

DEWESof

FRF

Users Manual

Version: 1.0

Thank you!

Thank you very much for your investment in our unique data acquisition systems. These are top-quality instruments which are designed to provide you years of reliable service. This guide has been prepared to help you get the most from your investment, starting from the day you take it out of the box, and extending for years into the future.

www.chinaksi.com

measurement innovation

measurement in

Table Of Contents

DEWESoft™ DEWESoft™ DEWESoft™ DEWESoft™ DEWESoft™

DEWESoft™

DEWESoft

1	Notice	1
	1.1 Safety instructions	2
	1.2 About this document	3
	1.3 Legend	3
2	Introduction	5
	2.1 FRF module	5
	2.2 LTI systems	5
	2.3 Frequency response function	5
	2.4 System overview	6
	2.5 Enabling FRF module	7
	2.6 Adding FRF module	7
3	Setup / Operation modes	9
	3.1 Triggered	9
	3.1.1 Triggered, 1 point	.15
	3.1.2 Triggered, roving hammer	.16
	1 Exc, 1 Resp	.16
	1 Exc, Group Resp	.17
	3.1.3 Triggered, roving acceleration sensor	.18
	3.2 Free-run (sweep)	.19
	3.2.1 Free-run (shaker externally controlled)	.21
	3.2.2 Free run, FGEN, shaker	.22
	3.2.3 Free run, FGEN, multiple shakers	.23
	3.2.4 ODS	.24
4	Measurement and visualisation	.25
	4.1 Auto-generated displays	.25
	4.2 FRF info channels	.26
	4.3 FRF control channels	.26
	4.4 Geometry editor	.27
	4.4.1 Importing a structure	.27
	4.4.2 Drawing a structure	.28
5	Analyse and export	.31
	5.1 Transfer function	.31
	5.2 Coherence	.32
	5.3 Mode Indicator Function (MIF)	.32
	5.4 FRF animation	.33
	5.5 Modal circle	.34
	5.6 Export of complex data	.35
	5.7 Export in UNV / UFF format	.36
6	Examples (step-by-step)	.39
	6.1 Triggered (roving hammer)	.39
	6.2 Free-run	.44
7	FAQ	.47
8	Documentation version history	.49

measurement innovation measurement innovation measurement innovation measurement innovation measurement innovation measurement innovation

DEWESoft

DEWESoft

1 Notice

The information contained in this document is subject to change without notice.

Warranty Information:

A copy of the specific warranty terms applicable to your Dewesoft product and replacement parts can be obtained from your local sales and service office.

ement innovatio

Printing History:

Version Revision 310 Released 2013 Last changed: 29. May 2014 13:13

Copyright

Copyright © 2011-2013 Dewesoft GmbH

This document contains information which is protected by copyright. All rights are reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copyright laws.

DEWESof

All trademarks and registered trademarks are acknowledged to be the property of their owners.

1.1 Safety instructions

Your safety is our primary concern! Please be safe!

Safety symbols in the manual

Calls attention to a procedure, practice, or condition that could possibly cause damage to equipment or permanent loss of data.

General Safety Instructions

measurement innovation

WARNING

The following general safety precautions must be observed during all phases of operation, service, and repair of this product. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the product. Dewesoft GmbH assumes no liability for the customer's failure to comply with these requirements.

measurement innovation

measurement innovation

measurement innovation

measurement innovation

1.2 About this document

This is the Users Manual for FRF Version 1.0.

1.3 Legend

The following symbols and formats will be used throughout the document.

EXAMPLE Gives you an example to a specific subject.

2 Introduction

2.1 FRF module

The DEWESoft[™] FRF module is used for analysis of e.g. mechanical structures or electrical systems to determine the transfer characteristic (amplitude and phase) over a certain frequency range.

With the small, handy form factor of the DEWESoft instruments (DEWE-43, SIRIUS*i*) it is also a smart portable solution for technical consultants coping with failure detection.

The FRF module is included in the DSA package (along with other modules e.g. Ordertracking, Torsional vibration, ...).

Let's assume there is a mechanical structure to be analyzed. Where are the resonances? Which frequencies can be problematic and should be avoided? How to measure that and what about the quality of the measurement?

Probably the easiest way is exciting the structure using a modal hammer (force input) and acceleration sensors for the measurement of the response (acceleration output). At first the structure is graphically defined in the geometry editor. Then the points for excitation and response are selected. The test person knocks on the test points while the software collects the data. Next to extracting phase and amplitude, in Analyse mode it is possible to animate the structure for the frequencies of interest. The coherence acts as a measure for the quality. The modal circle provides higher frequency precision and the damping factor.

For more advanced analysis the data can be exported to several file formats, important is the widely used UFF to read data in e.g. MEScope.

2.2 LTI systems

At first we have to assume that the methods described here apply to LTI (linear, time-invariant) systems or systems which come close to that. LTI systems, from applied mathematics, which appear in a lot of technical areas, have following characteristics:

- Linearity: the relationship between input and output is a linear map (scaled and summed functions at the input will also exist at the output, but with different scaling factors)
- A Time-invariant: whether an input is applied to the system now or any time later, it will be identical

Furthermore, the fundemental giving of evidence in LTI theory is that the system can be characterized entirely by a single function called system's impulse response. The output of the system is a convolution of the input to the system with the system's impulse response.

2.3 Frequency response function

Transfer functions are widely used in the analysis of systems, the main types are

- \blacktriangle mechanical \rightarrow excite the structure with a modal hammer or shaker (measure force), measure response with accelerometers (acceleration)
- \blacktriangle electrical \rightarrow apply a voltage to the circuit on the input, measure back the voltage on the output

In mechanical structures for example, when the transfer characteristic is known, this will show dangerous resonances. The frequency range, where the stress to the material is too high, has to be avoided, e.g. by specifying a limited operating range. The simplified process works like that: an input signal is applied to the system and the output signal is measured. The division of response to excitation basically gives the transfer function.

$$H(f) = \frac{Y(f)}{X(f)}$$

measurement innovation

measurement innovation measurement innovation

measurement innovation

ent innovati

DEWESoft

In time-domain this is described in the following way:

FRF

$$x(t) \longrightarrow h(t) \longrightarrow y(t) = h(t) * x(t)$$

DEWESoft

DEWESoft

Laplace transformation leads to the result in frequency domain:

DEWESoft utilizes the widely used H1(f) calculation method, which is applied, when the output is expected to be noisy compared to the input.

H1(f)= Cross Spectral Density of the Input and Output
Auto Spectral Density of the Input

2.4 System overview

In most of the cases acceleration sensors, microphones, modal hammers or other force transducers are used for analog input. If they are e.g. voltage or ICP type, they are connected to the SIRIUS ACC amplifier, or DEWE-43 with MSI-ACC adapter. When analog output is needed (shaker), the AO8 option (8 channels BNC on rear side of SIRIUS instrument) provides a full-grown arbitrary function generator.

measurement innovation

measurement innovat

measurement innovation measurement innovation

measurement innovatio

2.5 Enabling FRF module

Like many additional mathematics modules also "Modal Test (FRF, NMT)" is an option to the standard DEWESoftTM package and needs to be enabled in the Hardware setup: Enter <Settings> <Hardware Setup> and then <Math>.

	_
Analog CAN GPS Video Math Timing Alarms & Events Analog out NET Plugins Registration Ø Basic functions (Filter, Formula, Statistics,) Ø Pophometer Brake Test Brake Test Srs Ø Order tracking Combustion analysis Power Ø Modal Test (FRF, NMT) Ø Modal Test (FRF, NMT)	
Module properties (selected module has no properties)	
ß	
Registration status PROF	

Usually this must not be done manually, since the license is already stored on your Dewesoft instrument.

Just click on the "Auto Detect" button and all options will be detected and enabled automatically.

2.6 Adding FRF module

In the next step we add one new module with the + button:

		40P	DEWES	oft X1							
	Acquisition	Analysis	Setup f	iles Ch.	setup M	easure					
	• • •	::	(j)	3		0-	1 †††	<i></i>	√ ^{F6}	00	
Store	Save	Save as	File details	Storing	Analog	Counter	Ctrl out	CAN	Analog out	Math	Modal Test
			-								

The description of the channel setup and the parameters is split into chapters 3.1 Triggered and 3.2 Free-run (sweep) on the following pages.

vation

ement innovatio

3 Setup / Operation modes

Depending on the application DEWESoft offers basically two different types of setup:

- A Triggered: For excitation an impulse is used (=wide frequency spectrum), e.g. modal hammer; easy to setup
- Free-run: The structure is excited e.g. with a shaker (or the engine rpm is varied), which sweeps through the frequencies (e.g. 10...1000 Hz)

As the channel setup is different, both setup types will be explained seperately, along with practical examples.

3.1 Triggered

The easiest test consists of the modal hammer, which is used for exciting the structure with a short impulse (= wide frequency spectrum) and an acceleration sensor measuring the response. The hammer has a force sensor integrated in the tip, the tip ends are interchangeable. For bigger structures there are big hammers available with more mass to generate a distinct amplitude.

HINT

Please keep in mind that a hard tip generates a wider excitation spectrum, therefore you will get a better result (coherence) for the higher frequencies.

The two pictures below show the comparison. The scopes on top show time-domain, FFTs below show frequency-domain (same scaling).

On the other side, with a hard tip double-hits appear more frequently.

measurement innovation measurement innovation

neasurement innovation

measurement innovation

measurement innov

When you have set the calculation type to "Triggered (FRF)", the setup looks like shown below.

On the left side specify the excitation (modal hammer), on the right side the response(s) (acceleration sensor(s)). For the following examples we named the two analog channels "exc" and "resp".

DEWESoft 2	X - Datafile: Test_0010.d7d	- 🗆 ×
Acquisition Analysis Data files	Setup Review Print Export	😮 Help 🛛 🚫 Settings
🧱 🔁 🧮 🔒		
Channels Events Data header File locking	Math Modal Test	
MT - =	_	Calculated View Channel List View Sub List
Calculation type		
Triggered (FRF)	Roving hammer/acc.	
Settings		
Pretrigger Trigger level Double I	hit level Excitation win. length Response win. decay 🔽 Stop after	r Lines (Df = 0,61 Hz) Averaging type
5 • % 2000 [N] 1	[N] 100 % 100 % 5	avgs 8192 V Linear V
Excitation channels	Response ch	annels
+ - Show message if excitation exceeds	s 5 [N] + -	
Index Direction Sign Input	Index Dire	ection Sign Input
1 X + exc	1 X	+ resp
	Excitation	Response

Let's do a short measurement to explain all the parameters. The structure is hit once and the signals are measured.

The hammer signal (upper, blue line) shows a clean shock impact with about 2500 N peak and high damping, while the response (lower, red line) starts ringing and smoothly fades out.

ent innovation

measurement innovation

measurement innovation

measurement innovation

measurement innovat

measurement innovation

Trigger level

The FRF module needs a start criteria in triggered mode, therefore we specify a trigger level of e.g. 2000 N. Each time the input signal overshoots the trigger level, the FRF calculation (FFT window) will start.

Pretrigger Trigger level Double hit level Excitation win. length Response win. decay 🗸 Stop after Lines (Df = 0,61 Hz) Averagi																			ings	Se
5 - x 2000 bit 1 - x 100 - x 100 - x 5 - x 107 - 8197 - 1 inear	jing type	Averaging	= 0,61 Hz)	Lines (Df =			op after	V	cay	esponse win. de	gth (Excitation win. leng	rel	Double hit lev			Trigger level		etrigger	ļ
		Linear		8192	;	avgs		5	%	100	%	100	[N]	L]	▼ % 2000 [N		- %		

Double hit level

However, when the input signal shows multiple impulses after one hit (so called "double hit"), DEWESoft can identify this if you specify a double hit level. When the signal crosses the double-hit-level shortly after the trigger event, you will get a warning message and can repeat this point.

Settings												
Pretrigger	Trigger level		Double hit lev	vel	Excitation win. len	gth	Response win. dec	tay	Stop after		Lines (Df = 0,61 Hz)	Averaging type
5	▼ % 2000	[N]	500	[N]	100	%	100	%	5	avgs	8192 🔻	Linear 🔻
				_								

Overload level

You can also enable, that a warning will be displayed, if the hammer impact is exceeding a certain overload level (when the hit was too strong).

Excitati	ion channe	ls			Respon	se channels	5		
+	-	Show r	nessage if excitation exce	eds 3500 [N]	+	-			
Index	Direction	Sign	Input		Index	Direction	Sign	Input	
1	z	+	exc		1	z	+	<unassigned></unassigned>	

The following picture summarizes the different trigger level options.

Now that we defined the trigger condition, we should ensure that the FRF calculation covers our whole signal to get a good result.

vation

measurement inno

measurement innovation

measurement innovation

nent innovati

Window length

Let's assume the sample rate of our example is 10 000 Hz and we have adjusted 8192 lines in the FRF setup.

According to Nyquist we can only measure up to half of the sample rate (5000 Hz), or the other way round, we need at least 2 samples per frequency line. So, our frequency resolution is:

 $Df = 10\ 000\ Hz\ /\ (8192\ lines\ x\ 2) = 0,61\ Hz.$

The whole FFT window calculation time (window length) is

$$t = 1 / Df = 1 / 0,61 = 1,638 s.$$

Settings													
Pretrigger		Trigger level		Double hit le	vel	Excitation win. leng	gth	Response win. de	cay	☑ Stop after		Lines (Df = 0,61 Hz)	Averaging type
5	•	% 2000	[N]	1	[N]	100	%	100	%	5	avgs	8192 🔻	Linear 🔻

To see the section which is used for FRF calculation, add a 2D graph...

... then add the two channels "exc/Data History" and "resp/Data History".

Below you see the cut out data section of excitation and response signal, which covers pretty much the whole signal.

Note, that the x-axis is scaled in samples (from -819 to 15565, which gives total 16 384 samples).

 $16\ 384\ samples\ *(1/10\ 000\ Hz) = 1,63\ s.$

measurement innova

measurement innovation

Pretrigger

The pretrigger time is set to default by 5%. From the screenshot above you can see that 5% of 16 384 samples is 819 samples, which equals $t_{pre} = 819 * (1/10 \ 000 \ Hz) = 81.9 \ ms$. At sample 0 the trigger occurs.

Settings													
Pretrigger		Trigger level		Double	e hit level	Excitation win. len	gth	Response win. dec	cay	V Stop after		Lines (Df = 0,61 Hz)	Averaging type
5	- %	2000	[N]	1	[N]	100	%	100	%	5	avgs	8192 🔻	Linear 🔻

Excitation window length

You can seperately adjust the window length of excitation and response (it's like cutting out the interesting segments of the graph above) in order to reduce influence of noise appearing after the event of interest.

The "excitation window length" setting is valid for the excitation signal (modal hammer hit). Per default 100% is selected, all of the acquired data will be taken for calculation (all 16 384 samples in our example, the whole shown range).

Settings									
Pretrigger 5	Trigger level	Double hit lev	el Excitation [N] 10	n win. length Response win % 100	. decay %	Stop after 5	avgs	Lines (Df = 0,61 Hz) 8192	Averaging type

The excitation FFT is of rectangular window type.

In our case the damping is very high (signal fades out quickly), therefore we can select a smaller portion of the signal, e.g. 10 % (usually you would define a noise level first to determine it).

The rest of the signal will be cut out completely.

Response window decay

The response FFT is of exponential window type. When the response signal is fading out slowly (low damping), the user can specify a certain time after which the signal is faded to zero (exponential decay function). This helps to reduce noise at low amplitudes and shortens the measurement time. The draft below gives a rough idea about the damping.

measurement innovation measurement innovatio

/ation

measurement innovation

measurement innovation

DEWESof

DEWESof

Averaging of hits

The result can be improved by averaging the excitation and response spectra over a number of impacts. Therefore the first e.g. 5 hits will be recognized and taken into calculation, then you move on to the next point.

After explaining all parameters, we will now look at the different operation modes.

measurement innovation

measurement innovation

measurement innovatio

measurement innovation

3.1.1 Triggered, 1 point

When all acceleration sensors are mounted, the structure is excited in one point by the modal hammer (average over a number of hits can also be done of course).

Used View Channel List View Sub List
Stop after Lines (Df = 4,88 Hz) Averaging type
4 avgs 512 Linear
Response channels
+ -
Index Direction Sign Input
1 Z + acc1
2 Z + acc2
3 Z + acc3

DFWFSof

DEWESoft

3.1.2 Triggered, roving hammer

1 Exc, 1 Resp

In this operation mode there is one acceleration sensor mounted on a fix position on the structure. The modal hammer is moving through the points (e.g. doing 5 hits in each point, which are averaged).

This is the easiest test and requires only one hammer and one sensor.

MT				-					Use	d V	/iew Channel List	View Sub	List
Calcula	tion type												
Trigge	ered (FRF)	~	Use function generat	or 🔽 Rovin	ig hammer/acc. (on	ly one exc. vs multiple	response	e or vice v	ersa is al	lowed)			
Setting	5												
Pretriç 1	ger	Trigg % 1	per level Dou [V] 1	uble hit level Ex [V] 1	xcitation win. length LOO %	Response win. decay	/Sto 4	op after a	vgs	Lines 512	s (Df = 4,88 Hz)	Averaging t Linear	ype
Excitati	on channe	ls					Respons	e channel:	5				
+	<u> </u>	Show i	message if excitation exc	eeds 5	[V]		+	_					
Index	Direction	Sign	Input	Group			Index	Direction	Sign	I	nput	Group	
1	z	+	hammer	1Z+			2	z	+	acc	22	+	
2	z	+	hammer	2Z+									
3	Z	+	hammer	3Z+									

measurement innovation

measurement innovatio

1 Exc, Group Resp

Again, the hammer is moving. Multiple acceleration sensors are mounted on fix positions. They are defined by the same Group name inside DEWESoft (red rectangle).

MT								Use	ed View C	hannel List	View Sub Lis	
Calculat	tion type											
Trigge	Triggered (FRF) Use function generator Roving hammer/acc. (only one exc. vs multiple response or vice versa is allowed)											
Settings												
Pretrig 5	iger T	Trigg % 0,5	ger level [-]	Double hit level	Excitation win 100	% 100	ay 📃 % 4	Stop after	avgs	Lines (Df =	= 4,88 Hz)	Averaging typ
Excitatio	on channe	s					Respo	nse channe	ls			
+		Show	message if excita	tion exceeds 5	[-]		+	-			_	
Index	Direction	Sign	Input	Group			Inde	x Direction	n Sign	Input		Group
1	Z	+	hammer	1Z+			4	z	+	acc1	А	
2	z	+	hammer	2Z+			5	Z	+	acc2	А	
3	Z	+	hammer	3Z+			6	Z	+	acc3	A	

With the first hammer hit, the transfer functions of the 3 single responses of group A (4Z+, 5Z+, 6Z+) against 1Z+ will be calculated: 4Z+/1Z+, 5Z+/1Z+, 6Z+/1Z+.

All resulting transfer functions can be seen in the channel list below:

₹ 88	MT	
•	TF 4Z+/1Z+	
•	TF 5Z+/1Z+	
•	TF 6Z+/1Z+	
•	TF 4Z+/2Z+	
•	TF 5Z+/2Z+	
•	TF 6Z+/2Z+	
•	TF 4Z+/3Z+	
	TF 5Z+/3Z+	
	TF 6Z+/3Z+	

The red warning (only one exc. Vs multiple response or vice versa is allowed) means that the measurement will be performed by manually switching from one excitation point to the next (SIMO = single input multiple output). It's not possible to excite all points (1, 2, 3) synchronous and determine the transfer functions.

vation

measurement innovation measurement innovation

ement innovati

DEWESoft

DEWESoft

3.1.3 Triggered, roving acceleration sensor

FRF

The hammer is always exciting the structure at the same position. Now the acceleration sensor is moved to different positions. The disadvantage of this setup is, that the mass of the acceleration sensor changes the structure differently in every point, therefore influences the measurement (this effect is called "mass loading"). Also between each measurement the sensor has to be mounted again, which results in a lot of work.

MT 💌 —	Used View Channel List View Sub List								
Calculation type									
Triggered (FRF) 🔽 🗌 Use function generator 🛛 🖓 Roving hammer/acc. (only one exc. vs multiple	Triggered (FRF) 🔽 🗌 Use function generator 🛛 🖉 Roving hammer/acc. (only one exc. vs multiple response or vice versa is allowed)								
Settings									
Pretrigger Trigger level Double hit level Excitation win. length Response win. deca 1 % 1 [V] 100 % 100 9	y Stop after Lines (Df = 4,88 Hz) Averaging type √ 4 avgs 512 Linear ✓								
Excitation channels	Response channels								
+ Show message if excitation exceeds 5 [V]	+ -								
Index Direction Sign Input Group	Index Direction Sign Input Group								
2 Z + hammer 2Z+	1 Z + acc 1Z+								
	2 Z + acc 2Z+								
	3 Z + acc 3Z+								

measurement innovatio

measurement innovation

3.2 Free-run (sweep)

When doing a frequency sweep and measuring the responses, you have the advantage that the coherence will be much better over the whole frequency range compared with a triggered setup. Of course you are facing a more extensive setup in terms of hardware, you'll probably need a shaker (and a shaker controller, which keeps the amplitude constant over the frequency range).

The ODS (operational deflection shapes) is a very special form of FRF, using only accelerometers, please see page 24, chapter 3.2.4 ODS.

The channel setup of a typical free-run FRF is shown below.

MT	Used View Channel List View Sub List							
Calculation type								
Free run (FRF) Use function generator Settings								
Window Overlap Blackman	Lines (Df = 2,44 Hz) Averaging type 1024 Linear							
Function generator settings								
Waveform Start freq. Stop freq. FGEN Sine 1 Hz 1000 Hz								
Excitation channels	Response channels							
+ Show message if excitation exceeds 5 [N]	+ -							
Index Direction Sign Input AO Channel	Fixe Index Direction Sign Input Posen							
1 Z + exc_force AO 1	1 Z + acc1 2 Z + acc2							

The FFT windowing section is similar to triggered FRF, therefore please refer to **window length** section on page 9, chapter 3.1 Triggered. You should ensure that the sweep is slowly enough, because the FFT needs some time for calculation (number of lines, resolution).

Again, on the left we have the excitation and on the right side response channels.

If you enable the "Use function generator" checkbox, the FGEN settings Waveform, Start freq and Stop freq and the "AO channel" column in the excitation section will also be visible. These settings are the same as in the Analog out section (function generator).

	1	1	0 D	-	OT IN	-	Analo	F6 og out Modal Test	
Fixed	Sweep	Step sweep	Burst Chirp						
		Frequency settin	gs [Hz]					Control options	
ft	T2	Start freq. (f1)	End freq. (Hz)	Frequ	uency change			Output rate (Hz/ch)	Start output
t _s	t ₁ t _F	1	1000	linea	ar 🔻]		5000 👻	on start acq. 🔹
~*1 /		Time settings [se	sc]						
		Startup time (ts)	Fall time (tf)	Swee	p time (t1)	Sweep mod	le	Show info channels	0.11
		0,1	▼ 0,1	- 120	Ι	Single	•	Show control channels	nnisn
5	ON/OFF	NAME		VALUE		SETUP			
1	Used	AO 1	Waveform Sine	Amplitude 2 V	Offset Phase 0 V 0°	Setup			
2	Unused	A0 2	Waveform Noise	Amplitude 2 V	Offset Phase 0 V 0°	Setup			
3	Unused	A0 3	Waveform Noise	Amplitude 2 V	Offset Phase 0 V 0°	Setup			

Furthermore you can adjust here the sweep time and amplitude/phase settings, if you enter the Setup of the according channel (AO 1 in our example). On the right side you can tick the checkbox "Show info channels", e.g. seeing the current frequency during sweep is very helpful.

ation

measurement

measurement innovation measurement innovation

measurement innovation

When you switch to Measure mode or press the Store button, the sweep will start.

In comparison with the triggered measurement our excitation(s) and response(s) will in most of the cases consist now of sine waves, with distinct amplitude and phase shift.

When using a sine sweep, as the sweep moves through the frequencies, the bode plots will be updated. Putting the "AO/Freq" channel on a separate display is a good way to show the current frequency.

The picture above shows two 2D graph instruments with transfer functions 2-1 and 3-1 (amplitude on top and the phase below) during a sweep. The left side is already calculated, while the right side is ongoing.

Now after all parameters have been explained, we will take a look at the different operation modes.

measurement innova

measurement innovation

me

asurement innovat

measurement innovation

3.2.1 Free-run (shaker externally controlled)

The usual application for the free-run option is on a shaker. If the shaker is externally controlled, we can measure back the excitation signal (with a force sensor) and use it as reference.

Of course it would also be possible to use an engine instead of the shaker, and analyze the transfer functions during runup or coastdown.

Мт	Used View Channel List View Sub List
Calculation type	
Free run (FRF) Use function generator Roving hammer/acc.	
Settings	
Window Overlap Blackman Vite Market	Lines (Df = 4,88 Hz) Averaging type 512 Linear
Excitation channels	Response channels
+ Show message if excitation exceeds 5 [V]	+ -
Index Direction Sign Input	Index Direction Sign Input
1 Z + exc force	1 Z + acc1
	2 Z + acc2
	3 Z + acc3

measurement innovatio

DEWESof

FRF

If we tick "Use function generator", the FRF module accesses the FGEN section (requires Analog output option on Dewesoft instrument (AO)). It generates now e.g. a sine sweep from 10 to 1000 Hz. The shaker controller guarantees a defined amplitude over all frequencies. With the force sensor we measure back the excitation force.

Please consider that DEWESoft will not do the shaker control (control loop for amplitude), because of speed limitations. Practically a shaker control device ("shaker control" box in above picture) will be used in between.

MT	Used View Channel List View Sub List
Calculation type	
Free run (FRF) VIse function generator Roving hammer/acc.	
Settings	
Window Overlap Blackman V 0 Verlap %	Lines (Df = 4,88 Hz)Averaging type512Linear
Function generator settings	
Waveform Start freq. Stop freq. Sine 10 Hz 1000	
Excitation channels	Response channels
+ Show message if excitation exceeds 5 [V]	+ -
Index Direction Sign Input AO Channel	Index Direction Sign Input
1 Z + exc force AO 1	1 Z + acc1
	2 Z + acc2
	3 Z + acc3

asurement innovation

measurement innovation

measurement innovation

measurement innovation

measurement innovatio

measurement innovation

3.2.3 Free run, FGEN, multiple shakers

There is also a possibility to use multiple excitations (shakers) in free-run mode. E.g. the shakers are sweeping with the same frequency, but with a phase difference.

Let's assume the structure is excited by two shakers at the points 3 and 4. The response accelerometers are mounted in the points 1 and 2.

Excitati	ion channel	5			
+	+ Show message if excitation exceeds 5 [N]				
Index	Direction	Sign	Input	AO	Channel
3	z	+	exc_force1	AO 1	
4	Z	+	exc_force2	AO 2	

DEWESoft will create transfer functions from each point to each excitation (MIMO = Multiple Input Multiple Output), as shown in the channel list below.

ement innovatio

DEWESoft

DEWESoft

DFW/

FRF

In ODS analysis (= operational deflection shapes) the structure is only excited by the machine, like in real operation, whenever it is not possible to vary the excitation frequency. There are only accelerometers used.

Inside DEWESoft FRF module one of the acceleration sensors has to be defined as excitation (this one is the reference, normalized to 1), the others as response. Animation can be displayed as usual, but only makes sense in areas with good coherence.

MT 💌 - 🚽 💳	Used View Channel List View Sub List
Calculation type	
Free run (FRF) Use function generator Roving hammer/acc.	
Settings	
Window Overlap	Lines (Df = 4,88 Hz) Averaging type
Blackman 🔽 0 💌 %	512 💌 Linear 💌
Excitation channels	Response channels
+ Show message if excitation exceeds 5 [V]	+ -
Index Direction Sign Input	Index Direction Sign Input
1 Z + acc1	2 Z + acc2
	3 Z + acc3

measurement innovation

measurement innovation

measurement innovation

measurement innovation

measurement innovation

4 Measurement and visualisation

4.1 Auto-generated displays

For an easier start DEWESoft offers auto-generated displays, which already come with the most often used instruments and an arrangement that makes sense for the according type of application.

With the FRF option and 1 module added, usually when switching to measure mode, there should already appear a screen with a small toothwheel, called "Modal Test".

If that is not the case, please go to Settings \rightarrow Project setup... \rightarrow Displays \rightarrow and enable the "Automatically generate displays" checkbox. Then add a new FRF module. - With triggered setup (modal hammer), the screen should look like this:

The excitation and response sections each consist of two 2D graph instruments (scope and FFT) showing array data of hammer (red) and accelerometer signal (blue). The Info channel will show the current point or events such as doublehit. The Control buttons are used for going from one point to the next, or cancelling and repeating a point if the result was not satisfying. The OVL display shows if the impact or response signals are too high, exceeding the physical input range of the amplifier. The FRF Geometry is already animated in the current point during measurement. Two further 2D graphs on the right side show transfer function and coherence.

All these instruments / parameters are described on the following pages.

ation

measurement in

measurement innovation

measurement innovation

ement innovati

4.2 FRF info channels

There are additional channels provided by the FRF module, which give status information during the measurement. To display them, please add an indicator lamp in design mode:

Then set it to "Discrete display" mode (picture below, left).

The channels "Info" and "OVLChannel" can be assigned to it. OVLChannel will only be displayed if the according option has been enabled first (see also page 9, chapter 3.1 Triggered).

Display mode 📃	Info; -	▼ 88 MT
Discrete display Indicator lamp Discrete display	Double hit detected!	 ⇔ Ave Count ⇔ Info ⇒ OVLChannel
Actual 👻		🚓 Reject last
From reduced rate	OVLChannel; -	 Reset point
Descrete values	Excitation exceeded set voltage!	

4.3 FRF control channels

- During triggered measurement, after one point is finished, you can continue by pressing the "Next point" button.
- A If you are unsatisfied with the last hit, you can cancel it by using "Reject last".
- ▲ If all hits for the whole point are incorrect, e.g. if you hit on a point with a wrong number, with "**Reset point**" you can delete all the hits done for the current point at once.

All the actions are done using "control channels" in DEWESoft. These can be modified during measurement. To change it manually, you need to pick the "input control display" from the intrument toolbar. Set it to Control Channel and Push button. Channels "Reject last", "Next point" and "Reset point" can now be assigned from the channel list on the right.

When you exit the design mode, you are able to press the buttons.

measurement innovation

asurement innovati

me

measurement innovation

4.4 Geometry editor

In DEWESoft you can quickly draw simple structures, as well as import more complex ones. Cartesian and cylindrical coordinate system is supported, which is great for drawing circular objects.

IMPORTANT

The Index numbers defined in the channel setup before are used as Point numbers in the geometry for animation.

Excit	ation channe	ls					Respon	se channel	5			
+	-	Show	message if excitation ex	ceeds 5	[N]		+	-				
Ind	ex Direction	Sign	Input	Group			Index	Direction	Sign	Input	G	roup
1	Z	+	exc	1Z+			1	z	+	resp	▼ 1Z+	
2	z	+	exc	2Z+			-					
3	z	+	exc	3Z+								
4	z	+	exc	4Z+								
5	z	+	exc	5Z+								
6	z	+	exc	6Z+								lz
7	z	+	exc	7Z+								
8	z	+	exc	8Z+							X 12	
9	Z	+	exc	9Z+						× 16 15	⇒¥€	
10	Z	+	exc	10Z+	and and a second s						≥ 1	
11	Z	+	exc	11Z+	- 0	-						$\backslash \neg \downarrow$
_											$/ \langle \rangle$	
												\sim

In Design mode we add the "FRF Geometry" instrument. Then you can either load a UNV (universal file format) geometry file, or create your own.

4.4.1 Importing a structure

There are two ways of importing a UNV / UFF (universal file format) geometry of other software (e.g. MEScope or Femap) into DEWESoft. Of course you can also import a geometry drawn in DEWESoft FRF Editor before. We support the newer "2411" format, if you experience troubles, please contact our support for the older plugin version supporting the outdated "15" format.

From the properties of the FRF geometry instrument on the left select "Load UNV", or go to the Editor and do it there.

vation

measurement inno

ement innovatio

DEWESof

DEWESoft

Z angle

DFWFSoft™

DEWESof

FRF

Data			UNV Editor
Load UNV	Y		File Clear structure Quads
Mode			Load UNV Y Z X angle Y angle Save UNV
Rotate			Exit
 I ranslate Scale 			
Reset view		Â	

4.4.2 Drawing a structure

We will now use the editor to create a simple quadratic shape.

Cartesian Coordinates

At first you can chose between Cartesian or Cylindrical coordinate system (see the two buttons below). Cartesian is default, so just add points with the "+" button, then enter coordinates. Keep in mind that the excitation direction was defined in FRF channel setup before (in our examples Z^+), therefore Z is up, the hammer hits from top down.

	UN/	V Edito	r						
File	e								
No	des	Trace	Lines Tria	angles Qua	ds				
IN	DEX	LABEL	x	Y	z	X angle	Y angle	Z angle	z
C	artes	sian CS	[0]						Y .
П	Cen	ter Poir	0	0	0	0	0	0	
	Poir	nts	x	Y	z				/ 4 TX 3
	1	1	1	1	0	0	0	0	
	2	2	2	1	0	0	0	0	Ť. /
	3	3	2	2	0	0	0	0	
	4	4	1	2	0	0	0	0	
									2
									x
6		70						add Culturation	Dinht dirk: Select node
	+		-			Add C	CS	CS	Save and Exit

measurement innovation

measurement innovation

measurement innovatio

measurement innovation

Measurement and visualisation. DEWESoft™ DEWESoft™ DEWESoft™ DEW DEWESoft

You can define nodes (=points), then add trace lines between them by selecting from the pop-up...

DEWE

UNV Editor				
File				
Nodes Trace Lines	Triangles Quads			
INDEX	LABEL	FIRST	SECOND	
1	NONE	1 [1]	2 [2]	
2	NONE	2 [2]	1 [1]	/- y
			2 [2]	4
			3 [3]	
			4 [4]	γ_{τ}
				2
				x
				Bight dick: Change node at current line
			Line Strip	Save and Exit

... and use Triangles or Quads to optimize visualisation. Then save the structure.

UNV Editor					
File					
Clear stru	cture Qu	ads			
Load UN	FIR	ST SECOND	THIRD	FOURTH	
Save UNV		2 [2]	3 [3]	4 [4]	
Exit	10				1.4
					T Z T Z Z X
+ -					Save and Exit

Cylindrical Coordinates

And here is an example how to create a cylindrical structure using the cylindrical coordinate system. You have to specify the Center point CS, radius R, angle theta T, and height Z.

	UN	V Edito	r						
Eil	e								
No	des	Trac	e Lines Tria	angles Qua	ids				
IN	DEX		. х	Y	z	X angle	Y angle	Z angle	Z
С	ylind	frical CS	[1]						Z
	Cer	nter Poir	0	0	0	0	0	0	X Y YO 8 A 8
	Poi	ints	R	т	z				
	1	1	1	0	0	0	0	0	
	2	2	1	72	0	0	0	-72	
	3	3	1	144	0	0	0	-144	
	4	4	1	216	0	0	0	144	
	5	5	1	288	0	0	0	72	
	6	6	1	0	2	0	0	0	
	7	7	1	72	2	0	0	-72	5 J
	8	8	1	144	2	0	0	-144	
	9	9	1	216	2	0	0	144	
	10	10	1	288	2	0	0	72	1
	+		-			Add C	Cartesian CS	Add Cylindrica CS	Right dick: Select node Save and Exit
						<u></u>			

Cartesian and cylindrical CS can be combined in one geometry.

vation

measurement inno

ement innovatio

5 Analyse and export

5.1 Transfer function

For the following explanation of parameters a triggered FRF was done on a snowboard structure. All 39 excitation points were sequentially hit by the modal hammer and related to 1 accelerometer placed in the center.

Only 1 hammer and 1 sensor was used! (please refer to page 23, chapter 3.2.3 Free run, FGEN, multiple shakers if using multiple excitations/shakers).

From the channel list on the right side, we see that each point (#1, #2, #3, ...) is related to the reference point (#20). For each excitation point a transfer function was calculated, e.g. $TF_{20Z+/1Z+}$.

Transfer functions consist of amplitude/phase or real/imaginary part. The 2D graph is the instrument to use, there you can select what you want to display by using the properties from the left side.

To make a bode plot, use two 2D graphs below each other. The above one shows the amplitude (y axis type: LOG), the lower one the phase (y axis type: LIN).

When the amplitude of the transfer function shows a local maximum, and the phase is turning in this point, it usually indicates a resonance. But to avoid an errorneous statement, other parameters have to be checked as well!

measurement inn

5.2 Coherence

FRF

The coherence is used to check the correlation between output spectrum and input spectrum. So you can estimate the power transfer between input and output of a linear system. Easily talking, it shows how good the input and output are related to each other.

The amplitude of the coherence can reach max 1.

Low values indicate a weak relation (e.g. when the excitation spectrum has gaps at certain frequencies), values close to 1 show a representative measurement.

That means, when the transfer function shows a peak, but the coherence is low (red circles in the picture below), it must not necessarily be a real resonance. Maybe the measurement has to be repeated (e.g. with different hammer tip?), or you can additionally look for the MIF parameter, explained below.

Coherence is a Vector channel, and therefore displayed with a 2D graph instrument.

The coherence is calculated seperately for each point (e.g. Coherence_3Z/1Z, Coherence_4Z/1Z, ...).

5.3 Mode Indicator Function (MIF)

If all parts of a structure are moving sinusoidally with the same frequency (fixed phase relations), this motion is called normal mode. This happens at resonance, or natural frequencies. Depending on the structure, material and bounding conditions there exist a number of mode shapes (e.g. twisting, bending, half-period, full-period movement...).

These are usually found out by finite elements simulation software, or by experimental measurement and analysis.

When the amplitude of the transfer function shows a local maximum, and the phase is turning in this point, it usually indicates a resonance. To be sure, also the Coherence should be checked, as described before. And last, you can look for the MIF (=Mode Indicator Function).

A MIF close to 1 indicates a mode shape.

asurement innovation

The spikes shown in the picture below are very likely resonance frequencies. Just click on them and check the movement in the geometry instrument.

MIF is a Vector channel, and therefore also displayed with a 2D graph instrument.

measurement innovat

The MIF is calculated over all transfer functions (all points), therefore is only one channel.

asurement innovat

measurement innovation

5.4 FRF animation

The FRF animation is done by putting sine functions with the amplitudes and phases from the measurement into the geometry model points. The animation is done in one direction (in our example Z+). You can animate the structure for a single frequency, which can be chosen in the 2D graph, when setting the Cursor type to "Channel cursor", as shown below. All FRF instruments will follow the channel cursor.

Other than that, the frequency can also be chosen by entering it manually in the FRF geometry properties on the left.

Different parameters like animation speed and amplitude (scale), as well as the visibilty (nodes, point numbers, traces, shapes, coordinate system axes) can be changed here.

Here are some of the mode shapes of the snowboard calculated by DEWESoft FRF (you nicely can see bending and twisting).

measurement innovation measurement innovation

measurement innovation

measurement innovation

measurement innovation

ement innovatio

5.5 Modal circle

Finally, when you are certain the point you are looking at is a resonance, you might want to get it's exact frequency and damping factor. As the FFT can never be that precise (high line resolution needs long calculation time, which is not given when there is a hammer impact), there are some mathematical methods to interpolate.

The method DEWESoft is using, is based on the well-known circle-fit principle. The FFT lines to the right and left side of a peak (so called "neighbour lines") are drawn by real and imaginary part in the complex coordinate system. A circle is aligned between them with minium error to each point and the resonance frequency is approximated.

In the example below we switched the 2D graph "Graph type" property to "histogram" to make the FFT lines visible.

Imagine, we had a sample rate of 2000 Hz, and 1024 FFT lines, resulting in a line resolution of 0.977 Hz. The peak we are looking at is 73,2 Hz. But it could be in the range of 73,2 Hz +/- 0,977 Hz.

We add the Modal circle from the instrument toolbar (see picture above). The 2D graph is again in "cursor" mode, the modal circle instrument will follow. – By clicking on the peak, at first no resonance peak is found.

Then we increase the "Peak search" range from 10 Hz to 20 Hz. The peak is found and by changing the neighbour count you can select how many FFT lines left and right from the peak are taken into calculation. The points should all be aligned nicely on a circle. The red dot shows the calculation result, which should be near the center.

Our final result shows 72,775 Hz and a damping factor of 0,038. With these parameters one can proceed further in simulation software.

measurement innovation

measurement innovation

measurement innovation

asurement innovati

measurement innovation

5.6 Export of complex data

After the measurement is done the data can be exported to a lot of different file formats, e.g. UNV/UFF, Diadem, Matlab, Excel, Text... The transfer functions (as shown on page 31, chapter 5.1 Transfer function) can be seperately exported by Real, Imag, Ampl or Phase part, whatever you prefer.

DEWESoft X - Datafile: FreeRun-FRF1.d7d Acquisition Analysis Data files Setup Review Print Export Image: Acquisition Analysis Data files Setup Review Print Export Image: Acquisition Analysis Image: Acquisition Acquisition Full speed data Complex	🖌 Real	✔ Imag	 ✓ 			
Flexpro MS Excel DEWESoft File export Clipboard Relative time • Export	Ampl	✓ Phase	Export			
Export file name	Filter			Change expo	rt order Up	Down
FreeRun-FRF1	Order	Exported	Туре	Acq. rate 🔳	Dimension	Name
Export file type	1	No	AI 1	5000	Scalar	exc_force
Flexpro (*, fpd)	2	No	AI 2	5000	Scalar	acc1
DIAdem (*.dat) Ignore gaps between triggers	3	No	AI 3	5000	Scalar	acc2
Universal file format 58 (*.unv, *.uff)	4	No	Channel 1	0,0	Scalar	AO 1
FAMOS (*.dat) E NSoft time series (*.dac)	5	No	Math 0 (Modal Test)	single	Vector (1024)	Coherence_1Z+/1Z+
Text / CSV (*.txt, *.csv) Sony (*.log)	6	Yes	Math 0 (Modal Test)	single	Vector (1024)	TF_1Z+/1Z+
RPCIII (*.rsp) Comtrade (*.cfg)	7	No	Math 0 (Modal Test)	single	Vector (1024)	Coherence_2Z+/1Z+
ATI (*.ati) Tachoical Data Managament /* tdm)	8	No	Math 0 (Modal Test)	single	Vector (1024)	TF_2Z+/1Z+
HDF5 Compressed (*.hdf)	9	No	Math 0 (Modal Test)	single	Vector (1024)	MIF
Export setup to xml file	10	No	Math 0 (Modal Test)	single	Scalar	Ave Count

In MS Excel for example the transfer function data will appear on a sheet called "Single value". For each transfer function Real/Imag/Ampl/Phase is exported.

HINT

If you prefer it differently, data rows and columns can simply be exchanged in MS Excel by copying and using the "Transpose" function from the submenu when pasting.

		A	λ.		В	С	D	E	F	G	Н
1	Frequ	ienc	y	Hz		0	2,441	4,883	7,324	9,766	12,207
2	TF_1Z	2+/17	+_Real	g/N		-2,4849606	-0,58888257	-0,33757547	-0,18308581	0,01226047	-0,04376284
3	TF_1Z	2 +/ 1Z	+_Imag	g/N		-0,38368255	0,97344095	-0,10276848	-0,19029871	0,03687299	0,00500704
4	TF_1Z	2+/17	+_Ampl	g/N		2,5144067	1,1377038	0,35287187	0,26407197	0,0388579	0,04404834
5	TF_1Z	+/17	+ Phase	Rad		-2,9884005	2,1148472	-2,8460755	-2,3368793	1,2497911	3,0276749
6										/	
7	Frequ	ienc	y	TF_1	Z+/1Z+_Real	TF_1Z+/1Z+_Imag	TF_1Z+/1Z+_Ampl	TF_1Z+/1Z+_Phase			
8	Hz			g/N		g/N	g/N	Rad			
9			0		-2,4849606	-0,38368255	2,5144067	-2,9884005			
10			2,441		-0,58888257	0,97344095	1,1377038	2,1148472			
11			4,883		-0,33757547	-0,10276848	0,35287187	-2,8460755			
12		¥	Ausschne	iden		-0,19029871	0,26407197	-2,3368793			
13		00 ->	Vaniaran	acti		0,036872987	0,038857896	1,2497911			
14		-3	K <u>o</u> pieren	AT		0,005007039	0,044048339	3,0276749			
15			Einfugeo	ptione		-0,000328444	0,015436211	-3,1203136			
16			123	fx	£ % <	0,007050768	0,025219958	2,8582454			
17			Inhalte ei	nf <u>üg</u> e	n 45	0,009580854	0,034467768	2,8599172			
18			Zellen ein	fügen	Transpose	0,021826826	0,047330786	2,6622963			
			-	-							
28			46,387		0,014677704	0,21595292	0,21645114	1,5029335			
29			48,828		0,12720668	0,23750821	0,26942846	1,0790849			
30			51,27		0,21473587	0,17970231	0,28000787	0,69681174			
31			53,711		0,23269501	0,12583467	0,26453987	0,49572986			
1	(F F	Sir	igle value	Da	ta1 / Events	/ DataInfo / 🔁				•	

measurement innovation measurement innovation

measurement innovation

measurement innovation

FRF

The Universal File Format (also known as UFF or UNV fomat) is very common in modal analysis. Depending on the header it can contain either transfer functions, coherence, geometry, ... or various other data.

The following example shows how to export data recorded by DEWESoft into Vibrant Technologies ME Scope analysis software and how to display it there.

1. At first chose the "Universal file format" from the export section and select all your transfer functions (you can use the Filter and type "TF" for simplification). It does not matter if you select Real/Imag/Ampl/Phase part, as the UFF/UNV export follows the standard. This will create a UNV datafile.

Flexpro MS Excel DEWES	ft File export	Clipboard	Full speed data Relative time	Comple	x 🔽 Real	Imag Phase	xport			
Export file name					Filter			Change expor	t order Up De	own
FRF_roving_hammer					Order	Exported	Туре	Acq. rate 🔳	Dimension	Name
Export file type					4	Yes	Math 0 (Modal Test)	single	Vector (1024)	TF_1Y+/1Y+
Flexpro (*.fpd)	<u> </u>	Export header			6	Yes	Math 0 (Modal Test)	single	Vector (1024)	TF_2Y+/1Y+
DIAdem (*.dat)					8	Yes	Math 0 (Modal Test)	single	Vector (1024)	TF_3Y+/1Y+
Universal file format 58 (*.unv)					10	Yes	Math 0 (Modal Test)	single	Vector (1024)	TF_4Y+/1Y+
NSoft time series (*.dac)	=				12	Yes	Math 0 (Modal Test)	single	Vector (1024)	TF_5Y+/1Y+
Text (*.txt) Sony (*.log)					14	Yes	Math 0 (Modal Test)	single	Vector (1024)	TF_6Y+/1Y+
RPCIII (*.rsp) Comtrade (*.cfn)					16	Yes	Math 0 (Modal Test)	single	Vector (1024)	TF_7Y+/1Y+
ATI (*.ati) Technical Data Management (* tdm)					18	Yes	Math 0 (Modal Test)	single	Vector (1024)	TF_8Y+/1Y+

In FRF geometry editor save the structure also in UNV format. This creates the UNV geometry file. 2.

		3		<u> </u>			. 1		A		4						
Control properties		UN	V Edito	or													
- + - Cols 1	- 8 🖪	ile															
Transparent	-	C	lear st	ructure	Į.	Quads											
Unified properties		L	oad UI	NV	Y	Z	X angle	Y angle	Z angle								
Data		S	ave UN	ľ¥													
		E	xit			0	0	0	0								
Load UNV	10	Poi	nts	x	Y	Z											
Editor	•A W	1	1	8	0	0	0	0	0								
	ě,	2	2	7	0	0	0	0	0								
Mode	μ÷.	3	3	6	0	0	0	0	0								
OR Rotate		4	4	5	0	0	0	0	0								
🔘 Translate		5	5	4	0	0	0	0	0								
🔿 Scale		6	6	3	0	0	0	0	0								
Reset view	5	7	7	2	0	0	0	0	0	1							
View	•	8	8	1	0	0	0	0	0								
Scale: 1,0											8 7	- 6	5	• •	3 2	• 1	
Speed: 1,0	180									 z							x

Start ME Scope and click File → Import → Data block. Select the UNV datafile. The transfer functions are 3. already recognized.

measurement innovation

ent innovatio

measurement innova

surement innovati

me

measurement innovation

4. Then click File \rightarrow Import \rightarrow Structure and select the UNV geometry file.

5. Now both data and geometry are successfully imported. Let's try to animate it, select Draw \rightarrow Animate Shapes.

A pop up appears, and we select to match structure and transfer data. Equations are created.

Draw Animation Equations Create Measured (Assign	Draw Animation Equations Create Measured (Assign
 Match Structure and Source DOFs. Graphical Assignment. Show Animation Source 	Number of Measured animation equations created: 8
OK 🔓 Cancel	OK

6. Finally you can select a peak on a transfer function and enjoy the animation.

STR: metal_beam - 3D View, - [Dwell] BLK: FRF_roving_hammer			-	W BLK: FRF	_roving_hammer - 8 FF	RFs							
View: 3D View [Complex] BLK: FRF_roving_hammer	Select Visible	Label 0	Color E	M	#1 FRF 1Y:1Y	4,1 N/g		TÎ	Select Trace	Visible D	DFs Units	Measurem Type	ent Colc
rreq: 345 nz	1 Yes	Structure		10		332 Hz	/		M#1	Yes 1	1Y N/g	FRF	
						3			M#2 M#3	Yes 2 Yes 3	111 N/g	FRF	•
•				52 I	M /				M#4	Yes 4	1Y N/g	FRF	•
• • •				Partie	$\left[\begin{array}{c} n \end{array} \right]$				M#5	Yes 6	11Y N/g	FRF	•
				SeW 6					M#7	Yes 7	1Y N/g	FRF	• •
•				9 0,1	Y				MHO	Tes 0	.n nvg [•	
				ľ									
7				0,01									
Xerey	(4) III			0	200	400 6 Hz	00 800	-			ш	_	▶

rement innovatio

6 Examples (step-by-step)

6.1 Triggered (roving hammer)

As the triggered measurement might be difficult to understand, this section shows how to use the mentioned controls and tools step-by-step. The setup will be done according to page 16, chapter 3.1.2 Triggered, roving hammer.

Let's say we want to analyze this metal sheet structure. At first we define the direction of analysis (orientation up/down, Z axis), then we put it on a soft rubber foam that it can vibrate freely. Of course hanging it with rubber bands from the roof would be better, but would also take more time to wait in each point until the ringing fades out; for now we are fine with it.

Then mark equidistant points, in our case from #1 to #24. The higher the number of points, the more detailed the animation will be. It is also helpful to write numbers next to the points. They should be consistent on 1. structure, in 2. channel setup and 3. FRF geometry in software.

The hammer will move through the points, so in one point an accelerometer has to be mounted. We select point #12.

1. We define the sampling rate with 5000 Hz. Name the hammer and accelerometer in the channel setup and apply the scaling. In our case both are of IEPE type, hammer is measuring force in N, accelerometer acceleration in g. Then go into the channel setup of the hammer.

1		5	14 13	Analog	51		- North	÷.	Name Tax						
Devi	ce previe	ew		Dynamic acquisition rate	Channel actions										
A	ō 🎖	ōō	0 0 º 0	5000 Freq. span: 2100 Hz [Hz/ch]	Select all Des	select all Balance amplifi	Short on	Zero all Res	set zero all					I	
-					Search	Q									
ID	Use	d C	Name	Ampl. name	Measureme	nt 🔳 Range	LP filter	Physical	qua. Units	Min	Values	Max	Z 🔳	Setup	
1	Use	:d	hammer	SIRIUS-ACC	IEPE	10000 mV	OFF	Force	N	-440,53	0,00	440,53	Zero	Setup	1
2	Use	:d	acc	SIRIUS-ACC+	IEPE	10000 mV	OFF	Acceleration	g	-1000,00	-0,01	1000,00	Zero	Setup	1
3.	Unus	ed	AI 3	SIRIUS-STG	Voltage	10 V	OFF		v	-10,00	OVL	10,00	Zero	Setup	
4	Unus	ed	AI 4	SIRIUS-STGM	Voltage	0,1 V	OFF		v	-0,10	0,008	0,10	Zero	Setup	
5	Unus	ed	AI 5	SIRIUS-STGMv2	Voltage	0,1 V	OFF		v	-0,10	0,053	0,10	Zero	Setup	
6	Unus	ed	AI 6	SIRIUS-MUL	Voltage	0,1 V	OFF		V	-0,10	-0,032	0,10	Zero	Setup	
7	Unus	ed	AI 7	SIRIUS-HV	Voltage	1000 V	OFF		V	-1000,00	0,00	1000,00	Zero	Setup	
8	Unus	ed	AI 8	SIRIUS-STGM	Voltage	0,1 V	OFF		V	-0,10	-0,035	0,10	Zero	Setup	

vation

measurement innovation

ement innovati

DEWESoft

DEWESoft™ DEWESoft

2. Do a test impact with the hammer on the structure. In the scope preview memorize the max value.

3. In Modal test setup chose the Triggered FRF type, and use "roving hammer" option. The trigger level should be set somewhere below the max value of the the pre-measurement just done, e.g. 1 N. We will do 3 hits in each point, which are then averaged. The FFT window size is 2048, which gives a good line resolution of 1.22 Hz. - Note, that point #12 is missing on the left side, it will not be hit during measurement, because the accelerometer is mounted there.

•	5	1	5 J.	2	÷	5		1	5	2			Modal	Test
мт											Use	d	View Channe	List View Sub List
Calculat	ion type						-	-	-	-	-	-	_	
Settings			Use function	generator 🔽 Ro	ving hammer,	acc.								
Pretrig	ger	Trigg	er level	Double hit level	Excitation w	in. length	Response win	. decay	√ Sto	op after			Lines (Df = 1,22	Hz) Averaging type
5	– (% 1	[N]	1 [N]	100	%	100	%	3	a	vgs		2048	Linear
Excitation	on channel	5							Respons	e channels				
+		Show n	nessage if excita	tion exceeds 5	[N]				+	_				
Index	Direction	Sign	Input	Group					Index	Direction	Sign		Input	Group
1	Z	+	hammer	1Z+					12	Z	+	асс		12Z+
2	Z	+	hammer	2Z+										
3	Z	+	hammer	3Z+										
4	Z	+	hammer	4Z+										
5	Z	+	hammer	5Z+										
6	Z	+	hammer	6Z+										
7	Z	+	hammer	7Z+										
8	Z	+	hammer	8Z+										
9	Z	+	hammer	9Z+										
10	2	+	nammer	102+										
11	2	+	nammer	112+										
14	2	+	hammer	132+										
15	2	-	hammer	157+										
15	7	-	hammer	167+										
17	7	+	hammer	177+										
18	- 7	+	hammer	187+										
	-	· ·	- settiment	102.1				-						

measurement innovation

measurement innovation measurement innovation

measurement innovation

measurement innovatio

measurement innovation

DEWES

DEWESoft™

4. Now that the points are defined, it is time for drawing the structure. When you switch to measure mode, usually you should have an auto-generated screen called "Modal test". There the FRF geometry instrument is already shown (x,y,z axis display). From the left side (properties) select "Editor" and add 24 points and their coordinates. You can draw trace lines between them and finally quads (shapes) between them. - Take care, that the excitation direction Z is upright and should have the same level for all points of this structure.

5. Now it's time for a test hit, and finalizing the display arrangement. In measure mode – without storing – you can do a test hit, to fill the displays with signals. Immediately the structure will be animated in the first point. If the auto-generated screen does not look like below, you might have to assign the channels to the instruments. The idea is showing the excitation (blue box) on the left and response (red box) on the right. Use the Scope and FFT signals of the "Current point" subsection in the channel list. They are marked red, because only available during measurement. - On the two displays in the lower right section you could use TF and Coherence.

measurement innovation measurement innovation

measurement innovation

measurement innovation

measurement innovatio

DEWESoft

7. Now we are ready for the measurement. Start storing and do 3 hits on point #1. The scope and FFT graphs will be updated after each hit, so you can visually check for double-hits or "bad" hits and reject them. If you hit a wrong point, you can also reset the whole point. After clicking the "Next point" button, the point number increases, always showing you the current transfer function (e.g. 12-1, 12-2, ...).

The procedure can also be described by a flow chart:

nent innovation

FRF

nt innovatior

8. When finished, go to Analyze mode. Automatically the last stored file is reloaded. Now you might want to modify the screen for further investigation.

The screen below gives an idea. It shows the first four transfer functions (TF12-1, 12-2, 12-3, 12-4) with amplitude and phase. Below the MIF is shown for easily finding the mode shapes. Just click on the peaks (with the instrument set to Channel cursor mode), on the lower right side the modal circle calculates the exact frequency and damping.

Here are some of the mode shapes animated.

measurement innovation measurement innovation measurement innovation

DEWESC

DEWESof

DEWE

measurement innovatior

DEWESoft

6.2 Free-run

FRF

This is a practical example showing free-run FRF. The Analog out of the SIRIUS instrument (FGEN) is followed by an audio amplifier which drives a loudspeaker. On the membran a metal structure (metal beam) is mounted with a force transducer (excitation) and two acceleration sensors (responses).

1. In the Analog section we define our force sensor and the two accelerometers. They are all of type IEPE. As we want to analyze our structure up to 1000 Hz, we select a sampling rate of e.g. 5000 Hz.

•	1	÷.	14	2	Analog		5	1	1	õ	~	-	in						
Device preview Dynamic acquisition rate				Cha	Channel actions														
		78	a a . • a	5000	Freq. spar 2100 Hz	" Se	lect all	Deselect all	Balance a	amplifiers	Short on	Zero all	Reset zero al						
Â.																			
						L		q											
ID	Used	С	Name		Ampl. name		Measu	rement 🔳	Range		LP filter	Ph	ysical qua.	Units	Min	Values	Max	Z 🔳	Setup
1	Used		exc_force		SIRIUS-ACC		IEPE		10000 mV		OFF	Force		N	-440,53	0,00	440,53	Zero	Setup
2	Used		acc1		SIRIUS-ACC+		IEPE		10000 mV		OFF	Acceler	ation	g	-1000,00	0,04	1000,00	Zero	Setup
3.1	Used		acc2		MSI-BR-ACC		IEPE		10000 mV		OFF	Acceler	ation	g	-100,00	0,002	100,00	Zero	Setup
4	Unused		AI 4		SIRIUS-STGM		Voltage	2	0,1V		OFF			V	-0,10	0,008	0,10	Zero	Setup
5	Unused		AI 5		SIRIUS-STGMv2		Voltage	2	0,1V		OFF			v	-0,10	0,054	0,10	Zero	Setup
6	Unused		AI 6		SIRIUS-MUL		Voltage	e	0,1V		OFF			v	-0,10	-0,031	0,10	Zero	Setup
7	Unused		AI 7		SIRIUS-HV		Voltage	e	1000 V		OFF			v	-1000,00	0,00	1000,00	Zero	Setup
8	Unused		AI 8		SIRIUS-STGM		Voltage	e I	0,1V		OFF			V	-0,10	-0,036	0,10	Zero	Setup

2. Next we add a FRF module and chose "Use function generator". A window size of 1024 lines results in a nice resolution of 2.44 Hz. We select a sine sweep from 1 to 1000 Hz. The index numbers 1, 2 and 3 are entered according to the structure, direction is Z+ for all.

P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Modal Test							
MI	Used View Channel List View Sub List							
Calculation type								
Free run (FRF) Vuse function generator								
Settings								
Window Overlap Blackman Overlap %	Lines (Df = 2,44 Hz) Averaging type 1024 Linear							
Function generator settings								
Waveform Start freq. Stop freq. Sine 1 Hz 1000 Hz								
Excitation channels	Response channels							
+ Show message if excitation exceeds 5 [N]	+							
Index Direction Sign Input AO Channel	Index Direction Sign Input							
1 Z + exc_force AO 1	2 Z + acc1 3 Z + acc2							

neasurement innovation

measurement innovation

measurement innovation

measurement innovat

measurement innovation

measurement innovation

Also check the Analog out section. Start and stop frequency are already overtaken from the FRF module. We adjust the sweep time (120 seconds) and amplitude (1 V) for now. Startup time and fall time is 0.1 s by default, which prohibits sudden crackles, that could result in wide-spectrum noise at beginning and end of measurement.

Fixed	Sweep	Step sweep Burs	t Chirp								
÷ +	f_2	Frequency settings [Hz]	-	_	Control options					
f	\square	Start meq. (r1)	End freq. (Hz)	Frequency change	L						
ts	t ₁ t _F	1	1000	linear	J	bood • • • • • • • • • • • • • • • • • •					
1/		Time settings [sec]			<i>411</i>	Channing alternation					
		Startup time (ts)	Fall time (tf)	Sweep time (t1)	Sweep mode	Stop measurement after finish					
		0,1 👻	0,1 👻	120	Single	Show control channels					
	ON/OFF	NAME		VALUE	SETUP						
L	Used	A0 1	Waveform An	npiltude Offset Phase 1 V 0 V 0°	Setup						
2	Unused	A0 2	Waveform 1								
3	Unused	A0 3	Waveform Gen	eral settings		Signal settings					
ŧ	Unused	A0 4	Waveform Noise	-		signal output					
;	Unused	A0 5	Waveform Unit	s -		Sine Trequency multiplier					
;	Unused	A0 6	Waveform Noise			Amplitude (volts)					
,	Unused	A0 7	Waveform Min Noise	value Auto Max	value Auto						
3	Unused	A0 8	Waveform Noise	period preview		Offset (volts)					
		_	-			-10V 0 V 10V d/dt Phase (deg) -180 ° 0 ° 180 °					

4. Now we are ready for drawing the structure. Go to measure mode, the screen "Modal test" should be autogenerated. Click on the FRF geometry instrument and select "Editor" from the left side. Then add 3 points with the + button, example coordinates as shown below. Then save the structure by clicking on File → Save UNV...

💷 UN	V Editor												
File	File												
Nodes	Trace	Lines Tria	ngles Qua	ds									
TNDEX	LABEL	x	v	7	X angle	Y angle	7 angle						
Carte	Cartesian CS[0]												
Cer	nter Poin	0	0	0	0	0	0						
Poi	nts	x	Y	z				Z					
1	1	1	0	0	0	0	0						
2	2	2	0	0	0	0	0	Y X					
3	3	3	0	0	0	0	0	↑z x					
								W 1					
+		· _			Add C	artesian CS	Add Cylindrical CS	Right dick: Select Right Save and Exit					

measurement innovation measurement innovation measurement innovation

measurement innovation

DEWESoft

5. Now we are ready for measurement. When you click the store button, the FGEN will start, the AO will sweep from 1 to 1000 Hz. The transfer functions will smoothen from left to right side, here you see a snapshot currently at 357 Hz.

6. Finally we can look at the result. The coherence of both channels related to the excitation looks very nice. The green line (MIF) indicates mode shapes, click on the peaks and the structure will be animated.

DEW

measurement innovation

asurement innovatio

me

measurement innovation

7 FAQ

Problem: FRF Geometry instrument cannot be found in the instrument toolbar in Design mode.

Solution: This is a plugin which needs to be registered. Check first if the file "FRFGeometry.vc" is present in your Dewesoft Addons folder (e.g. D:\DEWESoft7\Bin\V7_1\Addons). Then start DEWESoft and go to Settings \rightarrow Hardware Setup \rightarrow Plugins and click \rightarrow Register plugins. You need administrator rights to do that. Please contact your local IT administrator.

Problem: Coherence for higher frequencies too low (appears noisy).

Solution: Please check impact signal FFT spectrum. If using a hammer with a soft tip, the excitation spectrum is usually small (high damping). Try again with a harder tip.

ement innovatio

Documentation version history DEWESoft™ DEWESoft™ DEWESoft™ DEWESoft™

Documentation version history 8

Revision number: 310

DEW

Last modified: Thu 29 May 2014, 13:13

Version	Date [dd.mm.yyyy]	Notes
1.0	29.05.14	\blacksquare initial revision

地址:北京市海淀区小营西路27号金领时代大厦12层 电话:136 1171 664;010-5361 2036 传真:010-5635 3026 网站:www.chinaksi.com