonal matrix.  For example, a 
2nd order formulation has a banded matrix with 5 fully populated diagonals.  The actual 
formulation of the higher order filters is considered to be proprietary by Vold. 

While the higher order filter formulations can possess much sharper passbands, they may 
not be the filter of choice for very close orders because of their broader top.  They are 
more forgiving if an imperfect tachometer signal was measured.  The higher order filters 
should also be used if there are high amplitude orders that are close to the tracked order 
but outside of its passband.  The sharper filter skirts will allow these other orders to be 
more effectively removed from the tracked order. 

Probably, the most important characteristic which has been added to the order tracking 
analysis capability by the Vold-Kalman filter is the ability to separate either very close or 
crossing orders.  The ability to separate interacting orders may be implemented through 
either an iterative solution or a direct solution.  The formulation and solution of these 
filters are considered to be proprietary by Vold.  This ability is commercially available in 
multiple software packages. 

2.5.3 Kalman/Vold-Kalman Applications and Realizations. 

The formulations and discussions of both the original and the Vold-Kalman filters are 
centered about a weighting factor that is constant as a function of time.  This is not a 
requirement of either filter’s formulation.  In fact, all commercial implementations of 
either filter allow the weighting factor to vary as a function of time or rpm.  If the 
weighting factor is varied as a function of rpm, a pseudo-constant order bandwidth filter 
may be obtained.  Another strategy to vary the weighting factor of the filter is based on 
instants of known transient activity in the data.  Examples of this transient activity are 
gear shifts or clutch engagements.  In these areas of transient activity, it is assumed that 
the amplitude of a tracked order may change very quickly, thus the weighing factor is 
reduced in these regions to allow more sideband energy to pass through the filter.  The 
additional sideband energy allows the amplitude of the order to change very quickly in 
these regions, allowing a realistic amplitude profile to be estimated. 

The Vold-Kalman order tracking filter, if implemented with the steps discussed above, 
allows what-if games to be played that are more difficult with the original filter 
implementation.  The most powerful of these capabilities is that the estimated 
amplitude/phase profile at DC may be modulated to its original frequency.  This order 
can then be subtracted from the original time history.  The next step that can be taken is 
to modulate the amplitude/phase profile at DC to a different order than it was originally.  
The modulated order can then be added into the time history without the original order.  
This process has applications, for example, in accessory drive evaluations.  An order 
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relative to an accessory can be extracted, modulated to a different order, and added back 
into the data.  Modulating the order to a different order in this case would approximate 
using a different pulley diameter to drive the accessory.  This process can then be used to 
assess potential order interactions between accessories.  This process, while not perfect, 
can significantly reduce the hardware testing time to assess these interactions.  The 
resulting time histories can be played back through a set of headphones for sound quality 
analysis. 

Another application that these filters may be used for is the extraction of either constant 
frequency or order components that have been frequency shifted by the Doppler effect.  
This situation is very common in passby noise applications.  The Doppler effect is 
compensated for by including its frequency shifting effect in the estimate of the 
instantaneous frequency used in the structure equations.  Realizing this capability opens 
up many analysis possibilities that have historically been avoided due to the complexity 
and difficulty in accounting for the Doppler shift. 

Obviously, these filters may also be used to filter constant frequencies out of data.  This 
capability can be applied to remove 60 cycle electrical noise from time domain data.  The 
very sharp frequency characteristics of these filters coupled with the steady state 
amplitude nature of electrical noise makes these filters ideal for this type of application as 
the filters can be made very sharp and the frequency of the electrical noise is very well 
controlled.  Any application of these filters requires that the frequency of the filtered 
component be very well estimated.  It is very easy to miss the frequency component of 
interest if the frequency is at all in error. 

The best frequency discrimination that can be expected from the Kalman filters is the 
same as that of the Fourier transform.  Frequencies closer together than the inverse of the 
total length of time of the data cannot be effectively separated, as defined by Rayleigh’s 
criteria. 

While the Kalman order tracking methods have many advantages over the traditional 
order tracking methods, including better dynamic range and the time domain order 
extraction, they do have some disadvantages.  Computational complexity is one 
disadvantage of the adaptive filters.  The largest disadvantage, however, is the experience 
required to get valid accurate results for each order extraction.  The experience is 
required in choosing the appropriate weighting factor to extract the order with a minimal 
bandwidth while tracking the amplitude profile accurately.  The weighting factor that is 
necessary for an accurate extraction is a function of the other orders present in the data, 
the sweep rate, and the properties of excited resonances.  All of these items, which can 
vary from channel to channel, change the rate at which the amplitude of an order changes 
and therefore affect the width of the filter necessary for an accurate extraction. 
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2.5.4 Kalman Filter Weighting Factor Determination. 

In any formulation of the Kalman or Vold-Kalman filter the weighting factor must be 
determined.  Choosing a weighting factor with either filter that heavily emphasizes the 
structure equation results in a very frequency selective filter.  The question that remains 
to be answered then, is what weighting factor weights the structure equation enough.  
This question is not easily answered, through experience with the filters it has been 
learned that there is no one right answer.  No mathematical relationship between a filter 
weighting factor and some function of the data has been derived which will always result 
in the desired filter characteristic.  It has been observed that the weighting factor is a 
function of many parameters. 

Parameters that effect the filter performance include the sample rate relative to the 
frequency of the order of interest, the amplitude of the order of interest relative to the 
amplitudes of the other orders present in the data.  This amplitude characteristic depends 
on whether the other orders have relatively large/small amplitudes close in frequency to 
the order of interest or well away from the frequency of the order of interest.  Amplitude 
effects are also present from the order of interest exciting resonances.    In essence, the 
weighting factor appears to control the convergence speed of the filter in terms of time 
samples as much as it controls the bandwidth of the filter.  Due to the very large number 
of parameters which effect the proper choice of the weighting factor it is not possible to 
determine a reliable method of choosing a weighting factor which will work for every 
dataset.  The weighting factor very often varies from channel to channel of data, even if it 
was acquired simultaneously, due to the presence of resonances and orders that are 
different from between measurement dofs.  In short, the only reliable way to choose the 
proper weighting factor is through experience.  This ultimately is the major disadvantage 
of using the Kalman based tracking filters. 

2.6 Frequency Response Function Based Order Tracking. 

A very simple yet powerful order tracking technique which is not commercially 
implemented was used by Weber to track orders on a vehicle traveling down a road [ref. 
25].  This method is based upon the single/multiple input H1 frequency response function 
estimator where the tachometer signals are assumed to be the inputs to the system.  The 
computed FRFs are considered to be order tracks. 

Using the tachometer signals as the inputs to the system allows the phase relationship 
between any rotating components with measured tachometer signals and response dofs to 
be estimated.  The phase relationship between an input and response is constant for a 
linear system.  This phase relationship then allows cross-spectral averaging to be 
performed between the tachometer signals and the response dofs.  The equation that is 
used to compute the FRFs, or in this case order tracks, from the averaged cross-spectra is 
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shown in Equation 2.22 and is the multiple input H1 frequency response function 
estimator. 

( )[ ] ( )[ ] ( )[ ] 1−= ωωω FFXF GGH      (2.22) 

where: [H(ω)] is the estimated FRF matrix (order tracks). 
 [GXF(ω)] is the crosspower matrix between the response dofs and the 

tachometer signals. 
 [GFF(ω)] is the input crosspower matrix between the tachometer signals. 

To allow the input crosspower matrix to be inverted, the data must be acquired such that 
the different inputs’ phase relationships are varied from average to average.  Data 
acquisition is done by constantly changing the speeds of the inputs relative to one another 
to give the necessary phase variations.  The crosspower matrices are only estimated at 
frequencies that correspond to the orders of each tachometer instrumented component.  If 
the tachometer signal does not contain energy at an order of interest that order cannot be 
estimated.  Using techniques presented in Chapter 3 this limitation can be overcome and 
all possible orders can be estimated. 

Each resulting order track must be scaled by the amplitude of its respective tachometer 
signal to obtain a physically meaningful amplitude.  This amplitude scaling is necessary 
to correct for the amplitude of the tachometer signal itself.  The scaling is computed as 
shown in Equation 2.23. 

( ) ( ) ( )( )ωωω TmagHX ≅     (2.23) 

where: mag(T(ω)) is the magnitude of the tachometer signal at frequency ω. 

The magnitude of the tachometer signal is calculated from the Fourier transform of one 
block of the tachometer signal or from an analytical Fourier transform of a signal with the 
same characteristics as the tachometer signal.  If the amplitude of the tachometer signal 
varies over the acquisition time then the amplitude of the estimated order will not be 
correct.  The tachometer amplitude invariance is an additional restriction that this order 
tracking method contains that none of the other order tracking methods possess. 

2.6.1 Single Input/Tachometer Formulation, Multiple Input Configuration. 

Each tachometer signal may be treated as a single input to the system using Equation 
2.22.  Treating each tachometer signal as a single input to the system imposes specific 
restrictions on the data acquisition.  The data must be acquired such that the frequencies 
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of the orders of interest from each tachometer do not overlap.  If the different orders of 
the same tachometer excite the same frequencies it is not possible to estimate the order 
tracks accurately. 

The order tracks are estimated by performing some type of tachometer analysis to 
determine the approximate frequency of the order of interest for each average.  This 
frequency information is then used to zero out all frequency bins except those around the 
orders of interest for each tachometer signal in the respective Fourier transforms of the 
tachometer signals.  This zeroing is performed for each average.  The zeroing is done 
before the necessary autopowers and crosspowers are computed.  If two different rotating 
components excite the same frequency in a speed sweep there must be at least two 
averages of the order tracks at that frequency to uncouple the contributions due to each 
component.  The two averages must have different phase relationships between the two 
rotating components to allow uncoupling. 

Using only the first order of each rotating component can result in a scaled order track 
estimate relative to a known force input.  The dominant force input at 1st order is 
typically rotating unbalance.  A rotating unbalance input that sweeps in speed is no 
different than a swept sine input to a structure.  If the magnitude of the rotating unbalance 
is quantified, the estimated order track can be scaled such that a scaled FRF is estimated. 

2.6.2 Multiple Input/Tachometer Formulation, Multiple Input Configuration. 

The multiple input FRF formulation can also be solved where there are multiple inputs 
from each tachometer signal.  This formulation allows multiple orders of one rotating 
component to be tracked from the same tachometer signal.  Using a multiple 
input/tachometer allows the contributions of orders to be separated if the different orders 
excite the same frequencies in an acquisition period. 

To formulate multiple inputs from each tachometer signal, the tachometer signal is again 
processed to obtain an estimate of the rotational frequency of each component.  This 
information is then used to zero out frequency bins that do not correspond to orders of 
interest.  The difference in this formulation is that all frequency bins except those 
corresponding to one order are zeroed out and the resulting Fourier transform is treated as 
one input.  All frequency bins except those of the next order of interest are zeroed for the 
next input.  This procedure is repeated for each order of interest.  The number of resulting 
inputs is the total number of orders tracked for all components. 

These methods have the ability to separate both close and/or crossing orders if enough 
averages are acquired with a suitable frequency resolution.  The separation is possible 
because the cross-spectral averaging technique is very effective at separating responses 
due to independent inputs if there is a large enough phase difference between the inputs. 
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The major advantage of an FRF based order tracking method is the inclusion of the 
transient response of a system due to the rotating inputs.  Other order tracking techniques 
often discard the transient response because they behave like or are tracking filters.  A 
tracking filter follows the frequency of the order, therefore in a rapid speed sweep the 
frequency of an order may change rapidly and the transient ringing of a system may be 
filtered out.  Filtering out the transient response often leads to an order estimate near a 
resonance that is too low, the energy of the ringing is not included. 

The major disadvantage to the FRF based methods is the computational complexity of the 
multiple input formulations.  The number of inputs to the system varies for each spectral 
line.  The multiple input problem must be re-formulated for each spectral line to 
accommodate the varying number of inputs.  The number of inputs changes as a function 
of frequency because the number of orders which pass through a frequency changes, low 
frequencies are typically excited by larger numbers of orders than high frequencies.  The 
implementation of the FRF based methods, while not difficult theoretically requires a 
large amount of bookkeeping. 

2.7 Tachometer Signal Processing. 

Tachometer signal processing is very important in any order tracking method.  In most 
cases, the results of the order tracking analysis are only as accurate as the tachometer 
signal measured and the processing used in the analysis.  The resampling based order 
tracking, Kalman filtering, and the frequency domain order tracking previously discussed 
are all based directly on the tachometer signal analysis. 

If a good stable tachometer signal is not acquired then the desired order tracking can not 
be performed on any of the response channels.  Failing to acquire a valid tachometer 
signal then invalidates all of the channels if order tracking is to performed, for this reason 
a great amount of care should be taken in acquiring the tachometer signal. 

2.7.1 Hewlett Packard’s Polynomial Based Tachometer Analysis. 

The resampling process of the resampling based order tracking is directly linked to the 
tachometer signal.  For this reason, a very integral part of the computed order tracking 
algorithm which Potter patented for HP is the tachometer processing algorithm which is 
included in the patent [ref. 8]. 

The tachometer analysis that is used for HP’s resampling method must be a real time 
algorithm since the resampling is done in real time on the dynamic signal analyzers 
(DSAs).  This method fits a local quadratic polynomial to tachometer pulse arrival times.  
The polynomial used is shown in Equation 2.24. 
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( ) 2
210 tbtbbt ++=φ      (2.24) 

where: φ(t) is the angle of the shaft. 
 b0, b1, b2 are the polynomial coefficients. 
 t is time. 

Formulating this polynomial in matrix form to allow for the solution of the polynomial 
coefficients results in Equation 2.25. 
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where: t1, t2, t3 are three consecutive tachometer pulse arrival times. 
 φ1, φ2, φ3 are the rotational positions of the three tachometer pulses. 

Solving for the polynomial coefficients involves a simple inversion of the t matrix.  Once 
the polynomial coefficients have been solved for, an equation to solve for the time of a 
desired angular position may be formulated.  This equation is shown in Equation 2.26. 
This equation is used because the resampling process requires obtaining new samples at 
know angular intervals. 
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where: φk is the desired angular position. 
 tk is the corresponding time of the desired angular position. 

This equation is then solved for the time instants of the each of the resampled data points 
based on the desired angular spacing.  Since three consecutive tachometer pulses are used 
to formulate and solve this equation, the equation is only used to estimate times of 
angular positions which fall in the center of the angular interval spanned by the three 
pulses.  This interval is shown in Equation 2.27.  Equation 2.26 is reformulated and 
solved for each new tachometer pulse arrival. 

22
31 φφφ ≤≤ k       (2.27) 

This assumed model for the tachometer behavior is valid for any speed sweep profile that 
can be approximated with a linear shaft acceleration.  If the shaft acceleration cannot be 
approximated as linear, the model is not valid and errors will result.  Errors associated 
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with assuming a linear shaft acceleration when the shaft acceleration profile is a higher 
order function were evaluated by Munck [ref. 12].  The analysis presented by Munck is 
valid for this error.  Other portions of this reference are not based on a practical 
implementation and should be neglected. 

While this method works very for HP in their real time implementation in a DSA it is not 
very well suited for use in a post-processing application.  HP uses a dedicated tachometer 
channel in the DSAs, typically an analog triggering channel that has a very high 
frequency clock to record the tachometer pulse arrival times.  This clock is very often on 
the order of 1-4 MHz.  Sampling the tachometer channel at a sample rate commensurate 
with measured response channels can oftentimes give significant errors in the tachometer 
pulse arrival times.  These errors exist because the tachometer pulse train is sampled and 
not continuous.  The sampling of the signal means that the occurrence of a tachometer 
pulse transition is not sensed until after the actual pulse transition has occurred.  This 
error can be on the order of an entire Δt and has a random distribution.  Other errors 
associated with digitally triggering events are discussed in reference 35. 

2.7.2  Original Kalman Filter Spline Based Tachometer Analysis. 

Realizing the shortcomings of the local polynomial fit for post-processed data, Vold and 
Leuridan developed a spline fit technique as part of the original Kalman order tracking 
filter [ref.17]. 

The spline fit method was developed to smooth the errors associated with estimating the 
tachometer pulse arrival times from sampled data.  The method determines the 
tachometer pulse arrival times as best as possible from the sampled data.  These pulse 
arrival times are then used to calculate the rotational frequency of the machine.  This is 
straightforward since the frequency is simply the inverse of the difference between two 
consecutive pulse arrival times.  After estimating the pulse arrival times, there exists an 
rpm estimate for each pair of tachometer pulse arrivals.  This spline fit method can be 
used with any number of pulses per revolution from the tachometer signal.  Very often 
only a single tachometer pulse per revolution is required. 

The next step in the procedure is to divide the entire time history into a number of 
sections.  A least squares spline is fit to each section of rpm estimates, with boundary 
conditions enforced between the sections to ensure a smooth curve.  

The boundary conditions that are enforced between the sections to ensure a smooth rpm 
profile are based on end conditions and derivatives of the spline equation.  The end 
conditions imposed are that the value of the spline at the end of each section is equal to 
the value of the spline at the start of the next section.  This ensures that there are no 
discontinuities in the curve.  The first derivatives are forced to be equal at the end of each 
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section and the start of the next section.  Forcing the first derivatives to be equal ensures 
that the curve will be smooth.  A complete discussion of the actual spline fitting 
procedure can be found in any numerical methods text book including Reference 33. 

Once the splines have been determined for each section, they are used to obtain an 
estimate of the instantaneous rpm of the machine at every sample point.  These 
instantaneous rpm values are then used in the structure equation of the Kalman filters. 

Figure 2.14 gives an example of how large an error can result from estimating tachometer 
periods from sampled data.  Figure 2.15 gives an example of the effectiveness of the 
spline fitting process. 
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Figure 2.14: Estimated periods from sampled tachometer pulse train. 

Figure 2.14 shows the estimated rpm, based on the period estimate, for each revolution of 
a machine based on an acquisition sample rate that had approximately 10 samples/cycle  
for each tachometer pulse at the highest rpm of the sweep.  Obviously, there is a large 
variance in the rpm from one revolution to the next, which is not physically realistic.  
Every machine has some amount of inertia that ensures that there will not be drastic 
instantaneous speed changes from one revolution to the next.  The effectiveness of fitting 
10 spline segments to this data is shown in Figure 2.15. 
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Figure 2.15: Spline fit of estimated tachometer periods. 

Even with the effectiveness of the spline fit, sometimes it is necessary to do further 
tachometer signal processing.  If the initial period estimates contain too much variance, 
the final spline fit may not be as smooth as desired if many spline segments are used to 
follow the general sweep profile.  In this case, it may be possible to upsample the raw 
tachometer signal prior to the period estimation.  Upsampling may better define the pulse 
transitions that are used for period estimation.  Upsampling cannot increase the amount of 
high frequency content in the signal, but it can provide samples that are closer to the 
transitions and may therefore reduce the variance. 

A major advantage to fitting a limited number of spline segments to an entire data block 
is the stiffness of the splines.  If a tachometer pulse is missed or an extra pulse occurs in 
the tachometer signal acquisition, it may be possible to fit a spline through the signal 
which negates the error from the incorrect tachometer signal.  However, if there are 
multiple missed tachometer pulses, the spline fit may not be stiff enough to effectively 
span the bad data.  Missed or extra tachometer pulses cause severe errors in HP’s 
polynomial fitting algorithm.  There is no possibility to account for this error because all 
processing is done in real time and only 3 tachometer pulses are used. 

A disadvantage of the stiff spline fit occurs when an aggressively changing speed sweep 
is measured.  If the rpm of the machine is changing very rapidly, such as near gear shifts, 
the splines may be too stiff to accurately follow the sweep profile.  To overcome this 
limitation, Vold expanded the spline fit concept in the Vold-Kalman filter 
implementation [ref. 19]. 

2.7.3 Vold-Kalman Filter Enhanced Spline Based Tachometer Analysis. 

Two major advances are present in the tachometer processing which Vold 
developed/extended as part of the Vold-Kalman filter [ref. 19].  These developments 
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more accurately fit the spline functions of the original Kalman filter tachometer 
processing algorithm to obtain estimated rpm values from the tachometer period 
estimation process. 

The first of these developments allows the effects of missed or extra tachometer pulses to 
be effectively eliminated in the spline fit.  This method, called shaving, fits the original 
spline to the estimated periods as a first step.  The second step compares each originally 
estimated rpm value to the rpm value of the spline.  If the difference between the 
estimated rpm and the spline rpm is too great, the estimated rpm is removed from the 
dataset.  After comparing all estimated rpms to the spline rpms, the splines are again 
fitted to the reduced set of estimated rpm values.  This multi-step iterative spline fit very 
effectively removes all effects of the missed or extra tachometer pulses from the 
instantaneous rpm estimates. 

The second development which Vold included in the second generation spline fitting 
algorithm was the ability to relax the first derivative constraints.  If an event channel is 
measured, for instance on the clutch pedal, it is possible to enforce a boundary between 
spline sections to occur at the time that the state of the event channel changes.  For a 
clutch, this would allow a spline to be fit up to the shift point, through the shift, and 
immediately following the shift.  If the first derivative constraints are relaxed at these 
points then the spline fit rpm profile can very accurately follow the extremely fast slew 
rates that occur during the shift.  This capability to relax slew rates allows rapidly 
changing rpm profiles to be fit very well if the user accurately picks the points to relax 
the derivatives or if there is an event channel to identify these points automatically. 

With the addition of these two enhancements to the spline fit algorithm there are very 
few, if any, sweep scenarios that cannot be processed accurately in the post-processing 
phase of analysis.  However, situations still exist in real time tachometer processing 
implementations that cannot be handled accurately, the most obvious being the 
compensation for missed or extra tachometer pulses. 

2.8 Adaptive Resampling Procedure. 

Adaptive resampling is performed when it is desired to resample data relative to a time 
varying reference signal.  The reference signal may be locked to the rotational speed of a 
non-stationary rotating machine to allow synchronous sampling.  The reference signal 
may also be locked to the instantaneous velocity between two test objects.  In this case 
adaptive resampling is performed to remove the Doppler shift between the test object and 
a stationary transducer.  Many other applications exist for adaptive resampling, but these 
two examples are the two most common applications in noise and vibrations. 
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Since the reference signal can be time varying, the resulting data samples may not be 
evenly spaced in time but instead evenly spaced relative to the reference signal.  These 
unevenly spaced data points are the output from adaptively resampled data samples that 
were evenly spaced in time when they were acquired.  Obviously, since these new 
samples are not evenly spaced in time, the decimation and interpolation methods 
presented in Appendix B cannot be applied directly to obtain the new data values.  
However, through the creative application of one or all of these techniques, the data can 
be accurately adaptively resampled. 

A preliminary step in implementing any adaptive sampling rate interpolation method is to 
determine at what points in time the desired sample points must occur from the reference 
signal.  This may involve considerable processing and may be more computationally 
intensive than the actual adaptive interpolation process.  The processing of tachometer 
signals acquired on rotating machinery is presented in Section 2.7.  The tachometer 
processing estimates the instants in time at which new data values are required for the 
synchronous sampling process with respect to the rotation of a machine’s rotating 
reference shaft. 

2.8.1 Adaptive Sampling Rate Interpolation Theory Based on Upsampling and 
Linear Interpolation. 

The adaptive sampling rate interpolation method is implemented in multiple 
commercially available software packages.  The method is based on a combination of 
upsampling the original signal and linearly interpolating between the upsampled data 
values to obtain the desired data values. 

The first step in this adaptive resampling approach, after the new time locations are 
determined from the reference signal, is to upsample the original data.  The amount 
which the original data is upsampled has a large effect on the signal to noise ratio (SNR) 
of the final result.  The more the data is upsampled, the higher the SNR of the final result.  
In determining how much to upsample the data, the SNR of the original measurement 
should be considered.  Obviously, it is not necessary to upsample the data by an amount 
that will result in 80 dB of SNR if the original data only possesses a SNR of 60 dB.  A 
typical upsample factor to obtain a SNR of approximately 60 dB is 16.  The effects of 
different upsampling factors is discussed in example Section 2.8.2. 

Once the data is upsampled, a linear interpolation is performed to obtain a new data value 
at an arbitrary instant in time as dictated by the reference signal.  The upsampled data is 
evenly spaced in time therefore the linear interpolation is necessary to obtain values 
which are not evenly spaced in time.  The results of the linear interpolation are the 
adaptively resampled data values. 



Page 51 

Finally, if the data values are not evenly spaced in time, the lowest sample rate in the 
adaptively resampled data must be greater than the original sample rate of the data.  If the 
largest Δt between new data values is greater than the original Δt, then the data will 
contain aliasing. 

The adaptive resampling procedure is graphically represented in Figure 2.16.  In this 
figure, an example is presented of a procedure that is used to obtain data values that are 
evenly spaced in the angle domain relative to the rotation of the shaft on which the 
tachometer signal was measured.  In this case the tachometer signal is processed to 
generate the reference signal and the new instants in time at which it is desired to obtain 
samples. 
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Figure 2.16:  Graphical representation of adaptive sampling rate interpolation, 

transformation from time domain to angle domain. 

The last step presented in this example that was not discussed above is the final lowpass 
filtering operation and decimation.  This step is often performed on data that is resampled 
from a rotating machine if the data is acquired during a speed sweep.  Acquiring data 
during a speed sweep implies that if the data is to be evenly spaced in the angle domain, 
the original sample rate was higher than necessary at the low rpm values.  To prevent 
aliasing the data must be resampled with a sample rate that prevents aliasing at these low 
rpm values.  This necessary sample rate may result in more samples per revolution then is 
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desired in the end result, hence a decimation operation may be performed to obtain the 
final desired sample rate.  It should be remembered that if a certain angular sample rate is 
desired which will require decimation as the final step, the data should be resampled at a 
sample rate which is an integer multiple of this final desired sample rate.  This allows a 
standard decimation procedure to be used on the resampled data. 

2.8.2 Numerical Example of Adaptive Sampling Rate Interpolation by 
Upsampling/Linear Interpolation. 

This section presents a numerical example of the resampling of a chirp function whose 
frequency is constantly increasing across the data block.  This situation is representative 
of data acquired on a rotating machine undergoing a speed sweep from a low rotational 
speed to a higher rotational speed.  The data is resampled with differing amounts of 
upsampling prior to the linear interpolation process to show its effects. 

Figure 2.17 shows both the time and frequency domain plots of the original signal.  Note 
how the frequency increases across the time domain trace from left to right and that the 
frequency domain plot shows no distinct frequency component.  The minimum frequency 
of the chirp is approximately 3 Hz, while the maximum frequency is approximately 12 
Hz.  A sample rate of 50 Hz was used and a Flattop window is used for all frequency 
domain spectra since a sine wave type function is being analyzed.  The flattop window 
also allows the dynamic range of the algorithms to be estimated much better since the 
height of the window’s sidelobes is down ~90 dB.  Other windows that do not have 
sidelobes with such a large amount of rejection will limit the true signal to noise ratio 
analysis of the frequency domain signal.  The sidelobe rejection of these other windows 
will dictate the amount of signal to noise rejection that can be observed in the frequency 
domain.  Essentially, the signal to noise rejection of the window may be less than that of 
the algorithm under scrutiny. 
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Figure 2.17:  Original chirp signal, time and frequency domain representations. 
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Figure 2.18 shows the time domain representations of both the original and resampled 
signals.  The signal was adaptively resampled with a sample rate of 5 samples/cycle of 
the chirp signal.  The left hand plot shows the time signals at the beginning of the time 
block, the original signal marked with the symbol “o” and the resampled signal marked 
with the symbol “+”.  Note that the original signal contains many more samples per cycle 
at the beginning of the time block than the resampled signal and that the original samples 
are not evenly spaced across a cycle of the waveform.  Later in the time block, shown in 
the right hand plot, the resampled signal contains nearly the same number of samples per 
cycle as the original signal.  The sample rate of the resampled signal is constant across 
the entire time block with respect to samples/cycle while the sample rate of the original 
signal is constant with respect to samples/second.  The consistent samples/cycle sample 
rate is also apparent from the fact that in all cycles of the resampled waveform, the 
samples fall at the same location of each cycle.  This property can be verified by 
comparing the minimum and maximum values of the resampled waveform at both the 
beginning of the time block and further into the time block.  These values are the same in 
all cycles. 
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Figure 2.18:  Original and resampled time histories, beginning and middle of time 

block. 

The frequency domain representation of the adaptively resampled signal is shown in 
Figure 2.19.  The left hand figure was adaptively resampled after upsampling the original 
signal by a factor of 2 prior to the linear interpolation.  The right hand plot was adaptively 
resampled after upsampling the original signal by a factor of 16.  Since the original chirp 
did not have frequency content greater than approximately ½ of the Nyquist frequency, 
this upsampling factor gives approximately 64 samples/cycle of the highest frequency of 
the chirp.  Observe that the additional upsampling improves the SNR of the final result by 
approximately 10 dB.  This improvement in SNR comes at the expense of considerable 
increased computational load. 
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Figure 2.19:  Adaptively resampled signals showing effect of amount of upsampling 

prior to linear interpolation. 

This adaptive resampling method works well given a powerful computer to perform the 
operations and a maximum desired SNR of approximately 60 dB.  A greater dynamic 
range is possible, however, the computational expense to improve this result increases in 
a non-linear fashion. 

To reduce the computational load and the required memory in the implementation of this 
method, only the upsampled data values that are to be used in the linear interpolation 
process are calculated.  This realization together with the use of a polyphase interpolation 
filter can greatly reduce the number of calculations required to implement this algorithm.  
However, the SNR of this method is still somewhat restricted to approximately 60 dB.  
The method also requires that a minimum of two upsampled points be calculated for each 
new data value.  The linear interpolation requires one data point before and after the 
desired sample instant. 

Further gains in the signal to noise ratio can be gained through the use of a higher order 
interpolation technique such as a spline or Lagrangian interpolation algorithm.  However, 
all higher order interpolation algorithms require that more upsampled data points be 
calculated and require more calculations than the simple linear interpolation, again 
leading to a very computationally demanding implementation. 
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Chapter 3 

 

 

3 Theory of Original and Improved Order Tracking Methods. 

The previous chapter presented the currently implemented order tracking and tachometer 
analysis methods in detail.  The discussions of each technique presented both the 
advantages and disadvantages of each method.  Upon analyzing the shortcomings of each 
method, it was determined that advances could be made in computational efficiency 
and/or the accuracy of several of the methods.  This chapter presents the original or 
improved methods that were developed for analyzing orders as part of this dissertation. 

While it is known that several of these methods are new in nature, the adaptive 
resampling method may not be.  It is uncertain whether the adaptive resampling is new 
because of the proprietary nature of the algorithms that are commercially implemented.  
The hardware/software companies are not willing to divulge the methods that they 
employ, hence it is impossible to determine the originality of this technique as applied to 
order tracking. 

A method for estimating linearly independent operating shapes from order tracking based 
on the Complex Mode Indicator Function (CMIF) algorithm used for parameter 
estimation in modal analysis is also developed in this chapter.  Methods are derived from 
the CMIF procedure to estimate operating shapes, track operating shapes, and condense 
large amounts of data.  The data condensation algorithm estimates a small number of 
virtual measurements from a potentially very large set of real measurements, rendering 
the analysis of the data much more efficient. 
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3.1 Amplitude Varying Tachometer Analysis. 

If an optical or TTL type tachometer sensor is used, the resulting pulse trains can be 
easily analyzed using the standard tachometer processing algorithms.  The standard 
tachometer algorithms require the user to choose a trigger level and slope to determine 
the time instants of the arrival of each tachometer pulse.  This method works well with a 
clean tachometer signal as shown in Figure 3.1. 
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Figure 3.1: Typical optical tachometer pulse train. 

It is easily seen in this figure that one trigger level may be set for all time since the 
amplitude of the tachometer pulses do not vary as a function of time or speed.  The small 
variation seen in the amplitude profile is due to sampling the data not the sensor output. 
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When a magnetic inductance probe is used as a tachometer sensor, the resulting pulse 
train often varies in amplitude as a function of rpm.  A typical magnetic inductance probe 
pulse train is shown in Figure 3.2.  Obviously, this pulse train is much more difficult, if 
not impossible, to analyze with a trigger level that does not vary as a function of time or 
rpm. 
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Figure 3.2:  Typical magnetic inductance probe tachometer pulse train. 

At the beginning of the data block, the amplitude of the peaks in the pulse train shown in 
Figure 3.2 is near 2.  A series of secondary peaks with an approximate amplitude of 0.5 is 
also present in this portion of the data.  Near the end of the same pulse train, the primary 
peaks have an amplitude of 3 while the secondary peaks have an amplitude of 
approximately 2.  It is therefore impossible to choose one trigger value that will work 
across the entire data block. 
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A method that can be used to overcome this problem is to use a trigger level that is a 
percentage of the peak amplitude of the signal.  This trigger amplitude is allowed to vary 
with time and therefore has an adaptive behavior that allows tachometer signals like that 
presented in Figure 3.2 to be analyzed effectively. 

The trigger level is initially set at a level that will only sense the presence of the 
tachometer pulse and not give a false indication due to a secondary peak.  The first period 
of the tachometer signal is then determined from the 1st and 2nd crossings.  The first 
period of the tachometer signal is then scanned for its maximum.  The trigger level is 
divided by this maximum to determine the percentage of maximum that the trigger level 
is set to.  The next tachometer period is then determined and the trigger level updated to 
the same percentage of the maximum in this period as was determined by the initial 
period.  This procedure is performed for each tachometer period.  The trigger level tracks 
any peak amplitude changes in the tachometer signal, allowing any noise in the 
tachometer signal that maintains a constant amplitude relationship to the peaks to be 
neglected. 

This adaptive trigger level algorithm is much more computationally intensive then a non-
adaptive algorithm.  However, this method can effectively process tachometer signals 
that are otherwise impossible to analyze. 

3.2 Time Variant Discrete Fourier Transform Order Tracking. 

The resampling based order tracking methods provide accurate leakage free estimates of 
orders at the expense of computational complexity.  With the acceptance of large channel 
count acquisition systems and test methods, it is desirable to obtain similar order 
estimates with a reduced amount of computational complexity.  Oftentimes the 
computational complexity limits the sweep rate or number of channels which can be 
analyzed. 

A new order tracking method has been developed that gives results very similar to the 
resampling based order tracking with considerably less computational demand.  This new 
order tracking method is based on a Fourier transform kernel whose frequency is allowed 
to vary with time [ref. 36,37].  It is therefore called Time Variant Discrete Fourier 
Transform Order Tracking (TVDFT).  The TVDFT does not require the resampling of 
each channel from the time domain to the angle domain to achieve these results, hence 
the large reduction in computational load. 

The TVDFT may be extended to effectively separate close or crossing orders through a 
secondary calculation.  The secondary calculation is the use of an orthogonality 
compensation matrix (OCM) which compensates for the non-orthogonality of the orders 
when they are either very close in frequency or cross one another [ref. 37]. 
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3.2.1 Theory of Time Variant Discrete Fourier Transform Order Tracking. 

TVDFT order tracking is a special case of the chirp-z transform.  The chirp-z transform is 
defined as a type of Fourier transform with a kernel whose frequency and damping vary 
as a function of time [ref. 38,39].  The TVDFT is defined as a discrete Fourier transform 
whose kernel frequency varies as a function of time defined by the rpm of the machine.  
The damping of the kernel does not vary as a function of time. 

The TVDFT method is based on constant Δt sampled data.  Therefore, Shannon’s 
sampling theorem for the FFT is valid to determine both Fmax and Δf.  However, since the 
kernel of the transform is varying in frequency as a function of the rpm, the sampling 
theorems presented for the resampling based order tracking methods are also applicable. 

The TVDFT is based on the transforms shown in Equation 3.1.  It should be noted that 
the kernel of this transform appears as a portion of the structure equation used in the 
original Kalman order tracking filter presented in Section 2.5.  This kernel is a cosine or 
sine function of unity amplitude with an instantaneous frequency matching that of the 
tracked order at each instant in time.  Alternatively, the kernel may be formulated in a 
complex exponential format similar to the corresponding exponential Fourier transform. 
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where: om is the order that is being analyzed, mΔo. 
 am  is the Fourier coefficient of the cosine term for om. 
 bm  is the Fourier coefficient of the sine term for om. 
 rpm  is the instantaneous rpm of the machine. 

The kernels of the transform shown in Equation 3.1 appear the same as the sampled 
waveform of Figure 2.7.  The reason the angle domain resampling is so effective at 
analyzing orders is because after resampling, the kernel of the transform and the data 
have the same form.  Both are constant frequency sine waves.  The same characteristic 
has been achieved in the case of the TVDFT by essentially resampling the kernel of the 
transform, as opposed to resampling each individual data channel.  The TVDFT still does 
not have a kernel whose amplitude varies as a function of time like that of an order.  This 
is not possible since the purpose of the TVDFT is to estimate the amplitude and phase of 
an order. 
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This transform is best suited to estimate an order with a constant order bandwidth.  The 
constant order bandwidth estimate is obtained by integrating the instantaneous rpm of the 
machine to obtain the number of revolutions the shaft has rotated through at each instant 
in time.  A constant order bandwidth estimate may be obtained by performing the 
transform over the number of time points required to achieve the desired order resolution, 
as defined by the angle domain sampling relationships presented in Equation 2.7.  This 
implies that as the rpm increases, the transform will be applied over a shorter time, giving 
a wider Δf but achieving a constant Δo.  This integration time behavior was exhibited by 
the resampling methods and determined to be advantageous for order tracking.  The 
transform is normally only performed for the orders that are desired and not for a full 
spectrum of orders as was done in the FFT order tracking methods.  Two relationships 
that are applied with the sampling theorem established in Equation 2.7 are given in 
Equation 3.2.  These relationships are necessary to minimize leakage effects in this type 
of analysis. 

integer

integer1

=

=

Δo
kedorder trac

Δo    (3.2) 

The relationships in Equation 3.2 impose restrictions on the actual order bandwidth that 
may be applied in the application of the TVDFT.  The second of these relationships 
further imposes a restriction on which orders may be tracked with minimal leakage errors 
using the TVDFT.  It should be noted, however, that even with these restrictions, the user 
may track most orders that are typically of interest in many applications. 

Since the frequency of the kernel of this transform matches the frequency of the order of 
interest at each instant in time, there is no leakage due to the order not falling on a 
spectral line.  There will, however, be leakage effects from other orders that are present in 
the data.  These orders can leak into the frequency band of analysis around the order.  
Any of the windows used for conventional FFT analyses can be used with the transform 
to minimize this effect.  Since all windows have a frequency resolution/amplitude 
estimate tradeoff, the window chosen can have a significant effect on the results.  Which 
window to use depends on the order content of the data and the aspect of the order 
estimate the user feels are most important. 

There can also be a leakage error using this transform with constant Δt sampled data 
because it is not guaranteed that the integer revolution values required for a constant 
order bandwidth analysis will fall on a Δt.  If the integer revolution value does not fall on 
a Δt, the transform is performed over a non-integer number of cycles, leading to a leakage 
error.  This error is due to the transform kernel of other orders, which fall on delta order 
lines, not being exactly orthogonal with the order being analyzed.  The magnitude of the 
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error is a function of the number of cycles over which the data is analyzed.  The error can 
be corrected through the use of an orthogonality compensation matrix, as described in 
Section 3.2.2.  In most cases, this error will be minimal and can be neglected for trouble 
shooting. 

A second method of reducing the leakage error is over-sampling the data, which provides 
a finer Δt.  This allows the method to analyze sections of data that are closer to having an 
integer number of revolutions than were possible with lower sampling rates.  The over-
sampling can be performed when the data is acquired, or as a post-processing phase of 
the data analysis using an interpolation algorithm.  This type of upsampling is much less 
computationally demanding than the adaptive resampling procedure because it is not 
necessary to upsample by a large amount to improve accuracy or to do any linear 
interpolation. 

The TVDFT transform can also be applied to obtain order estimates with a constant 
frequency bandwidth.  These estimates are more susceptible to the leakage error 
described above at low rpm values where the orders are not well separated.  The constant 
frequency formulation has the same practical problem of the FFT methods.  They both 
analyze the same length of time for all rpm values, regardless of the rate of change of the 
frequency or amplitude of the order.  The TVDFT estimate, however, will not be smeared 
across multiple spectral lines and will be more accurate than an FFT method. 

The TVDFT order tracking method is a very practical order tracking method that can be 
implemented in a very efficient manner.  The method contains many of the advantages of 
the resampling based algorithms without much of the computational load and complexity, 
since interpolation from the time domain to the angle domain is not required.  
Computational efficiency is gained for large numbers of channels by computing the 
transform kernel once, storing it, then applying it to each channel.  Any window used in 
the analysis should be applied to the pre-computed kernel for computational efficiency.  
The window only has to be applied once if it is applied to the kernel instead of once for 
each channel. 

3.2.2 Theory of Orthogonality Compensation Matrix. 

To enhance the capabilities of the TVDFT for order tracking and to reduce the errors due 
to non-orthogonality of the kernels, an orthogonality compensation matrix (OCM) may 
be applied.  The application of the OCM allows faster sweep rates to be analyzed, as well 
as closely spaced and crossing orders to be analyzed more accurately.  The OCM may be 
applied in a post-processing step to the order estimates from a TVDFT analysis. 

To apply the OCM, all orders of interest are first tracked using the TVDFT with either a 
constant frequency or constant order bandwidth.  The tracking should be done 
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intelligently, as the quality of the compensation is related to the quality of the original 
order estimates.  This implies that the user may want to apply a Hanning window to 
increase out of band rejection.  The bandwidth used may be somewhat wider than is 
minimally necessary to separate closely spaced orders.  The amount of relaxation of the 
minimum bandwidth depends on the window used in the analysis.  The relaxation of the 
bandwidth allows fewer revolutions to be analyzed at a time, allowing faster sweep rates 
to be analyzed. 

All orders present in the data that have significant energy should be tracked using the 
TVDFT before applying the OCM.  Any non-tracked orders that have significant energy 
will lead to errors in the final results because they add noise to the linear equations.  The 
non-tracked orders appear as noise because they can not be represented by the orders 
used in the calculation.  The energy from these untracked orders can lead to major errors, 
it is actually a form of leakage and can have significant amplitude depending on the 
window used and their frequency relationship to the tracked orders. 

The application of the OCM is a linear equations formulation that is shown in Equation 
3.3. 
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where: eij is the cross orthogonality contribution of order i in the estimate of order j. 
 o  i is the compensated value of order i. 
 ~o i is the estimated value of order i obtained using the TVDFT. 

The cross orthogonality terms, eij, are calculated by applying the kernel of order i to the 
kernel of order j, as shown in Equation 3.4. 
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The window used in the original order estimate is applied to order i to compensate for 
any correction factor that may need to be applied to scale the data correctly.  It also 
includes the effects of the shape of the window in the compensation.  Each term in the 
matrix represents the amount that the orders’ kernels interact with one another in the 



Page 63 

transform estimation.  If the orders included in the calculation are orthogonal, the off 
diagonal terms of this matrix will be zero, as is the case for the standard Fourier 
transform kernels with a Uniform window. 

The compensated order estimates are obtained by pre-multiplying both sides of Equation 
3.3 by the inverse of the OCM.  This results in the solution shown in Equation 3.5. 
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Since the effects of any orders not included in this calculation are not compensated, it is 
recommended that all significant orders be included in the compensation calculation. 

Very closely coupled orders are normally very difficult to separate using standard FFT or 
resampling techniques because the orders may beat with one another.  The TVDFT 
without compensation also has difficulty separating very closely spaced orders.  
However, with compensation the TVDFT can separate the contributions of the orders 
effectively.  Initially, the orders should be tracked with a bandwidth that is at its largest 
approximately equal to the spacing of the closely coupled orders.  If the orders are 
tracked with this bandwidth using a Hanning window, oftentimes the order estimates will 
contain beating of the two orders.  This beating effect can be removed by applying OCM. 

Crossing orders pose a similar problem to that of closely spaced orders.  Oftentimes, if 
two orders cross one another, the order estimates are incorrect at the crossing rpm due to 
the interaction of the orders.  Tracking the orders and then applying the OCM allows the 
separation of the contributions from each order. 

Since a matrix inversion is required to apply the OCM, all numerical concerns with 
matrix inversion must be considered.  The OCM will be invertible if the transform is 
applied over a sufficient number of revolutions for there to be a measurable phase 
difference between the different orders of analysis. 

A common quantity evaluated to obtain an estimate of the accuracy of a matrix inversion 
is the condition number of the matrix to be inverted.  The condition number of the OCM 
can be shown to be purely a function of the difference in degrees of the rotation between 
the two closest orders in the analysis.  Since the degree of rotation difference between 
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orders is the only criteria which affects the condition number, the condition number does 
not have to be directly evaluated for each measurement case.  Figure 3.3 shows the 
relationship between the degree of rotation difference of the two closest orders of 
analysis and the condition number.  This plot can be generated independent of sweep rate 
and the actual orders analyzed. 
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Figure 3.3:  Degree of Rotation Difference vs. Condition Number. 

The phase difference can be calculated from integrated tachometer signals and the orders 
to be analyzed for different desired order resolutions.  Alternatively, a condition number 
can be chosen which the user believes will result in a valid matrix inversion, the phase 
determined from the plot shown in Figure 3.3, and the minimum order resolution which 
gives this phase difference determined. 

3.3 Variations in Frequency Response Function Based Order Tracking. 

The FRF based order tracking method presented in Section 2.6 has several limitations.  
The largest limitation of the method is due to the use of the tachometer signals as inputs. 

Using the tachometer signals as assumed inputs to the system does not guarantee that all 
orders of interest can be tracked.  For example, if the tachometer pulse train is on ½ of a 
revolution and off ½ of a revolution the pulse train is a classical 50% duty cycle square 
wave.  Fourier analysis of a 50% duty cycle square wave shows that only the odd 
harmonics will be present.  Only having odd harmonics present in the frequency domain 
means that only odd orders may be tracked.  If the assumed input contains no energy at a 
frequency, a response to that input can not be calculated. 
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A simple method of overcoming this limitation would be to determine which orders were 
desired at the start of a test set up and use a tachometer sensor setup such that those 
orders would be present in the Fourier transform of the tachometer pulse train.  
Realistically, in most cases the tachometer pulse train is not a perfect square wave and 
this analysis is not required for most desired orders. 

A robust method of ensuring that the orders of interest exist in the Fourier transform of an 
assumed input is to synthesize an input that contains these orders from the tachometer 
signal information.  The tachometer signal can be processed using any of the methods of 
Section 2.7.  On obtaining the rpm at each time instant, a signal can be synthesized that 
will have the desired orders present. 

To synthesize the time domain input orders from the tachometer signals, the complex 
exponential form of Equation 3.1 is used.  Equation 3.6 shows this form of the equation. 
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where: Fi is the synthesized order input for order oi. 
oi is the order of interest.. 

Having synthesized each order with a unity amplitude chirp function there are two 
options on how to process the data.  The first option is to combine all of the order inputs 
from each shaft into one composite input for each shaft.  These composite inputs are then 
treated as the inputs for their respective shafts.  The composite inputs are then Fourier 
transformed and the necessary crosspower matrices calculated.  This analysis has the 
same limitations as the FRF based method presented in Section 2.6.1.  The main 
limitation to this approach was that frequencies of orders of the same tachometer signal 
could not overlap. 

The other option is to treat each independent order as an input to the system.  This second 
option is more computationally intensive but results in a separate order estimate for each 
input order regardless of whether frequencies of orders cross.  This is essentially the same 
analysis as the FRF based method presented in Section 2.6.2 with the added ability to 
track any order of interest. 

Using synthesized inputs in the estimation of the FRFs has the advantage of not requiring 
the amplitude of the tachometer signal to be estimated and compensated for.  The 
disadvantage of using synthesized inputs is the added computational load due to the 
tachometer signal processing and the computations required to synthesize the inputs.  
Mathematically, whether synthesized inputs are used or the raw tachometer signal is used 
the ability to separate close and/or crossing orders is identical. 
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3.4 Adaptive Resampling Based on an Upsampled Interpolation Filter. 

While the decimation, interpolation, and resampling methods presented in Appendix A 
can be understood without a thorough understanding of the digital sampling process, the 
adaptive resampling interpolation based on an upsampled filter cannot.  The non-adaptive 
decimation and interpolation methods are based simply on lowpass digital filters that 
must possess a specified cutoff frequency.  The adaptive sampling rate interpolation 
based on an upsampled filter is based on a specific filter that must possess very distinct 
properties.  This section will explain the requirements of this filter as well as its 
implementation.  The section will conclude with an analysis of the performance of this 
method. 

3.4.1 Digital Sampling and Interpolation Theory. 

The analog sampling process can be approximated digitally through the use of the sinc 
(sin x/x) function [ref. 40].  The digital resampling process is accomplished by 
positioning the center of the sinc function at each point in time a new data sample is 
desired.  The analytical sinc function exists for all time and acts as an allpass digital filter.  
Since the digitally sampled data does not exist for all time, the sinc function must be 
truncated in time.  The frequency bandwidth of this truncated function must also be 
limited to eliminate aliasing errors. 

One method of producing an FIR filter that approximates the ideal sinc function is 
through the  generation of a sinc function in the time domain which is truncated in time 
by the application a window function.  The window that is applied to truncate the 
function has an effect on the frequency domain characteristics of the filter.  The transition 
bandwidth and stopband rejection, as well as the passband ripple, are affected. 

Time and frequency domain examples of a truncated sinc function are shown in Figure 
3.4.  This sinc function was generated directly in the time domain and truncated with a 
Hanning window.  The zero crossings of the sinc function are spaced exactly a Δt apart.  
The zero crossing spacing is what determines the cutoff frequency of an FIR filter based 
on the sinc function.  This property along with the unity amplitude at the center of the 
function allows any data value which falls at an original Δt to pass the through the filter 
unaltered. 
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Figure 3.4: Time and frequency domain plots of truncated sinc function 

(interpolation filter). 

The cutoff frequency of this truncated sinc function is the original Nyquist frequency.  
The filter uses 8 points prior and after the point in time at which the new data point is 
calculated.  The filter possesses 20 values between each zero crossing and therefore could 
be used to upsample a signal by a factor of 20, giving approximately 80 dB of dynamic 
range. 

To implement this filter in a computationally efficient manner only 16 (2*8) 
multiplications/adds per new data point are required.  The first step in the application of 
the filter is to center the filter at the point in time that a new data value is to be estimated.  
Only the filter coefficients that are aligned in time with original sampled data values are 
used to calculate the new data sample.  All other filter coefficients are multiplied by zero.  
This implies that only every 20th filter point is needed to calculate the new interpolated 
data value.  This computationally efficient implementation is shown in Figure 3.5. 
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Figure 3.5:  Example of efficient implementation and result of digital interpolation 
process. 

As can be seen in Figure 3.5, this interpolation method provides very accurate results.  To 
implement this method for adaptive resampling requires considerably more overhead as 
described below.  Even with the necessary overhead this method is very efficient method 
for calculating a new data sample at an arbitrary time. 

The adaptive implementation of this interpolation method requires that a filter be pre-
calculated with a very large number of filter coefficients.  The procedure is based on 
approximating the analog sampling process, in that a new data value can be calculated at 
any point in time.  This requires that the filter be created with, for example, 8192 values 
between each original Δt.  This upsampled filter can then be applied in the same manner 
as the filter described above.  Note there are still only 16 (8*2) multiply/adds per new 
interpolated data point.  By upsampling the filter by such a large amount, an 
approximation of the analog sampling process is obtained by using the set of filter 
coefficients which are closest to the time at which it is desired to have a new data value.  
This is in effect applying a digital sample and hold circuit, where the original signal is 
upsampled by a very large amount and the new data values extracted from the upsampled 
data by assuming the closest point is the correct point. 
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Figure 3.6:  Graphical representation of adaptive resampling with an upsampled 

interpolation filter. 

Figure 3.6 shows a graphical representation of an adaptive implementation of the 
upsampled interpolation filter resampling process for synchronous sampling with respect 
to a reference tachometer signal.  This procedure is equivalent to the procedure presented 
in Figure 2.15 for the upsampling/linear interpolation adaptive resampling process. 

3.4.2 Numerical Example of Upsampled Interpolation Filter Adaptive Resampling. 

The same test case used to exhibit the performance of the adaptive resampling by 
upsampling and linear interpolation is again used to present the performance of the 
adaptive resampling based on an upsampled interpolation filter.  Using the same example 
for both algorithms allows the broadband noise levels to be directly compared.  The 
example is a chirp function of  a linear sweep.  The chirp is resampled such that it should 
appear as a sine wave with a resampled frequency of 1. 

Figure 3.7 shows the frequency domain representation of both the original signal and the 
adaptively resampled result. 
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Figure 3.7  Frequency domain representations of original and resampled chirp 
function. 

The upsampled interpolation filter used in this example was generated by truncating an 
analytical sinc function with a Hanning window.  The filter used 9 points before and after 
each resampled data sample and contained 8192 steps between each original Δt.  Note 
that while the adaptively resampled results from using the upsampling/linear interpolation 
approach had approximately 60 dB of dynamic range, the result from using the 
upsampled linear interpolation filter has a dynamic range of approximately 75-80 dB. 

The effect of using fewer steps between each original Δt is shown in Figure 3.8.  The left 
hand plot shows the result using 4096 steps with 9 original data values prior to and after 
each new data sample used in the interpolation process.  The right hand plot shows the 
result using 4096 steps with 6 original data values prior to and after each new data sample 
used in the interpolation process.  Note that the effect of using 18 data samples in the 
interpolation process compared with using 12 data samples results in a greater signal to 
noise ratio in the final result.  Both plots show approximately the same SNR near the 
frequency of the signal, however, the plot generated by using 18 data samples has a 
higher SNR away from this frequency.  Using either number of data samples results in a 
SNR of at least approximately 75 dB everywhere, surpassing that of the previously 
presented upsampling/linear interpolation based adaptive resampling method. 
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Figure 3.8:  Frequency domain representations of resampled chirp function showing 
the effect of the number of interpolation points. 

Figure 3.9 further shows the effect of the number of steps that the original Δt is 
subdivided into.  The left hand plot uses an upsampled interpolation filter with 512 steps.  
The right hand plot uses an upsampled interpolation filter with 1024 steps.  Both of these 
filters use 9 original data samples prior to and after the new data sample.  Again, note that 
both of these filters give approximately 75 dB of signal to noise ratio.  It can clearly be 
seen that as the number of steps in the filter is decreased the broad band noise becomes 
larger.  The SNR is still dominated by the behavior of the filter near the large frequency 
component, this frequency range is controlled by the window used in generating the 
filter. 
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Figure 3.9:  Frequency domain representation of resampled chirp functions showing 
the effect of the number of steps. 

3.4.3 Numerical Example to Determine the Effects of Effective Clock Jitter in the 
Upsampled Interpolation Filter Adaptive Resampling Procedure. 

To further analyze the effect of the number of steps that the original Δt is subdivided into, 
a second example was formulated.  This example again uses a chirp function, however 
the maximum frequency of this chirp is much closer to the Nyquist frequency.  This 
situation allows a better evaluation of the effect of the effective clock jitter that is 
introduced by the adaptive resampling filter.  Clock jitter is introduced if the timing of the 
sampling intervals is not accurate and the data is sampled at non-uniform intervals.  All 
of the filters used in this example were generated by truncating an analytical sinc function 
with a Hanning window.  This is essentially the same filter that was used in the previous 
example.  These filters also use an identical 9 points prior to and after each resampled 
data sample in the interpolation process, regardless of the number of Δt subdivisions.  

Figure 3.10 shows the frequency domain representations of both the original chirp and 
the adaptively resampled chirp calculated using 8192 steps. 
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Figure 3.10:  Frequency domain representations of original and resampled chirp. 

The SNR of this resampled chirp is greater than 70 dB across the entire spectrum 
showing that the performance of the algorithm provides an acceptable SNR near the 
original Nyquist frequency. 

Figure 3.11 shows the same chirp function resampled with interpolation filters using 512 
and 1024 steps respectively.  Clearly, it can be observed in this figure that neither of these 
results has an acceptable SNR.  An acceptable SNR is determined by the measurement 
system and process.  Typically experimental measurements have a SNR of approximately 
65 dB.  The amount of jitter introduced by using too few steps results in a high amount of 
broadband noise regardless of the number of interpolation points employed. 
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Figure 3.11:  Frequency domain representation of adaptively resampled chirps 
showing the effect of the number of steps. 
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Figure 3.12 shows the same adaptively resampled chirp function.  To generate this figure, 
2048 and 4096 steps were used in the upsampled interpolation filter.  Both of these plots 
show that the SNR has improved considerably over the previous two filters.  Each of 
these results is acceptable and has over 70 dB of dynamic range.  The difference between 
the two results is exhibited in the amount of noise away from the large frequency 
component at resampled frequency 1. 
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Figure 3.12:  Frequency domain representations of adaptively resampled chirps 
showing the effect of the number of steps. 

Finally, Figure 3.13 shows the same chirp function adaptively resampled with the 
upsampling/linear interpolation approach.  These plots are included for comparison and 
completeness to show that this method also functions well for adaptively resampling 
components near the Nyquist frequency.  The left hand plot was upsampled by 16 prior to 
the linear interpolation.  The SNR of this result is approximately 60 dB.  While 60 dB is 
acceptable in many instances with experimental data, it is not as good as the 70+ dB 
exhibited in the upsampled interpolation filter results.  To obtain a higher SNR the same 
chirp was upsampled by a factor of 32 prior to linear interpolation.  This result is shown 
in the right hand plot.  Note that the SNR has improved in this case to the 70 dB exhibited 
by the upsampled interpolation filter results.  This amount of upsampling prior to the 
linear interpolation process requires many more calculations than the upsampled 
interpolation filter. 
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Figure 3.13:  Frequency domain representation of adaptively resampled chirps 
showing the effect of the amount of upsampling prior to linear 
interpolation. 

3.4.4 Additional Adaptive Resampling Errors. 

Both of the adaptive resampling procedures have errors inherent in them.  Both methods 
presented have some amount of approximation present in them.  To implement a truly 
perfect adaptive resampling algorithm would require a separate digital filter to be 
designed for each new data sample.  This filter would possess the exact amount of phase 
delay between the original data samples and the new data sample.  This type of procedure 
would be very computationally demanding and is not feasible even with today’s powerful 
computers. 

The upsampling/linear interpolation method has an error that is associated with the linear 
interpolation process.  When linearly interpolating a sinusoidal function, an error that is 
similar to a slight phase delay at each sample is introduced into the resampling process.  
The magnitude of this error is not predictable and varies as a function of the distance 
from the closest original time sample to the newly interpolated sample.  This error is 
reduced through a higher upsampling factor prior to the linear interpolation as shown in 
the example in Sections 2.8.2 and 3.4.3. 

The upsampled interpolation filter adaptive resampling procedure introduces an error that 
can be described exactly by sample clock jitter.  The error that sample clock jitter 
introduces into a signal is a broadband type of noise.  This error is also not predictable in 
the general case and is minimized through the use of a filter that is created with a larger 
upsampling factor.  The magnitude of the possible jitter error can be analyzed if the 
characteristics of the original data acquisition system that was used to acquire the data are 
understood.  The magnitude of the error that is introduced by sample clock jitter is a 
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function of both the sample clock instability and the number of bits which this ADC uses.  
An analysis of this error is presented by Watkinson in reference 41. 

Both adaptive resampling procedures require that the tachometer signal used as the 
reference be very accurate.  If, for example, the tachometer signal that is measured has 
substantial inaccuracies present, or is processed in such a manner as to have errors, the 
new values of time at which data values are to be estimated will be in error.  This error 
can manifest itself as either a bias error or as a random error. 

Bias errors are introduced if the sweep rate of a test sweep is estimated incorrectly.  For 
example, a bias error will occur if the sweep rate is estimated to be too slow.  The new 
data values will be estimated to be further apart than they actually are, resulting in a non-
integer number of samples/revolution and/or a non-uniform angular spacing.  This 
invalidates the reason for performing the resampling process.  If a Fourier transform were 
used to analyze re-sampled data with this error present, leakage would be present in the 
results which otherwise should have been leakage free! 

A random error could occur if the machine’s rpm were estimated to be slowly varying 
when in actuality it was constant.  This error in rpm would introduce a Δt spacing error 
that is constantly varying from too small a Δt to too large a Δt.  This type of error is 
similar to sample clock jitter and would therefore introduce broadband random noise into 
the resulting data.  This type of error would also occur if it were desired to analyze the 
torsional vibration of a system and the number of tachometer pulses/revolution was less 
than the highest order that was present in the data. 

3.5 Applying the Singular Value Decomposition to Order Track Results -  
An Innovative CMIF Application. 

The use of operating mode shapes to aid in the solution of noise and vibration problems 
has been increasing in recent years.  The primary measurement that has been made to 
obtain these operating shapes has been transmissibility [ref. 42].  The necessary 
transmissibility measurements are typically made under steady state operating conditions.  
The forcing functions that typically excite the structure under these conditions are 
deterministic in nature and are often from a rotating component of a machine.                                            

Recently there has been research into the decomposition of operating shapes measured 
under steady state conditions with multiple random source inputs [ref. 43,44].  Multiple 
uncorrelated random sources allows the decomposition of the spectral matrices into 
linearly independent operating shapes.  There are as many linearly independent operating 
shapes estimated at each frequency as there are uncorrelated random forcing functions.  
The singular values of the spectral matrices reach peak values at frequencies 
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corresponding to either natural frequencies of the system or peaks in the forcing function.  
At frequencies that correspond to natural frequencies of the system, the linearly 
independent operating shapes will approximate the actual mode shapes of the system. 

Another approach to obtaining operating shapes is through the use of order tracking 
techniques.  Order tracking allows an operating shape to be estimated for each order that 
is tracked at each rpm value that is evaluated.  Estimating operating shapes with order 
tracking techniques can provide valuable insight into the forced response of a structure 
over a range of operating conditions.  However, until recently, valid order tracking results 
could not be obtained when orders were either very close to one another in frequency or 
crossed one another. 

New order tracking techniques have been developed which allow the separation of the 
contributions from either close or crossing orders [ref. 19-21,36,37].  Each of these 
techniques was presented earlier in this dissertation, in Sections 2.5.2, 2.6, and 3.2.  
Effectively separating contributions from different orders allows multiple operating 
shapes to be estimated at each rpm value.  The operating shapes are each due to an 
orthogonal input.  Each order is orthogonal to every other order.  Since the inputs to the 
system are orthogonal, the shapes obtained at each rpm value can be decomposed into a 
set of linearly independent operating shapes.  It is possible to estimate as many 
independent operating shapes as there are modes in the system which are excited at each 
given rpm, or orders evaluated, the minimum of the two. 

Estimating operating shapes from many orders at many different rpm values results in a 
very large number of operating shapes.  This section presents several methods to attempt 
to determine how many different operating shapes are excited over the entire rpm range.  
Further analysis can be performed to determine at which rpm values similar shapes are 
excited by different orders.  Finally, the sets of operating shapes can be decomposed at 
each rpm value into a set of linearly independent operating shapes through the use of the 
singular value decomposition, SVD [ref. 46,47].  This decomposition is done in a manner 
similar to that of the CMIF modal parameter estimation algorithm [ref. 45,54-56].  The 
results of the SVD are linearly independent operating shapes that in most cases will 
approximate the mode shapes of the system. 

The SVD may be performed at each rpm value to obtain an estimate of the number of 
linearly independent operating shapes excited at each rpm or point in time.  Mode 
tracking may then be applied to the left singular vectors to obtain an estimate of the rpm 
values where the same mode may be excited by different orders.  Finally, the right and 
left singular vectors may be used to calculate a Mode Enhanced Order Track, MEOT 
[ref. 46].  The estimated MEOT will approximate a single degree of freedom system and 
can be used to estimate the frequency and damping of the mode if the mode is due to the 
excitation of a natural frequency of the system, and not a peak in the forcing function.  
This MEOT is very similar to an enhanced FRF and has similar properties.  The 
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relationship to an eFRF is clear if an order track is thought of as an unscaled FRF.  An 
order track can be thought of as simply a swept sine FRF as long as there are no peaks in 
the forcing function. This will be true, for example, if the order is due to an unbalance 
force. 

The SVD may also be performed on the set of operating shapes that are similar in 
frequency to one another, which involves decomposing the set of shapes from different 
orders at different rpm values.  The result of this frequency based decomposition is an 
estimate of the number of linearly independent operating shapes excited at each 
frequency.  This may give an estimate of any repeated modes of the structure. 

3.5.1 Estimation of Linearly Independent Operating Shapes. 

Once a suitable order tracking analysis has been performed and a set of operating shapes 
estimated for each order at each rpm value, the set of operating shapes may be 
decomposed into a linearly independent set of operating shapes.  These linearly 
independent operating shapes will approximate the mode shapes of the system in most 
cases but are not guaranteed to do so. 

The decomposition can be performed in two different ways, both of which are described 
in the following sections. 

3.5.1.1 Operating Shape Decomposition by RPM Value. 

The first manner in which the operating shapes can be decomposed is on an rpm by rpm 
basis.  This method will estimate as many different linearly independent operating shapes 
as there are orders included in the analysis or modes excited at each rpm value, the 
minimum of the two.  This operating shape decomposition is accomplished by 
performing a singular value decomposition of the operating shapes estimated by each 
order at each rpm.  This decomposition is shown in Equation 3.7 and is performed for 
each rpm estimate. 

[ ][ ][ ] { } { } { }( )321 OOOSVDVSU H L=     (3.7) 

where: [U] is the matrix of left singular vectors. 
 [S] is the diagonal matrix of singular values. 
 [V]H is the matrix of right singular vectors. 
 {Oi} is the operating shape vector of order i at the analysis rpm. 

This analysis is essentially the same as the CMIF parameter estimation algorithm used in 
modal analysis.  It has been shown that the left singular vectors represent the set of 
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linearly independent operating shapes corresponding to the singular values.  These shapes 
will approximate actual mode shapes of the system in many instances.  Since the matrices 
of the left and right singular vectors are of unity scaling, the singular values, S, identify 
how well excited each linearly independent shape is at each rpm.  The right singular 
vectors, V, represent a type of participation factor between each order and the linearly 
independent operating shapes. 

To obtain an estimate of how many different linearly independent shapes are excited at 
each rpm value, the singular values may be plotted as a function of rpm.  This plot is 
interpreted in the same fashion as a CMIF plot is interpreted in modal analysis.  There 
will be as many singular value curves as there are orders included in the analysis.  The 
number of well excited linearly independent shapes is then estimated by observing how 
many singular value curves peak at each rpm value.  If the lowest singular value curve 
peaks up at a given rpm value this is an indication that there are as many independent 
shapes excited as there are orders being analyzed.  The highest singular value curve 
represents the best excited operating shape.  This will be clearly shown in the examples 
of Chapter 4. 

The left singular vectors from the dominant singular values may be animated to give an 
understanding of the linearly independent shapes which combine to describe the forced 
response of the system for the orders analyzed. 

3.5.1.2 Operating Shape Decomposition by Frequency. 

Section 3.5.1.1 described the decomposition of estimated operating shapes on an rpm by 
rpm basis.  This section describes performing the same decomposition except in this case 
the matrix of operating shapes is filled with shapes that occur at the same frequency 
regardless of the rpm or order.  Different orders can pass through the same frequency at 
different rpm values in a run up/down acquisition.  The operating shapes estimated from 
these orders, corresponding to a given frequency, can be grouped together for analysis. 

Grouping the operating shapes by frequency allows an estimate of whether there are two 
or more excited modes of the system that fall within one frequency bin.  The number of 
operating shapes excited at each frequency will vary on a frequency by frequency basis.  
At low frequencies, there are usually more orders that pass through a given frequency.  
As the frequency increases, the lower orders may not pass through a given frequency in a 
run up/down condition.  This characteristic can lead to the ability to estimate a large 
number of linearly independent operating shapes at low frequencies and possibly only 
one at higher frequencies.  If there is only one operating shape present in a frequency bin, 
no decomposition can be performed and no estimate of whether there are repeated modes 
of the structure can be obtained. 



Page 80 

The frequency based decomposition calculations and their interpretations are the same as 
those listed in Section 3.5.1.1.  The left and right singular vectors can once again be used 
to calculate enhanced functions and autopowers with respect to a given singular vector.  
These functions are then plotted as a function of frequency instead of rpm and are thus 
interpreted with respect to frequency instead of rpm or time.  The enhanced frequency 
based order track should be nearly the same as the MEOT estimated for the same singular 
vector and frequency.  The singular vector autopowers should only peak at the frequency 
which the corresponding singular vector is calculated.  Where a singular vector 
autopower might have peaked at multiple rpm values because different orders excited the 
same mode, in the frequency based calculation of the singular vector autopower it should 
only peak at the frequency of the shape.  The frequency based decomposition provides no 
new useful information for trouble shooting other than a possible indication of repeated 
modes of a structure. 

3.5.2 Operating Shape and Singular Vector Tracking by RPM Value. 

An estimate of where a given operating shape is excited across the rpm range can be 
obtained by tracking the desired shape as a function of rpm.  This mode tracking is 
performed by calculating a Modal Assurance Criterion, MAC, between the desired 
operating shape and all other estimated operating shapes at each rpm value.  Where the 
operating shapes are similar, the MAC value between the tracked shape and the operating 
shape will be high, above for instance 0.9.  This mode tracking will indicate if similar 
shapes are excited by different orders at different rpm values.  The equation used to 
perform the mode tracking is shown in Equation 3.8. 
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where: {Oi} is the operating shape vector of order i at the analysis rpm which is being 
tracked. 

{Oj} is the operating shape vector of order j at any rpm value. 

Just as mode tracking can be used to determine whether a similar operating shape is 
excited at different rpm values by different orders, it can also be used to track the linearly 
independent operating shapes obtained from the SVD.  The tracking of the singular 
vectors gives an estimate of at what rpm values the same mode of the system is excited, if 
the independent operating shape being tracked represents a mode of the system.  The  
tracking calculation with the singular vectors is performed by substituting the U vectors 
from the SVD for the operating shape vectors, {Oi}, in Equation 3.8. 
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3.5.3 Calculation of Order Track Autopower. 

The autopower of an order may be calculated and compared with the autopower of all 
other tracked orders to obtain an estimate of the total energy of an order across all 
measurement dofs.  The order that has the highest amplitude at a given rpm is the most 
likely candidate to attack to solve a noise or vibration problem at that rpm value.  The 
autopower is one method of reducing a very large number of response dofs down to one 
composite measurement per order.  The order track autopower is calculated by using 
Equation 3.9 shown below. 
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where: OAi,r is the order track autopower of order i at rpm r. 
 Oik is the value of order i at degree of freedom k at rpm r. 
 n is the number of measured degrees of freedom. 

3.5.4 Calculation of Singular Vector Autopower. 

The autopower of a singular vector may be calculated across all orders and rpm values.  
The singular vector autopower indicates the rpm values where the singular vector of 
interest is excited.  Again, if the singular vector is representative of a mode of the system 
then this quantity is an estimate of how well excited this mode is at each rpm value.  The 
calculation of the singular vector autopower, or mode autopower, is calculated by 
applying the principle of a modal filter.  The basis of this calculation is the weighting of 
each degree of freedom by the corresponding element in the left singular vector.  The 
participation factors for each order are assumed to be unity.  The equation used to 
calculate the singular vector autopower is shown in Equation 3.10. 
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where: SVAl,r is the singular vector autopower of singular vector l at rpm r. 
 {Ul}H is the hermitian of the left singular vector l that the autopower is calculated 

with respect to. 

 {O} is the operating shape vector for each order of interest at rpm r in no 
particular order. 
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3.5.5 Calculation of Mode Enhanced Order Track. 

The left and right singular vectors of a singular value from any rpm may be used to 
calculate an enhanced order track relative to the singular vector, or mode, of interest.  
This quantity is called a Mode Enhanced Order Track, MEOT, and can be useful in 
determining the exact frequency and damping of a specific excited mode.  The MEOT is 
very similar to an enhanced FRF that is calculated to estimate the frequency and damping 
of a mode of vibration in the CMIF parameter estimation method. 

Since the order tracks are estimated from orthogonal functions, the system can be 
considered to have linearly independent inputs, one for each order.  This property implies 
that the MEOT should appear very similar to a single degree of freedom FRF in most 
cases.  The MEOT should not peak at each rpm that the mode of interest is excited.  The 
singular vector autopower peaks at every rpm that the mode of interest is excited at, 
regardless of which order provides the excitation.  Instead, the MEOT should peak only 
at the rpm values of the estimated singular vectors used in the calculation, unless the 
phase of the excitation orders’ aligns itself to the same condition elsewhere in the speed 
sweep.  This latter condition will be illustrated in an example in Chapter 4.  The 
calculation that is performed to estimate this MEOT is shown in Equation 3.11. 

{ } { } { } { }[ ] { }lnxm
H
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where: MEOTl,r is the mode enhanced order track for singular vector l at rpm r. 
 {Ul}H is the hermitian of the left singular vector l that the MEOT is calculated 

with respect to. 
 {O} is the operating shape vector for each order of interest at rpm r in no 

particular order. 
 {Vl} is the right singular vector l that the MEOT is calculated with respect to. 

If the autopower of a singular vector approaches the maximum singular value curve at 
more than one rpm value, multiple MEOTs can be calculated for the same left singular 
vector.  These MEOTs can then be used together to obtain an estimate of the frequency 
and damping of the mode of interest.  If the inputs to the system are not smooth 
functions, the MEOT may not have a clean SDOF FRF appearance due to additional 
peaks from the shape of the input forcing function.  An example of this final case is 
shown in Chapter 4. 
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Chapter 4 

 

 

4 Performance Evaluation of Order Tracking Methods and 
Virtual Measurements. 

This chapter presents several test cases to evaluate and compare the performance of five 
of the order tracking methods presented in Chapters 2 and 3.  The first set of examples 
compares performance of a digital resampling based method and the TVDFT.  The last 
examples evaluate the ability of the Vold-Kalman filter and the TVDFT based methods to 
separate close and/or crossing orders.  The final example is experimental data acquired on 
a two wheel chassis dynamometer.  In this final example the inputs from the two front 
wheels of a vehicle are separated using the TVDFT. 

The last section of this chapter computes the virtual measurements discussed in Chapter 3 
from both a set of analytical data and an experimental set of data.  These examples 
provide insight into the application of the virtual measurements.  The experimental data 
uses a set of automobile operating data collected on a chassis dynamometer. 

4.1 Slow Sweep, Rich Order Content Analytical Test Case. 

An analytical dataset was generated with a fairly large number of orders, orders 1-8 and 
orders 5.5 and 6.5.  The rpm in this example ramps from approximately 800 rpm to 4400 
rpm in 30 seconds as a squared function of time.  This type of rpm profile may be typical 
of data acquired on a chassis dynamometer.  This dataset was generated to have 3 
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resonances to evaluate the performance of the order tracking methods when the 
amplitudes of the orders change very rapidly.  A waterfall plot of this dataset is shown in 
Figure 4.1. 

 

Figure 4.1:  Waterfall plot fast slew rate data. 

As can be seen in Figure 4.1, the orders are very close together at low rpm values.  The 
amplitudes of the orders also appear to change very rapidly as the orders cross through a 
resonant frequency.  Both of these phenomena can pose problems when tracking orders.  
Figure 4.2 shows this same dataset after it has been resampled from the time domain to 
the angle domain.  It can clearly be seen in this figure that the orders have been 
straightened out and now fall on spectral lines.  The orders have also been separated at 
the low rpm values.  Note how the resonances do not fall on a spectral line in the 
angle/order domain. 

 

Figure 4.2: Waterfall plot of re-sampled angle/order domain data. 
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The order estimates of order 5.5 are shown in Figure 4.3.  It can be seen in this figure that 
the three order tracking methods used, the TVDFT with both constant frequency and 
constant order bandwidths and the resampling method, all agree very well except at the 
resonances.  The differences in the estimates at the resonances are due to the fact that the 
amplitude of the order changes very rapidly at this point.  As was discussed in Section 
2.3, all of the Fourier transform methods estimate the average amplitude of a signal over 
the total sample time.  This property results in a larger estimate of the low frequency 
resonance by the TVDFT frequency bandwidth method than was obtained by either of the 
other two methods, due to the fact that the TVDFT frequency bandwidth method is 
averaging over a shorter time at the low rpm values.  The TVDFT order bandwidth and 
the resampling methods both result in a higher amplitude estimate at the high frequency 
resonance because they are averaging over a shorter time at the high rpm values.  This 
example clearly shows the time/frequency tradeoff that the different methods exhibit.  
Note that the TVDFT order bandwidth and the resampling methods give nearly identical 
order estimates. 
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Figure 4.3:  Order estimates of order 5.5. 

The FFT based order tracking methods would not work well on this dataset due to the 
closeness of the orders shown in Figure 4.1.  The waterfall plot clearly shows that at the 
lowest rpm values the orders are smeared into overlapping spectral lines.  This smearing 
effect is the main limitation of the FFT based order tracking methods. 

4.2 Analytical Crossing Order Test Case. 

An analytical dataset was generated with both closely spaced and crossing orders.  This 
dataset contains orders 3 and 3.1, which might be typical of a drive axle gearset.  The 
dataset also has constant frequency orders that would be consistent with an electric fan in 
an automobile.  The rpm was swept from approximately 900 rpm to 4500 rpm in a period 
of 16 seconds.  This might be a common sweep rate for a vehicle on the road.  The orders 
of the sweeping shaft as well as the orders of the constant frequency shaft were tracked 
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both with and without OCM compensation.  A Hanning window was used with a constant 
order bandwidth of 0.05 orders as defined by the sweeping frequency shaft.  This implies 
that the 3 and 3.1 orders should be barely separable with the TVDFT method without 
OCM compensation. 

A waterfall plot of the data is shown in Figure 4.4.  Note that the closely spaced orders 
cannot be visually separated and that all but one of the sweeping orders interact with the 
constant frequency orders at the crossing rpms. 

 

Figure 4.4:  Waterfall plot of dataset with closely coupled and crossing orders. 

All of the orders present were tracked using the TVDFT constant order bandwidth 
method without any compensation and with OCM compensation.  The results of the order 
tracking without compensation are shown in Figure 4.5. 
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Figure 4.5: TVDFT constant order bandwidth order estimates without 
compensation. 

Note the inability of the TVDFT to separate completely the close orders.  The bottom 
curve is order 3.1 that should be 40 dB below order 3.  The TVDFT cannot account for 
any of the interaction between the crossing orders.  The resampling and FFT based 
methods would give similar results. 

The results of the TVDFT order tracking with compensation are shown in Figure 4.6.  
Note the ability of the OCM to separate the close orders and to compensate for the order 
crossings almost perfectly for all orders.  This shows that the compensation effectively 
increases the ability of the TVDFT method to both separate closely spaced orders and to 
simultaneously compensate for interactions between crossing orders. 
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Figure 4.6: TVDFT constant order bandwidth estimates with OCM compensation. 
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The effectiveness of the OCM compensation is somewhat determined by how rapidly the 
amplitude of the orders change and how much interaction there is between orders.  This 
limits the sweep rate that may be used to process data accurately.  If the orders were 
constant in amplitude instead of amplitude varying, orders as close as 3 and 3.02 can be 
separated perfectly, even if order 3.02 is 60 dB below order 3 in amplitude.  There is also 
perfect compensation for the crossing order interaction.  These results are shown in 
Figure 4.7. 
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Figure 4.7: TVDFT constant order bandwidth estimates with OCM compensation. 

Nearly the same sweeping orders as shown in Figure 4.6 were also tracked without the 
presence of the crossing orders.  In this case, orders as close as 3 and 3.05 could be 
separated accurately.  Remember, a Hanning window with a constant order bandwidth of 
0.05 was used.  This should result in a minimum separation of close orders of 
approximately 0.1 due to the window shape.  This example thus shows that the ability to 
separate close orders with the OCM compensation can exceed what at first glance seems 
to be possible.  The OCM has this ability because it compensates for the window 
characteristics, the shapes of the window’s lobes are accounted for. 

4.3 Separation of Driving Wheel Orders on Two Wheel Chassis 
Dynamometer. 

This example uses actual experimental data acquired on a two wheel chassis 
dynamometer.  A car was instrumented with a tachometer channel on each of the two 
front wheels.  The car was a front wheel drive vehicle.  Since the two wheel chassis 
dynamometer did not have independent control of the two wheels, the inflation pressure 
of the two tires varied.  The inflation pressure between the two tires had a difference of 4 
psi.  Data was acquired over approximately 500 seconds with the speed swept from 
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approximately 55 to 80 mph.  The speed sweep had an rpm sweep of approximately 770 
to 1050 rpm.  The sweep was a computer controlled linear sweep. 

The tachometer signals were processed by dividing the entire time block into 5 sections 
and fitting spline segments to the sections.  Figure 4.8 shows the resulting rpm profiles 
from processing the two tachometer signals.   

 

Figure 4.8:  RPM profiles from driver's and passenger's tachometer signals. 

Figure 4.9 shows a zoomed in portion of Figure 4.8 to show that there are indeed two 
separate tachometer signals present. 

 

Figure 4.9:  Zoom in of wheel RPM profiles. 
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The frequency difference between the rotational speeds of the two wheels is ~0.01 Hz.  
This leads to a difference of ~0.001 orders.  Obviously, the separation of the 1st orders 
from the two wheels is a very difficult test condition. 

4.3.1 Analytical Validation Test Data. 

To evaluate whether the 1st orders are separable in this dataset an analytical dataset was 
created.  This dataset was created using the processed rpm profiles to assure that there 
would be no errors due to inaccurate processing of the tachometer signals.  A degree of 
freedom was chosen from the measured 45 dofs of the vehicle and processed to evaluate 
what shape the order profiles contained.  This information was then used to generate the 
analytical dataset with a similar amplitude profile.  This analytical example then gave a 
known answer that was very similar to the experimental data.  The only orders present in 
the analytical dataset were the 1st orders of each tachometer signal. 

Three different methods were used to attempt to extract the two 1st orders from the 
analytical dataset.  The three methods were the Vold-Kalman 1st order filter, a time 
domain complex exponential based residue estimation coupled with a tracking order 
filter, and the TVDFT with OCM. 

4.3.1.1 Vold-Kalman 1st Order Filter Order Separation. 

The Vold-Kalman 1st order filter was used in an attempt to separate the two wheel orders.  
While the literature states that the Vold-Kalman filter has the ability to distinguish 
between two frequencies that are only 1/500 Hz apart if 500 seconds of data are acquired, 
in this case it did not have the ability to separate the two orders. 

To determine just how close together the two orders could be and still get separation, a 
study was performed.  In the study one of the rpm profiles was multiplied by a constant to 
shift the entire profile up or down.  The two orders could be separated when one of the 
rpm profiles was 0.997 of the other rpm profile.  In this case a weighting factor of 30,000 
was used.  The resulting order profiles were accurate for approximately the first 85% of 
the time block.  The last 15% of the time block was in error because of the filter’s settling 
time.  The order estimates showed very little beating between the orders.  Even though 
the order estimates contained a small amount of beating, they would be considered 
acceptable. 

The experimental data has approximately a ratio of 0.9987 between the two rpm profiles.  
The Vold-Kalman 1st order filter cannot separate the two orders in this case, even with 
weighting factors in excess of 40,000.  The beating effect between the two orders cannot 
be eliminated.  The beating effect is a result of the incomplete separation of the orders.  
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The ultra-high weighting factors require the perfect tachometer signal that this 
analytically generated data possessed.  The filter settling time at the end of the time 
history becomes unacceptably long with these ultra-high weighting factors as well.  The 
final disadvantage of using the ultra-high weighting factors is the loss of the high 
dynamic range of the Kalman filters.  The ultra-high weighting factors require a long 
time to converge on the amplitude of the filter and thus cannot follow rapid amplitude 
changes.  The Kalman filters behavior is on a par with other order tracking techniques in 
this case with respect to the dynamic range of the order tracks.   

4.3.1.2 Time Domain Residue/Tracking Filter Order Separation. 

A combination of a tracking bandpass filter and a time domain residue estimation was 
used to attempt to separate the two wheel orders.  This method was described in Section 
1.2.4.  The method uses a tracking bandpass filter to limit the number of orders present in 
the data to a known number, in this case the two wheel orders.  A time domain residue 
estimation is then performed on the filtered time history.  The rpm profiles are used to 
define the frequency of the complex exponential terms in the residue matrix.  Both the 
positive and negative frequency orders must be included in this estimation.  Overlap 
processing is used to obtain a fairly high number of rpm estimates.  In this example 
approximately 100 seconds of data were used to obtain each estimate. 

Using 100 seconds of data again limits the speed at which the order estimates may 
change.  This leads to a relatively low dynamic range in the final results.  Unfortunately, 
in this example the beating effect could not be entirely eliminated from the order 
estimates. 

4.3.1.3 TVDFT with OCM Order Separation. 

The last method that was used to attempt to separate the two wheel orders from one 
another was the TVDFT with OCM.  This method was implemented with an order 
resolution of 0.0005 orders.  This appears to be a narrower resolution than would be 
required based on the order separation, however a Hanning window was used for 
improved sideband rejection.  The use of the Hanning window gives a wider effective 
resolution due to its sidelobe shape. 

Figure 4.10 shows the analytical amplitude profiles and the estimated amplitude profiles 
for both wheel orders.  Notice the differences between the estimated amplitudes and 
analytical profiles.  The estimated profiles do not follow the exact shape of the analytical 
profiles because of the long integration time required to separate the orders.  The long 
integration time means that the order amplitudes cannot change rapidly.  It also limits the 
effective dynamic range. 
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Figure 4.10:  Analytical vs. Estimated Order Amplitudes with TVDFT w/OCM. 

While the order estimates cannot follow the exact analytical amplitudes, they still follow 
the same general shape and do not exhibit any beating effects.  This order resolution and 
window combination was then chosen to estimate the orders in the experimental data. 

4.3.2 Experimental Data Evaluation. 

Having verified that the TVDFT with OCM could separate and estimate the wheel orders 
with analytical dataset, the experimental dataset was then evaluated.  All dofs were 
processed to obtain the data necessary for the generation of the virtual measurements in 
Section 4.5. 

The order estimates from two different dofs are shown in Figure 4.11.  It can be seen in 
these plots that there is significant information to be gained from having the ability to 
separate the left and right wheels of an automobile. 
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Figure 4.11:  Order estimates for different dofs with order separation. 

The left hand plot shows a dof where the driver’s side wheel is the dominant contributor 
across the entire RPM range.  The right hand plot, on the other hand, shows a dof where 
the passenger’s side wheel is the dominant contributor across most of the RPM range.  In 
fact, it appears in the left hand plot that there may be a resonance of some type in the 890 
RPM area, while in the right hand plot it appears that there may be an anti-resonance in 
this region!  Obviously, this information could prove to be invaluable in solving a noise 
or vibration problem. 

To obtain an idea of what the results from a conventional order tracking method would 
provide, the wheel orders were tracked for the same two dofs.  The result of this tracking 
is shown in Figure 4.12.  Note that there is only one order track for each dof because the 
orders from the two wheels could not be separated. 
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Figure 4.12:  Order estimates for different dofs without order separation. 

The order estimates shown in Figure 4.12 do not provide any information about which 
wheel may be the major excitation since there is only one order estimate for each dof.  
These estimates clearly show the beating interaction between the two wheels.  It can be 
seen in these order tracks that the wheels come into and out of phase approximately 6 
times in the time history. 

This example explored the abilities of several different order tracking methods to separate 
very close orders on real experimental data.  The only method that was able to effectively 
separate the contributions from the two wheels was the TVDFT with OCM.  The results 
presented clearly show the additional valuable information that is gained from being able 
to separate the contributions from different wheels. 

4.4 Virtual Measurement Test Cases. 

Two different examples are presented which show the value of the virtual measurements 
formulated in Section 3.5.  The first example is an analytical dataset while the second 
example uses the same experimental dataset used in Section 4.3. 

4.4.1 Analytical Virtual Measurement Test Case. 

An analytical example was created using experimentally determined modal parameters of 
a test structure in the SDRL laboratory, the H-frame.  26 modes are included.  The 
analytical data was created with three simulated inputs attached to the structure.  Each 
input was a combination of three sweeping sine functions which approximate the input of 
a rotating machine over a speed sweep.  The first two inputs were driven by the same 



Page 95 

tachometer signal and are simply different combinations of orders from this signal.  The 
third input was constructed such that in some frequency regions its orders would cross 
those of the first two inputs.  This type of input scenario is typical of what might be 
observed on a structure with multiple uncoupled rotating components.   A plot of the 
instantaneous frequencies of each order is shown in Figure 4.13. 

 

Figure 4.13:  Instantaneous frequencies of inputs. 

The TVDFT with OCM was used to track the nine input orders at 372 response degrees 
of freedom.  These order tracks are estimated at 126 different rpm values.  A combination 
of the nine orders tracked at 126 different rpm values gives 9*126=1134 different 
operating shapes to evaluate! 

This test case has inputs with uniform amplitudes.  The order tracks for this test case only 
peak in amplitude at rpm values where they excite a resonance of the system. 

The first analysis performed was the calculation of the order track autopowers to obtain 
an estimate of which orders were dominant at each rpm value.  A plot of these 
autopowers is shown in Figure 4.14. 
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Figure 4.14:  Order track autopower with tracked operating shape. 

The next phase of analysis was to determine at what rpm values the same operating 
shapes were excited by tracking the operating shape from one order at one rpm value 
across all orders and rpm values.  The orders and rpm values where the shapes are similar 
are distinguished by the thick line overlays at these rpms/orders in Figure 4.14.  Note that 
the same operating shape is excited by different orders at different rpm values.  This is 
typical of a case where multiple orders excite the same resonance. 

To get a better understanding of whether the tracked operating shape is a mode shape or a 
combination of modes at each particular rpm, an SVD is performed on the entire set of 
operating shapes at each rpm value.  This analysis yields the linearly independent set of 
shapes that combine to describe the previously observed operating shapes.  These linearly 
independent shapes should more closely approximate the mode shapes of the system than 
the original operating shapes.  A plot of the resulting singular values obtained at each rpm 
is shown in Figure 4.15.  Note that there are nine singular value curves at every rpm. 

From Figure 4.15, the number of singular value curves which peak at each rpm can be 
counted and an estimate of the number of significant linearly independent shapes excited 
at each rpm can be obtained.  This is usually an estimate of the number of modes excited 
at each rpm value or point in time. 
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Figure 4.15:  SVD as function of rpm with overlay of autopower of singular vector. 

Using the left singular vector from a specific singular value and rpm, an autopower of the 
singular vector can be calculated across all rpm values. This result can be plotted as a 
function of rpm to obtain an understanding of at what rpm values the analyzed singular 
vector, or mode, is excited and how strongly it is excited.  An autopower of a singular 
vector is computed and shown in Figure 4.15 by the heavy line.  Note that this specific 
singular vector is excited at multiple rpm values. 

Using both the left and right singular vectors from a specific singular value and rpm, a 
MEOT may be calculated.  The MEOT should only peak to the level of its corresponding 
singular value at the rpm that it corresponds to.  At all other rpm values, the MEOT 
should fall below the singular value curves.  The MEOT should look very similar to a 
single degree of freedom system, similar to an enhanced FRF.  The MEOT is not usually 
a perfect SDOF FRF in shape because at other rpm values where the same left singular 
vector is excited, it may peak up a small amount.  A typical MEOT for this dataset is 
shown in Figure 4.16. 

The operating shapes from each order and rpm can be organized according to frequency.  
Organizing the shapes in this manner results in a potentially different number of 
operating shapes at each frequency.  Typically, there will be fewer operating shapes at the 
higher frequencies than at the lower frequencies.  The higher frequencies are only excited 
by the higher orders whereas the lower frequencies are excited by both the lower and 
higher orders, resulting in many more estimated shapes at the lower frequencies. 
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Figure 4.16:  Example MEOT. 

The operating shapes for this example were also organized according to frequency and an 
SVD performed at each spectral line, as shown in Figure 4.17. It can be seen that at many 
frequencies there is more than one mode excited in a frequency band.  The frequency 
resolution, Δf, is 8 Hz in this example.  There are actually many more singular value 
curves than are shown at the lower frequencies, they are not shown because of the 
dynamic range of the plot.  These other singular value curves are all of very low 
amplitude and do not provide any information as to the number of independent shapes 
excited.   They indicate that there are fewer independent shapes excited than there are 
order track estimated shapes at each of the lower frequencies, hence their low amplitudes. 

In the high frequency region of this plot, there is only one singular value curve.  This 
means that the estimated operating shapes may be a combination of modes and cannot be 
decomposed into its underlying linearly independent shapes. 
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Figure 4.17: Singular values of order tracks as a function of frequency. 

If the input to the system is not flat, but instead has peaks due to resonances in the path 
from the actual source to the structure being analyzed, the results may not be as clear or 
as easily interpreted [ref. 46]. 

4.4.2 Experimental Automotive Virtual Measurement Test Case. 

As a second example to explore the behavior of the various virtual measurements that 
may be calculated, the dataset used in Section 4.3 was analyzed.  The dataset was 
acquired on an automobile on a two wheel chassis dynamometer and the contributions 
from the two front wheels separated using the TVDFT with OCM. 

The first virtual measurements that were calculated were the order autopowers to evaluate 
whether the right or left wheel was the dominant overall contributor to the measured dofs 
at each rpm.  The order autopowers are shown in Figure 4.18. 
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Figure 4.18:   Order track autopowers for two wheels. 

Figure 4.18 shows that there are no resonances present in the rpm range of the data.  It 
can clearly be seen that the passenger’s side wheel is the dominant overall contributor to 
the measured dofs at all rpm values.  It is also interesting to note that while the driver’s 
side autopower increases in amplitude with increasing rpm, as would be expected with an 
unbalance force, the passenger’s side autopower does not. 

An SVD was performed on the orders as a function of rpm to allow the computation of 
linearly independent operating shapes and a MEOT.  A MEOT is shown in Figure 4.19. 

 

Figure 4.19:  Singular value curves with MEOT overlay for two wheels. 

Notice the difference between the MEOT computed in the analytical example and this 
example.  In this example the MEOT does not appear like an SDOF system because the 
forcing functions of the wheels come back into phase approximately 6 times in the 
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sweep.  Each time that the wheels are in phase with one another one mode is excited 
while when the wheels are out of phase a different mode is excited.  Also realize that the 
frequency of the orders only sweeps from approximately 15 to 17.5 Hz.  The same two 
modes are excited at all rpm values.  The dominantly excited mode remains the dominant 
mode at all rpm values, it just decreases in amplitude slightly as the tires go into phase 
with one another.  The MEOT in this case only serves to show when the same excitation 
is input into the vehicle as far as the unbalance phasing of the two wheels, this is 
determined from observing when the MEOT approaches the top singular value.  Anytime 
the orders that excite a system can come into and go out of phase with one another there 
is a chance that the MEOT will appear as it does in this example and not like an SDOF 
system as seen in the previous example. 
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Chapter 5 

 

 

5 Conclusions and Recommendations. 

5.1 Summary and Conclusions. 

One of the goals of this dissertation was to document many of the order tracking 
techniques that have been developed and used over time, both commercial and non-
commercial.  Many of the commercially available order tracking methods were presented 
in Chapter 2.    The commercially available methods presented include time sample based 
FFT, digital resampling based angle domain, and Kalman/Vold-Kalman filter based 
methods.  The theory of each method was presented, followed by practical issues related 
to each method.  Therefore, Chapter 2 should serve as a single source for an explanation 
on the details of each of the currently available order tracking methods.   

Chapter 2 also presented some order tracking methods that are not commercially 
available.  These non-commercial algorithms originated either in published papers or 
through discussions on how order tracking has been done in the past.  The FRF based 
methods which were discussed have not been thoroughly documented previously but 
have been used in the past. 
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No order tracking reference could be complete without documentation and explanation of 
tachometer processing methods since all methods intimately rely on an rpm estimate.  
Several commercially available tachometer processing methods were presented in 
Chapter 2.  These methods include algorithms that are best suited for both real time and 
post-processing applications.  The limitations of each method were presented and 
documented.  It should be emphasized that the tachometer channel is the most important 
analysis channel in order tracking analysis.  Without an accurate tachometer channel no 
order tracking can be done on any of the response channels. 

Obviously, a dissertation includes new work along with a summary of historical work.  
To satisfy this requirement, Chapter 3 included the development of several new order 
tracking approaches.  A tachometer processing algorithm that can be used to efficiently 
process induction based tachometer probes is presented.  Chapter 3 also contains the 
development of a completely new order tracking method, the TVDFT, and a new 
variation on the FRF based order tracking method presented in Chapter 2. 

The TVDFT has the capability to separate both close and crossing orders if an 
orthogonality compensation matrix is used (OCM).  This ability to separate close and 
crossing orders was documented through both analytical and experimental examples in 
Chapter 4.  The TVDFT was used to separate the two order inputs of the front wheels of 
an automobile in the experimental example where the orders were only ~0.001 orders 
apart!  For most order tracking cases where there are no close or crossing orders present, 
the TVDFT was shown to provide results that are very similar to those of the angle 
domain resampling based methods.  This is to be expected since the TVDFT essentially 
resamples the kernel of the Fourier transform as opposed to resampling the response.  
The TVDFT is therefore much more computationally efficient than the resampling based 
methods. 

Finally, several new virtual measurements were developed which are based on the SVD 
and the CMIF algorithm used in modal analysis.  These virtual measurements are useful 
for condensing large amounts of actual data down to a single virtual measurement.  The 
SVD was also used to decompose sets of order tracking based operating shapes into sets 
of linearly independent operating shapes.  In many cases these linearly independent 
shapes will approximate the mode shapes of a system.  A virtual measurement was 
developed based on the left and right singular vectors from the SVD to condense order 
tracking measurements into a single measurement which in many cases has the same 
properties as an enhanced FRF.  This measurement was called a Mode Enhanced Order 
Track (MEOT). 

As support for the digital resampling based order tracking algorithms, two adaptive 
resampling algorithms were presented.  One of the algorithms is commercially 
implemented and has been documented.  The other algorithm has not been documented.  
It is not known whether this method is new, due to the proprietary nature of the 
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commercially implemented resampling algorithms.  The potentially new adaptive 
resampling method is based on an upsampled interpolation filter and is shown to be much 
more computationally efficient and memory efficient than the known commercial 
method.  To further the understanding of the adaptive resampling procedures, Appendix 
B provides background information on both digital interpolation and decimation. 

To summarize then, this dissertation includes a fairly complete reference of digital order 
tracking techniques that should be a valuable one-stop reference.  This dissertation also 
includes the development and application of the TVDFT order tracking method which 
has the ability to estimate orders which are very close together or even cross one another.  
Finally, the computational efficiency of both the TVDFT and the adaptive resampling 
based on the upsampled interpolation filter provide a set of order tracking tools that can 
be implemented on the increasing popular personal computer. 

5.2 Recommendations for Future Work. 

The FRF based order tracking method presented in Chapter 3 has not been fully 
implemented or evaluated.  This method should be evaluated in the future as it should be 
able to separate both close and crossing orders, and therefore add another tool a growing 
suite of powerful tools for these types of datasets.  The major advantage this method 
should possess over tracking filter type order tracking methods is the ability to estimate 
the transient response of a system. 

Further work should also be done to evaluate the usefulness and applications of the 
virtual measurements developed in Chapter 3.  The MEOT should prove to be a valuable 
virtual measurement which may allow the estimate of the natural frequency and damping 
of a mode which is excited by sweeping orders.  The ability to estimate both frequency 
and damping of a mode from operating data would be very valuable in cases where there 
are non-linearities present in the system.  The frequency and damping would be estimated 
under actual operating conditions. 

Finally, all of the new methods must be used on many more real world experimental 
datasets to evaluate and validate their advantages.  It is impossible to evaluate these 
methods under every possible condition with analytical simulations because there are an 
infinite number of operating data scenerios that may arise.  There is no substitute for 
using new algorithms in the field to fully understand and exploit their strengths and 
weaknesses! 
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Appendix A 

 

 

Time Domain to Angle Domain, Why Do We Go There? 

 

A Why Sample in the Time Domain? 

Surprisingly enough, all digital signal processing (DSP) theory is developed in the angle 
domain and not the time domain.  This statement is contrary to popular opinion but this is 
the reason for this appendix.  General DSP theory is seldom presented in terms of the 
angle domain but is in fact developed around the angle domain.  It will be shown in this 
appendix that the time domain is simply a special case of the angle domain for steady 
state signals. 

DSP theory is typically presented in terms of the time and frequency domains because 
these domains have physical significance that almost everyone can relate to.  These 
domains may have physical significance but they have no theoretical significance in DSP 
theory. 

From an educational perspective, it is easier to develop the theory in a domain that most 
people are somewhat familiar with.  The disadvantage to developing theory based on a 
special case, the time domain, instead of the general case, the angle domain, is the lack of 
realization and understanding that time/frequency domain algorithms are applicable to 
other types of data.  The same algorithms and methods of the time/frequency domains 
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may be applied to data in the angle domain, or any other domain developed from the 
angle domain. 

From a practical perspective, much of the DSP theory is presented based on the time and 
frequency domains because these are the domains in which the commercially available 
dynamic signal analyzers operate.  Commercial dynamic signal analyzers (DSAs) sample 
data relative to the time axis because it is an independent axis that samples can always be 
acquired relative to.  Since all DSAs have a built-in sample clock, this reference is always 
available and is very accurate.  Many commercial DSAs have an external sample clock 
input to allow sampling relative to an independent axis which may be generated for a 
specific application.  Another advantage of sampling relative to the time axis is that it is 
easy to implement the necessary analog anti-alias filter relative to a constant frequency.  
In this case a tracking filter is not necessary because the sample rate does not change as a 
function of time. 

A.1 Time and Frequency Domains. 

As a first step in explaining the angle domain, several of the basic sampling criteria will 
be presented relative to time and frequency.  The time and frequency domain sampling 
theorems are presented to attempt to familiarize the reader with the terminology that will 
be used to explain the angle domain concepts. 

The sampling equations that are normally presented and which most readers are familiar 
with are shown below in Equation A.1.  Notice that these equations have been written 
with respect to the sampling interval Δt. 
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where: Δf is the frequency resolution of the resulting frequency spectrum. 
 T is the total sample time analyzed. 
 N is the total number of time points over which the transform is performed. 
 Δt is the time spacing of the discrete time samples. 
 Fsample is the sample frequency of the data. 
 Fnyquist is the Nyquist frequency. 
 Fmax is the maximum frequency which can be analyzed. 
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The equations shown in A.1 must be enforced in the acquisition of all data that will be 
Fourier transformed.  The Nyquist frequency, Fnyquist, and frequency resolution, Δf, of the 
Fourier transform are shown to be related to the sample frequency, Fsample, or the spacing 
between the acquired time samples, Δt. 

Since the Nyquist frequency is the highest frequency that can be analyzed with a Fourier 
transform, it can be seen that the data must be acquired with a sample frequency of at 
least two times the Nyquist frequency to avoid aliasing.  Simply acquiring data with a  
sample frequency that is twice the Nyquist frequency however does not eliminate 
aliasing.  All dynamic signal analyzers contain an analog low pass filter before the ADC 
of each acquisition channel.  The cutoff frequency of the analog anti-alias filter is at a 
maximum equal to the Nyquist frequency.  Since a perfect filter cannot be constructed, 
the cutoff frequency is often in the neighborhood of 20% below Nyquist.  This analog 
low pass filter is necessary to prevent aliasing.   For this reason, every digital data 
acquisition system must contain an analog anti-alias filter. 

The most common analysis that is done on discretely sampled data in the noise and 
vibrations industry uses the Fourier transform.  The Fourier transform defined in terms of 
time and frequency is shown in Equation A.2. 
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where: x(nΔt) is the nth discrete data sample. 
 am, bm are the estimated Fourier coefficients. 
 fm is frequency mΔf. 

The only frequencies that can be analyzed without error using a discrete Fourier 
transform are those that fall on a spectral line or Δf.  The special property that these 
frequencies possess is that they all contain an integer number of cycles in the integration 
time, T.  All frequencies that fall between spectral lines will be estimated with a leakage 
error.  While leakage can be reduced with a window, it can never be eliminated. 

One point that should be made is that up to this point all of the signals that have been 
acquired and analyzed are assumed to be steady state in both amplitude and frequency.  If 
the Fourier transform is defined in terms of constant Δt’s and therefore Δf’s, it is very 
well suited to this type of analysis.  The time/frequency domain Fourier transform 
performs very well with steady state frequency data because the kernel of the transform 
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looks the same as the frequency components which are being analyzed.  This property is 
shown in Figure A.1. 
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Figure A.1:  Constant frequency time domain sampled data. 

The key to understanding Figure A.1 is that the sampled waveform, the bottom plot, 
looks like a sine or cosine wave.  Notice also that this figure shows that for the case of 
constant frequency data, a constant Δt is also exactly constant Δθ data, where Δθ is the 
angle domain sample spacing.  The relationship between the Δf and Δθ sample rates is 
shown in the middle two plots of Figure A.1.  In other words, the derivations that are 
usually presented that are based on constant Δt are actually based on constant Δθ!  This 
implies that the Fourier transform and sampling relationships that usually presented are 
just a special case of the general angle domain case.  One last thing to note is that the 
sampled waveform in this case is of constant amplitude.  The kernel of the transform is 
also of constant amplitude.  In many cases the sampled waveform will not be of constant 
amplitude, this will result in an approximation of the amplitude of the signal since the 
average value of the amplitude over the integration time will be estimated by the Fourier 
transform. 



 Page 115  

A similar presentation could also be made to show that digital filters are actually based 
on a constant Δθ spacing.  Digital filters are nearly always presented and developed in the 
z-domain where the coefficients of a filter are applied to consecutively delayed data.  The 
mathematical derivation often does not state that these delays are delays in time, just 
delays in the sample stream.  The theoretical development of digital filters is also always 
done with frequency normalized parameters, normalized with respect to the Nyquist 
frequency, such as bandstop/bandpass frequencies.  It is only in actual examples that the 
jump is made to time domain sampled data and non-normalized frequency parameters.  
Obviously then these same filters may be and are applied to angle domain data. 

Since the digital decimation and interpolation procedures of Appendix B are based on 
simple digital filters, they may also be used on angle domain data.  The Kalman and 
Vold-Kalman filters of Chapter 2 may also be formulated to operate in the angle domain 
very easily.  All of these filters will of course contain a constant order bandwidth in the 
angle domain and not a constant frequency bandwidth. 

A.2 Angle and Order Domains. 

Understanding that Fourier transforms and digital filters can be applied to angle domain 
data, next an understanding must be gained into why data is analyzed in the angle 
domain.  The major reason to work in the angle domain is to accurately analyze data that 
contains time variant frequency components.  Time variant frequencies can be evaluated 
very accurately if the sample rate of the discrete data can be locked to the frequency 
variation of these components. 

To understand why locking the sample rate of data to a reference signal is beneficial in 
obtaining accurate estimates of time varying frequency components in the data, an 
understanding must be gained of what this type of sampling does to the data.  Figure A.2 
shows the same information as Figure A.1, except in this case the frequency of the data 
varies with time as shown by the top plot in the figure. 
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Figure A.2:  Varying frequency sine wave sampled with a constant Δt. 

The data shown in the bottom of the figure shows that if a constant Δt is used to sample 
this data, the sampled data does not look like the kernel of the time based Fourier 
transform.  Remembering that accurate results will be obtained from a transform if the 
data looks similar to the kernel of the transform, clearly it can seen that this is not an 
optimal case.  It is also clear from the time and angle sample rate plots shown in the 
middle of Figure A.2 that the constant Δt sample rate is not a constant Δθ.  This implies 
that the relationship between the time and angle domain sample rates is different than it 
was in Figure A.1. 

With a reference signal, this same varying frequency sine wave can be sampled with a 
constant angular sample rate.  The result is shown in Figure A.3. 
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Figure A.3:  Varying frequency sine wave sampled with a constant Δθ. 

In this case it is clearly seen by the sample rate plots that the signal is not sampled with a 
constant Δt.  The important result of this figure is the bottom plot.  The sampled 
waveform once again appears similar to a sine or cosine wave.  Now that the sampled 
waveform and kernel appear similar, the results of the Fourier transform should be 
accurate.  

Analyzing the constant Δθ sampled data with the sampling relationships and Fourier 
transforms presented in Equations A.1 and A.2 respectively is not possible.  These 
equations are defined in terms of a constant Δt.  This data has a constant Δθ!  The 
sampling relationships are then re-written in terms of a constant Δθ.  These new sampling 
relationships are shown in Equation A.3. 
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where: Δo is the order spacing of the resulting order spectrum. 
 R is the total number of revolutions that are analyzed. 

N is the total number of time points over which the transform is performed. 
 Δθ is the angular spacing of the resampled samples. 
 Osample is the angular sample rate at which the data is sampled. 
 Onyquist is the Nyquist order. 
 Omax is the maximum order that can be analyzed. 

Note that the equations in A.3 are exactly the same as those of Equation A.1 if a 
substitution of Δθ for Δt, Δo for Δf, and R for T is made.  The substitution of R for T is 
made because to achieve the spectral line spacing, Δf, in the frequency domain, a 
specified period of time was used in the Fourier transform integration.  In this case a 
specified number of revolutions is used in the integration.  Over a specified period of 
time, T, an integer number of cycles of the all of the Δf frequency sine waves was 
observed.  It can be seen that if the same number of integer cycles, or revolutions, is 
observed in the angle domain, the Δo resolution will be the same as the Δf resolution. 

It can also be seen in Equation A.3 that the relationship between the Nyquist order and 
the angular sample rate is the same as that seen between the Nyquist frequency and the 
time based sample rate shown in Equation A.1.  This implies that there must be at least 2 
samples/cycle for the maximum order that is to be analyzed to avoid aliasing.  The other 
implication from this sample rate relationship is that the cutoff frequency of the required 
analog anti-alias filter must always be, at a maximum, equal to the frequency of the 
Nyquist order.  In other words, the cutoff frequency of the analog anti-alias filter must 
vary with the sample rate to avoid aliasing! 

Now that the sampling relationships have been reformulated and evaluated in the angle 
domain, the Fourier transform kernels of Equation A.2 must be reformulated in the angle 
domain.  These reformulated kernels are shown in Equation A.4. 
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where: om is the order which is being analyzed, mΔo. 
 am is the Fourier coefficient of the cosine term for om. 
 bm is the Fourier coefficient of the sine term for om. 

These equations were derived from Equation A.2 by making the same substitutions as 
those made to derive Equation A.3 from Equation A.1.  The results of the angle domain 
Fourier transform will have a constant Δo bandwidth instead of the constant Δf 
bandwidth achieved with Equation A.2.  Any order that has an integer number of cycles 
in the integration period R will fall on a spectral line Δo and will be estimated leakage 
free. 

To obtain a leakage free estimate of an order, the number of revolutions of the transform 
must be chosen such that the order, or all orders, of interest fall on spectral lines, Δo’s.  
For this reason, oftentimes a discrete Fourier transform (DFT) is done to estimate orders 
and not a fast Fourier transform (FFT).  The DFT allows any number of samples to be 
used in the transform and does not contain the power of 2 restriction of the FFT.  

Locking the sample rate to a time varying reference requires that information about that 
reference is known or measured.  On rotating components, the necessary sampling rate 
information is related to the rotational speed of the component of interest.  To obtain this 
rotational speed information, a tachometer signal is measured.  Realize then that the 
accuracy of the sampling process is directly proportional to the accuracy of the 
measurement and processing of the tachometer signal. 

A.2.1 Using a Frequency Ratio Synthesizer to Drive the External Sample Clock 
Input. 

One way to use the tachometer signal is to input it into a frequency ratio synthesizer 
(FRS).  The FRS estimates the time between tachometer pulses and generates a new pulse 
train with a different number of pulses per revolution than the tachometer sensor 
generates.  This pulse train is then used as the input to the external sample clock input on 
a DSA.  The DSA samples the acquisition channels each instant that a pulse is received 
from the FRS.  There are errors associated with this hardware configuration because the 
output pulse train of the FRS is always one tachometer pulse in frequency behind that of 
the rotating shaft.  This error is addressed in more detail in Chapter 2. 
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Because the analog anti-alias filter on most DSA’s is a fixed frequency filter, an external 
tracking anti-alias filter must be used to avoid aliasing in this configuration.  The external 
filter is necessary because the frequency of the pulse train from the FRS, the rotational 
speed of the shaft, varies as a function of time and therefore the sample rate of the DSA 
varies as a function of time.  Since the cutoff frequency of the analog anti-alias filter must 
always be less than the Nyquist frequency of the data, the cutoff frequency of the analog 
anti-alias filter must change with time, rpm in this case.  To eliminate aliasing in the 
sampled data then the same signal from the FRS that is used to drive the DSA sample 
clock is used to drive the cutoff frequency of a tracking lowpass analog anti-alias filter.  
The frequency of the tracking filter is always less than the Nyquist frequency of the 
sampled data and therefore aliasing is prevented. 

Producing tracking analog anti-alias filters is both expensive and difficult.  For this 
reason they are not used very often, especially in large channel count systems.  The cost 
for large channel count systems rises exponentially because all of the filters, one for each 
channel, must be amplitude and phase matched.  Another limitation of the tracking 
analog filter is that usually it will introduce filter transients into the data if its frequency is 
changed too rapidly.  This last limitation can severely limit the sweep rate of data. 

A.2.2 Adaptive Resampling From the Time Domain to the Angle Domain. 

The second way the tachometer signal can be used as a reference signal to drive the 
sample clock is through digital adaptive resampling.  In this process, the data is originally 
acquired with constant sample time intervals, Δt’s.  The data is acquired using the 
sampling relationships presented in Equation A.1.  The Nyquist frequency must be 
chosen such that the highest order of interest will have a lower frequency than the 
Nyquist frequency at the highest rpm of the acquisition period.  The Δt sampled data is 
alias protected by a fixed frequency analog anti-alias filter.  This process does not require 
the expensive analog tracking anti-alias filter. 

Once the data has been acquired with constant Δt’s, it is adaptively resampled to the 
angle domain.  To accomplish the adaptive resampling, the tachometer signal is curve fit 
using one of the algorithms described in Chapter 2.  The curve fit tachometer signal is 
then integrated to obtain an estimate of angle vs. time of the rotation of the machine.  The 
integrated curve fit tachometer signal is then used to determine at what instants in time 
new data samples are desired. 

The angular sample rate that the original data must be resampled to is determined either 
by the highest order present at the lowest rpm value or the highest order the user is 
interested in.  The larger of these two order values must be used in the resampling 
process.  A sample rate of at least 2 samples/cycle of the largest order must be used.  The 
larger of these two values must be used to prevent aliasing in the adaptive resampling 
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process.  This strategy for determining the new angle domain sample rate results in the 
new adaptively resampled data always having a higher sample rate than the original data. 

Aliasing is always prevented in any resampling process by either resampling to a higher 
sample rate than the data was acquired with or by lowpass filtering the data to an 
appropriate frequency before reducing the sample rate.  These concepts are discussed in 
greater detail in Appendix B.  In the adaptive resampling from the time domain to the 
angle domain the data is always resampled to a higher sample rate to prevent aliasing. 

Having determined the new angle domain sample rate, the integrated tachometer signal is 
interpolated to determine the instants in time that new samples are required.  The time 
domain data is then adaptively resampled at the new time instants to obtain the angle 
domain data.  The adaptive resampling is performed using either the adaptive resampling 
method presented in Chapter 2 or the method presented in Chapter 3. 

If the angle domain sample rate was determined by the highest order of interest, then the 
resampling process is complete and the angle domain data may be analyzed using 
Equation A.4, or digitally filtered, or otherwise processed using an angle domain DSP 
algorithm. 

If the angle domain sample rate was determined by the highest order present in the data at 
the lowest rpm value, the resampling process may not be finished.  If the user desires a 
lower angle domain sample rate than the adaptively resampled data contains, a 
decimation procedure must be performed.  Knowing in advance how the angle domain 
sample rate was determined can make the decimation process much more 
computationally efficient.  If the user desires the highest order in the resampled data to be 
order 20, for example, then the data must be resampled to contain at least 40 
samples/cycle.  If the data on the other hand contains order 65 at the lowest rpm, the 
necessary angle domain sample rate is 130 samples/cycle.  It is not computationally 
efficient to decimate from 130 samples/cycle to 40 samples/cycle because the division of 
130 by 40 does not result in an integer decimation factor.  If however the original data 
had been resampled to an angular sample rate of 160 samples/cycle, the adaptively 
resampled angle domain data could be decimated using a standard decimation procedure 
down to 40 samples/cycle by using a decimation factor of 160/40 or 4.  The adaptive 
resampling process is now complete and the angle domain data may be processed 
however the user desires with an angle domain DSP algorithm. 

A.3 Time to Angle Domain Summary. 

This appendix has provided a complete explanation of the ramifications and sample rate 
implications that must be considered in the transformation of data from the time domain 
to the angle domain.  Realizing that the same DSP algorithms can be applied to both time 
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and angle domain data however is just a start in completely understanding the power of 
DSP algorithms.  Many of the same DSP algorithms used in the time and angle domains 
are used in domains such as the spatial domain.  Oftentimes, spatial domain processing is 
2 dimensional.  Many of the 1 dimensional algorithms that are commonly used in NVH 
work are easily expanded to be 2 dimensional.  Spatial domain processing is done in 
Nearfield Acoustic Holography (NAH) and image processing for radar or medical 
applications, as well as many other fields. 

An example of a 2 dimensional image processing DSP application is the JPEG 
compression algorithm.  This algorithm is based on doing 8X8 cosine transforms and 
storing only the largest coefficients to obtain the compression.  Wavelet compression is 
also becoming common in the image processing field, yet another application of an 
algorithm which is used on time domain data in the NVH field.  Understanding the DSP 
algorithms that are used by engineers and scientists in other fields and in other domains 
may lead to new developments in the processing of NVH data.  Remember all DSP 
algorithms are angle based and can be re-derived into any domain of interest. 
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Appendix B 

 

 

Digital Resampling Techniques and Procedures. 

 

B Introduction to Digital Resampling. 

Digital resampling can be thought of as two separate procedures which when combined 
together allow the effective sample rate of a signal to be changed to any value the user 
desires.  The new sample rate may contain samples that are evenly spaced in time or 
evenly spaced relative to another known variable.  This appendix will systematically 
explain the algorithms employed in these two separate procedures.  The two procedures 
are decimation and interpolation.  Decimation and interpolation are well documented in 
the literature and are presented only for completeness in this dissertation. 

B.1 Decimation Procedures. 

In this section the basic decimation procedure is presented, followed by some 
observations to greatly reduce the computational demands of the decimation process. 
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B.1.1 Decimation Theory. 

Decimation is the process of reducing the sample rate of digitally sampled data.  The first 
step in the decimation process is the digital filtering of sampled data that was passed 
through an analog anti-alias filter prior to the sampling process.  The data is digitally 
filtered with a lowpass filter that possesses a maximal cutoff frequency of the Nyquist 
frequency of the new sample rate.  Decimation performed in this manner reduces the 
effective sample rate of the data by an integer amount, M.  This implies that the digital 
filter has a maximal cutoff frequency of FNyquist/M.  Once the data has been digitally 
filtered to reduce its effective sample rate, every Mth data point is recorded while the 
remaining data points are discarded. 

The basic decimation procedure is presented in Figure B.1.  In this figure, a hypothetical 
signal is sampled at 100 Hz and decimated to an effective sample rate of 25 Hz, thus 
using a decimation factor of 4. 

M
Original Sampled

Data
Sampling Rate = 100

Decimated Data

Sampling Rate = 25

Decimation Filter
60 Point FIR

Fcutoff = 12.5 Hz.

Downsampler (M=4)
Discards 3 of every 4

data values

 
Figure B.1 Graphical representation of decimation process. 

B.1.2 Decimation Application. 

Decimation is a very integral part of the digital data acquisition systems commonly 
employed to acquire data.  Decimation is performed in real time in many of these 
acquisition systems to reduce the sample rate of the data down to the desired frequency 
bandwidth.  Many analyzers originally sample the data with a fixed maximal rate.  
Decimation is also employed as a post-processing procedure in many analysis packages 
commonly used in the laboratory. 
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The digital filter applied in the decimation process may be either a FIR or an IIR filter.  
An IIR filter will usually be more efficient if the data is decimated by a relatively small 
amount.  The use of an IIR filter also allows a filter to be used which emulates an analog 
anti-alias filter. 

An FIR filter can be applied more efficiently if the data is to be decimated by a large 
amount.  While the FIR filter usually will contain more filter coefficients than an IIR 
filter that gives a similar out of band suppression, the FIR filter does not depend on 
previous values of the output of the filter.  This latter property of the FIR filter is where 
the computational advantage can be realized for decimation by large factors.  The FIR 
filter can be applied only to the data values that are to be kept after the filtering process, 
thus discarding the undesired data values in the filtering process, since it does not depend 
on past outputs of the filter.  This procedure will reduce the number of computations 
required to filter the data by the decimation factor, M.  Obviously, for large decimation 
factors this procedure will then save considerable computational effort even if the filter 
order of the FIR filter is considerably higher than that of an equivalent IIR filter. 

Regardless of which filter is used in the decimation procedure, the user must design the 
filter such that all frequency content above the new Nyquist frequency is attenuated to 
prevent aliasing.  Since a digital filter with a zero width transition band cannot be 
realized, this oftentimes leads to a cutoff frequency of the lowpass filter which is lower 
than the new Nyquist frequency.  For example, Hewlett Packard uses a decimation filter 
which possesses a cutoff frequency of approximately 80% of the desired Nyquist 
frequency.  This is the reason that if a 1024 Hz sample rate is chosen, frequency domain 
results are only presented out to 400 Hz.  The frequency content between 400 and 512 Hz 
is not presented because it may contain aliased information. 

In either filter case it may also be more computationally efficient to decimate the data in 
multiple stages.  A digital filter which has a desired set of passband and stopband 
properties and a cutoff frequency of ¼ to ½ of the original Nyquist frequency oftentimes 
can be designed with much fewer coefficients than the same filter with a cutoff frequency 
of 1/32 of the original Nyquist frequency.  This implies that it may be more efficient to 
decimate the original data by a factor of 4 in multiple stages than to decimate the data by 
a factor of 16 in one stage.  

B.2 Digital Interpolation Procedures. 

This section presents the theory behind digital interpolation, followed by a numerical 
example of the interpolation process, and finally a discussion of interpolation 
applications. 
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B.2.1 Interpolation Theory. 

Interpolation is the opposite of decimation and is used to effectively upsample digitally 
sampled data.  Interpolation is the process of inserting L-1 new data values between the 
original data values.  Usually the new data values will be evenly spaced between the 
original data values.  The upsampled signal will then possess a Δt that is 1/L of the 
original Δt.  However, the new signal will not contain any frequency content above the 
original signal’s frequency content. 

One method of performing the upsampling process is simply to insert L zeros evenly 
spaced between the original data values.  This zero inserted time history is then filtered 
with a lowpass filter to suppress the spectral images introduced into the signal through 
the zero insertion process.  Oftentimes a specific interpolation filter may be designed 
which requires fewer filter coefficients than a generic lowpass filter.  This special 
interpolation filter contains don’t care bands which are systematically positioned in 
spectral regions where there will not be high frequency content introduced by the zero 
insertion process.  These regions occur around the original Nyquist frequency and its 
multiples. 

Figure B.2 graphically presents the steps employed in the upsampling process.  In this 
figure the original data is assumed to have a sample rate of 25 Hz while the upsampled 
data has a sample rate of 100 Hz.  This process therefore uses an interpolation factor of 
L=4. 

L
Original Sampled

Data
Sampling Rate = 25 Hz.

Interpolated Data

Sampling Rate = 100

Interpolation Filter
60 Point FIR

Fcutoff = 12.5 Hz.

Upsampler (L=4)
Inserts 3 zeros between

every data value

 
Figure B.2 Graphical presentation of interpolation process. 



 Page 127  

B.2.2 Numerical Interpolation Example. 

An example of the processing and intermediate steps of spectral interpolation is presented 
here to illustrate the effects of the zero insertion process and its subsequent filtering.  The 
original sampled data is presented in Figure B.3.  The original data is a sine wave with a 
frequency of 1.5 Hz that has been sampled at 10 Hz. 
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Figure B.3 Original time and frequency representations of signal. 

The first step in the interpolation process is to insert L-1 zeros between the original data 
values.  In this case, L=4 and 3 zeros are inserted between each original data value.  The 
zero inserted data is presented below in Figure B.4.  Note the spectral images that are 
produced in the frequency domain plot of the zero inserted time history.  The zero 
inserted time history now has a sample rate of 40 Hz. 
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Figure B.4 Time and frequency characteristics of zero inserted signal. 

The FIR interpolation filter that is used to remove the spectral images is presented in 
Figure B.5.  Note the frequency domain filter shape.  The filter contains a don’t care 
band in the 15 Hz region which is where the spectral images have a minimum amplitude 
and do not require a significant amount of suppression.  It can be seen in the frequency 
domain characteristics of the filter that the spectral images will be suppressed by 
approximately 80 dB with this filter. 
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Figure B.5 Time and frequency characteristics of interpolation filter. 

Finally, the filtered zero inserted time and frequency domain plots are presented in Figure 
B.6.  The time domain plot shows the improvement in the amplitude resolution of the 
signal.  The frequency domain plot shows that the spectral content of the interpolated 
signal has not been altered by the upsampling process if 80 dB of dynamic range is 
considered sufficient. 
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Figure B.6 Time and frequency domain characteristics of upsampled signal. 

B.2.3 Interpolation Application. 

The interpolation process is not normally performed in data acquisition systems as most 
acquisition systems initially sample the data at a high rate.  Interpolation is however 
widely used in the post processing of acoustic data if the data is to be played back for 
sound quality evaluation.  Interpolation is also a necessary step in changing the effective 
sample rate of a signal by a non-integer value.  An example of this would be changing the 
sample rate of data acquired on a DAT tape with a sample rate of 48 kHz to the sample 
rate of an audio CD sampled at 44.1 kHz.  This type of sample rate conversion is referred 
to as rational fraction interpolation and uses a combination of decimation and 
interpolation stages. 

Upsampling is also necessary if the time domain amplitude of a signal is desired.  
Oftentimes data may be acquired with a minimal sample rate as dictated by Shannon’s 
sampling theorem.  This sample rate will give accurate frequency domain amplitude 
estimates but will not give accurate time domain amplitude estimates.  Upsampling may 
also be applied to a time captured tachometer signal to improve the estimates of the zero 
crossings and thereby improve the rotational period estimates.  Obviously, the same 
benefits exist in upsampling time captures of trigger or event channels.  It should be 
remembered that while upsampling may improve the analysis results of these signals, 
upsampling does not add any new information to the signal as the frequency content of 
the upsampled signal is the same as that of the original signal. 

Applying a standard lowpass filter to perform digital interpolation, as presented in the 
above numerical example, requires the filter have enough coefficients so that 5 to 8 of the 
original data values on each side of the desired new data value are included in the 
filtering process.  If fewer than 5 to 8 original data values are used on each side of the 
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new data value the filter will not accurately predict the new data value.  This implies that 
the number of filter coefficients must be (5-8)*L*2+1.  The filter is then applied by 
performing the convolution of the filter with the zero padded signal.  This procedure 
multiplies many of the filter coefficients by zero and then adds these zeros together along 
with the non-zero results to obtain the new data values.  The use of a polyphase filter 
allows a much more efficient implementation of the digital interpolation process.  A 
polyphase filter is an FIR filter which is applied by only performing the 
multiplications/adds of the filter coefficients which are aligned with an original data 
value.  This eliminates the operations of multiplying/adding all of the known zero results.  
This requires more computational overhead in the filtering algorithm but reduces the 
number of computations by a factor of L, which can be significant for a large upsampling 
factor, L. 

B.3 Rational Fraction Sampling Rate Interpolation. 

The procedure of changing sampling rates by a non-integer amount, either up or down, 
often requires the use of a combination of decimators and interpolators.  If the desired 
sampling rate can be obtained by using integer decimation factors, M, and integer 
interpolation factors, L, the procedure is called rational fraction sampling rate 
interpolation.  This section will present the theory and application of this procedure. 

B.3.1 Rational Fraction Sampling Rate Interpolation Theory. 

The sampling rate of a signal may be increased or decreased by an integer amount 
through the use of only an interpolator or decimator respectively.  When the desired 
sample rate does not have an integer relationship to the original sample rate, a 
combination of interpolators and decimators may be applied to realize the new sample 
rate.  The first step in this process is to determine what interpolation and decimation 
factors, L and M, are required to arrive at the new sample rate.  This involves 
determining the smallest common denominator between the original and desired sample 
rates.  This then allows the determination of the rational fraction L/M which provides the 
necessary interpolation and decimation factors. 

The first step once the interpolation factor is determined is to upsample the original data 
by a factor of L.  The upsampled data is then decimated using a decimation factor M.  
This procedure will preserve the frequency content of the original signal either to the 
original Nyquist frequency or to the Nyquist frequency of the new re-sampled signal.  
Aliasing will not be introduced into the re-sampled signal as long as the interpolation is 
carried out before the decimation.  A graphical representation of this process is presented 
in Figure B.7. 
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Figure B.7:  Graphical representation of rational fraction sampling rate 

interpolation. 

B.3.2 Rational Fraction Sampling Rate Interpolation Application. 

Figure B.7 shows a straightforward way of performing the rational fraction sampling rate 
interpolation, but is not a numerically efficient implementation.  Large gains in 
computational efficiency can be achieved through applying only one digital lowpass 
filter.  The single lowpass filter replaces the two filters that are presented in series.  The 
cutoff frequency of the single lowpass filter must be the lower of the cutoff frequency of 
the two filters presented.  If the single filter is a polyphase FIR filter, further 
computational savings can be obtained by only applying the filter to the data points that 
will be kept after the decimation process.  While applying the filter in this manner does 
require more computational complexity in the filtering algorithm, it can result in large 
speed improvements. 

An alternative method of performing this sampling rate interpolation is to use multiple 
stages in both the interpolation and decimation processes.  While this approach is not as 
computationally efficient as the method described above, it may still be much more 
computationally efficient than the straightforward approach presented in Figure B.7.  The 
savings are gained using multiple stages because of the lower order filters required, as 
discussed in the decimation Section B.1. 

This multistage approach is particularly beneficial in instances where the interpolation 
and decimation factors needed to obtain the desired sample rate are large.  For example, 
to transform audio CD data which is sampled at 44.1 kHz to the 48 kHz sample rate of a 
DAT tape requires L=160 and M=147.  This implies that to use the straightforward 
approach, the sample rate is first increased to (160*44.1 kHz) 7.056 MHz, which will 
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result in the original time history becoming 160 times longer.   This zero inserted data is 
then filtered with an interpolation filter with, for example, (5*160*2+1) 1601 
coefficients!  The 1601 point filter is then applied to every data value.  Once this data has 
been filtered, a decimation filter is applied to the long time history and 146 out of every 
147 samples is discarded. 

If the interpolation is performed in multiple stages the computational load is significantly 
reduced.  For example, factoring L=160 into stages of 2,2,2,2,2, and 5 will result in an 
interpolation filter with only (5*2*2+1) 21 coefficients for each of the first 5 stages and 
(5*5*2+1) 51 coefficients for the last stage.  The result of this approach is having to 
perform approximately 27 times fewer multiply and adds in the interpolation procedure. 

B.3.3 Arbitrary Sampling Rate Interpolation. 

The arbitrary sampling rate interpolation algorithms are based on the same methodology 
as adaptive sampling rate interpolation algorithms, explained in Chapters 2 and 3, without 
the necessity of a reference signal to drive the adaptive portion of the resampling. 

The adaptive resampling algorithms can be effectively used to resample a dataset to any 
arbitrary time axis.  This implies that they may be used to resample a dataset to a new 
constant Δt, different than the original Δt that the data was acquired with.  This is done 
much more efficiently than the adaptive resampling since much of the computational 
effort involved in the adaptive resampling procedures can be the determination of the 
new instants in time which new data samples are desired.  Using adaptive resampling 
procedures to resample data to a new constant Δt can be more computationally efficient 
than using the rational fraction resampling approach if a large amount of interpolation 
and decimation must be used to obtain the new desired sample rate. 

 


