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ABSTRACT

This thesis addresses two key issues of a real-life vibration-based structural heslth
monitoring system. The first issue is the determination of an experimental model of a
vibrating structure from output-only data. The use of freely available ambient excitation
sources reduces significantly the cost of testing. Besides, there is no aternative in a
continuous monitoring system. By applying advanced subspace methods to acceleration
measurements, a high-quality experimental model can be identified. This is verified by
many simulation, laboratory and real-life experiments.

The second issue isthe detection of damage under varying environmental conditions. The
problem is that both damage and temperature are affecting the experimental model of a
structure. A statistical system identification solution is developed to separate these
influences. A thorough analysis of bridge vibration test data is presented. The tests were
uniqueinthat they combined |ong-term monitoring with the application of realistic damage
scenarios. The conclusion is that damage can successfully be detected under varying
environmental conditions.
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NOMENCLATURA

A,B,C,D Discrete-time state-space model

A.B,C,D, Continuous-time state-space model

a, b, "Modal &' and "modal b" coefficient

a(q) AR operator polynomial

B, Input location matrix (FE model)

b(q) M A operator polynomial

C,C.,C, Output location matrices for acceleration, velocity and displacement
(FE model)

o Constant offset term

d Number of model parameters

d, Simulation error at time instant k

& White noise term at time instant k

e White noise term of the true system at time instant k

e White noise term of the backward model at time instant k

f(t) Excitation force vector at timet (FE model)

f Frequency [HZz]

f; Eigenfrequency [HZ]

f, Sampling frequency [Hz]

fl Number of flops

G "Next state - output” covariance matrix

G Reduced "next state - output” covariance matrix

G.m Continuous-time stochastic modal participation matrix

G, Stochastic modal participation matrix

G,:ff Reduced stochastic modal participation matrix

G(q),H(q),Jd(q)  Transfer operators

< gCiT> Continuous-time stochastic modal participation vector (row of G )

Hy Jo Transfer operators corresponding to the true system

H (jo) Freguency Response Function

H.(9) Transfer function in the Laplace-domain

He Output data block Hankel matrix
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hy Discrete-time impul se response at time instant k

I Identity matrix

[ Half the number of block rows of the output data Hankel matrix H "
Imaginary unit j2=-1

J

K Kalman gain

k Discretetime instant t=kAt, keN

K; Modal tiffness

L Selection matrix that selects the references from the outputs

LT Discrete-time moda input matrix (modal participation matrix)
LT=¥'B

LCT Continuous-time modal input matrix (modal participation matrix)
L, =¥ !B,

I Number of outputs

< IciT> Continuous-time modal participation vector (row of LCT)

M,C,, K Mass, damping and stiffness matrix (FE model)

m Number of inputs

m, Modal mass

N Number of time samples

N(u,0) Gaussian distribution with mean p and standard deviation ¢

n State-space model order n=2n,

n, Number of DOFs (FE model)

n,n, AR order

n, Exogenous order

Ny Time delay between input and output

n, MA order

o} Observability matrix of order i

Opm Modal observability matrix of order p

P Forward state covariance matrix

P,Q Auxiliary matricesfor thederivation of the state-space model from the
FE model

Pem Solution of the continuous-time Lyapunov equation related to the
modal parameters

P4, Simulation error covariance

P; Covariance of the model parameters

ARMA model order in casethe AR and M A order are the same
Projection of the row space of the future outputsinto the row space of
the past references

QRS Process and measurement noise covariance matrices
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Factors from a QR factorization

Forward shift operator

Displacement, velocity and acceleration vector at timet (FE model)
Modal displacement vector

Displacement and vel ocity vector at discretetimeinstant k (FE model)
Covariance matrix of the innovations e,

Output covariance matrix at timelag i

Reduced output covariance matrix at timelag i

Input covariance matrix in case of white noise inputs u,
Covariance at timelag i of the true noise sequence v,
Covariance between variables x and y

Number of references

Correlation between variables x and y

Input and output spectrum matrix in the Laplace domain

Input and output spectrum matrix in the zzdomain

Reduced output spectrum matrix

Laplace domain variable

Similarity transformation

Output covariances block Toeplitz matrix

Continuous time variable

Variable of the Student’ s t-distribution

Input in the Laplace-domain
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Input at timet
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Kaman filter state sequence

State at timet
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i"™ Component of the modal state
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State at time instant k

Output in the Laplace domain

Hankel matrix of past reference outputs
Hankel matrix of all future outputs

Output at time't

Contribution of modei to the output at timet
Output at time instant k

Reference output at time instant k
Contribution of modei to the output at time instant k
Matrix of regressor vectors ¢,

z-domain variable

Rayleigh damping constants C,=aM +BK

AR matrix parameters

Reduced backward AR matrix parameters

Diagonal matrix having 25, as elements

Reduced reversed stochastic controllability matrix of order i
Reduced reversed stochastic modal controllability matrix of order p
MA matrix parameters

Reduced backward M A matrix parameters

Sampling period

Dirac delta

Kronecker delta

Model residua

Complex eigenvector matrix of the FE model (non-proportional
damping)

Model parameter vector

Model parameter vector corresponding to the true system

Diagonal matrix containing the eigenvalues of the FE model %,
Diagonal matrix containing the continuous-time eigenval ues A, x;‘
Diagonal matrix containing the discrete-time eigenvalues |, pi*
Variance of awhite noise sequence

Variance of thewhite noise sequence corresponding to thetrue system
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0] Real eigenvector matrix of the FE model (proportional damping)
0; Real eigenvector of the FE model (proportional damping)
?, Regressor vector at time lag k

& Moda damping ratios

z State covariance matrix

o, Standard deviation of variable x

by Complex eigenvector matrix of the state-space model
Q Diagonal matrix containing the circular eigenfrequencies a; [rad/s|
® Circular frequency [rad/s]

o, Circular eigenfrequency [rad/s]

O Complex conjugate
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Z[] z-transform

ARMA AutoRegressive M oving Average

ARX AutoRegressive eXogenous

CMIF Complex Mode I ndication Function

CVA Canonical Variate Analysis

DFT Discrete Fourier Transform
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INTRODUCTION

This first chapter contains the general introduction and motivation of the this thesis.
The subject of this work — structural health monitoring with emphasis on vibration-
based methods —is discussed in Section 1.1. In Section 1.2, our own contributions
to the solution of the structural health monitoring problem are highlighted. In
Section 1.3, finally, the organization of the text is outlined.

1



2 CHAPTER1 INTRODUCTION

1.1 VIBRATION-BASED HEALTH MONITORING

Sructural health monitoring is an active field of research, driven by the need to
complement subjective visual inspection methods by objective nondestructive evaluation
tools based on physica measurements and computer analyses. Health monitoring
techniques may be classified asglobal or local. Local methods concentrate on apart of the
structure and are based on acoustics, eddy currents, hardness testing, magnetic fields,
radiography, X-rays, ... [HOUS97]. One of thefew global monitoring methodsisbased on
vibration measurements. Vibration-based damage detectionreliesupon thefact that alocal
stiffness change affects the globa dynamic characteristics of the structure. In the "0 Hz
variant", displacements are measured while a static load is applied to the structure.

The main advantage of aglobal method isthat measurements at onelocation are sufficient
to assess the condition of the whole structure. The measurement location may differ from
the location of the damage. Vibration-based methods can be applied intermittently —
implying a temporarily deployment of the sensors and the acquisition system — or
continuously — implying the embedment of the sensorsin the structure. In the continuous
setting, ashift from a preventive time-based to a predictive condition-based maintenance
strategy isachieved. Thisshift reducesboth therisk of aseriousfailure of the structure and
the overall maintenance costs by excluding unnecessary inspection activities.

Thepromising perspectiveof vibration-based health monitoring inspired many researchers
all over the world. Doebling et al. surveyed and classified the literature [DOEB96].
Usually four levels of damage identification are discriminated (see for instance
[RYTT93)):

level 1 - detection: |Is the structure damaged or not?

level 2 - localization: Where is the damaged area |ocated?

level 3 - quantification: What is the extent of damage?

level 4 - prediction: What is the remaining service life of the structure?

Thedamage detection problem (level 1) isbasically equivalent to detecting achangeinthe
dynamic characteristics, such as eigenfrequencies, of the structure. There are two
approaches to extend vibration-based methods beyond level 1. In afirst approach, alarge
number of sensorsisused to alow thelocation of damage based on detecting alocal mode
shape change. Thelocalization accuracy istypically limited to the spatial resolution of the
measurement mesh. A second approach requireslesssensors, but needsan analytical model
of the structure. Parameters of the model that are related to damage are updated so that the
dynamic characteristics of the model corresponds to the measurements. Finite Element
Model updating methods fall into this category [FRIS95].
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Figure1.1: Agedistribution of bridgesin the USA [CHAS97]. Thetime axisis
running from right to left.

Although vibration-based structural health monitoring is applicable to a large range of
structures, bridges are considered as important applications. As indicated on Figure 1.1,
the main bridge-building boom in the USA was situated in the sixties when the interstate
system was constructed. The situation in Europe is similar with the construction of the
highways in the same era. Most of these bridges are reaching their critical age and it is
expected that the budget demands for maintenance will peak in 2010. Vibration-based
monitoring is certainly a helpful tool in assessing the condition of these bridges and in
making maintenance schedules.

More recent long-span cable-stayed and suspension bridges are equipped with an
embedded monitoring system consisting of sensorssuch as. accel erometers, anemometers,
displacement transducers, inclinometers, strain gauges, temperature sensors, ... Examples
of instrumented bridges exist al over the world. As reported in [FARR99b], one of the
best-equipped bridgesisprobably the TsingMaBridgein Hong Kong (seeFigure 1.2). The
bridge was built in 1997, has a main span of 1377 m and is monitored by nearly 600
Sensors.

Bridge monitoring systems are not only used to detect damage. Reported applicationsand
objectives of existing monitoring systemsinclude: quality control during the construction
of the bridge; verifying design parameters of a newly constructed bridge; serving as a
warnhing system for traffic closure when the bridge i s subjected to excessive wind loading;
and condition assessment about its serviceability and ultimate limit state. However,
generally speaking, there is some vagueness in how the measurement data are currently
interpreted in terms of condition assessment and apparently a lot of "engineering
judgement" comesinto play [HOUS97].
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Figure 1.2: The Tsing Ma Bridge in Hong
Kong is equipped with nearly 600 sensors.

In vibration-based health monitoring, lots of measurement dataare generated. Thereisthe
need to compress the amount of data by estimating an experimental model of the structure
that essentially contains the same information as the original vibration data. The process
of finding amodel from datais called systemidentification. General system identification
is aresearch branch of electrical engineering. An authoritative reference is the book of
Ljung [LIUN99]. Recent advancesin thefield are the development of subspace methods
[VANO96] and maximum likelihood frequency-domain methods [SCHO91].

The application of system identification to vibrating structures yielded a new research
domainin mechanical engineering, known asexperimental modal analysis. Theidentified
model isin this case amodal model consisting of eigenfrequencies, damping ratios, mode
shapes and modal participation factors'. Thefirst book on the subject waswritten by Ewins
[EWINB84]. More recent overviews can be found in [HEYL95, MAIA97, ALLE99].

Usualy, the identification of damage is based on changes in the modal model. An
aternative approach to damage detection consists of identifying a model of the healthy
structure only. Afterwards, statistical hypothesistestsare carried out to judge whether new
data can still be explained by theinitial model. This approach was developed at INRIA,
France [MOUS86a, MOUS86b, MOUS88, BASS93a, BASS93b, MEVEQQ]. The main

M These notions will be introduced in Chapter 2.
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advantage of the method isthat no new model needs to be estimated as new data become
available, a procedure which is sometimes difficult to automate.

1.2 FOCUSOF THE THESIS

It might be clear from previous section that a lot of work on vibration-based structural
health monitoring hasalready been carried out. Neverthel essmany of the proposed damage
identification methods are till in the stage of nhumerical simulations or the traditional
laboratory "saw-cuts”.

Thisthesisaddressestwo key issues of areal-life monitoring system. Thefirst issueisthe
determination of an experimental model of avibrating structure from output-only data. By
the use of freely available ambient excitation sources the cost of testing is significantly
reduced, because no expensive input devices such as shakers are needed. Moreover in a
continuous monitoring system it is unthinkable that the structure would be excited by a
measurable artificial source. Of course, the problem of obtaining modal parametersfrom
output-only datais basically solved since a few decades. This basic solution consists of
selecting the peaks of the spectra of the output signals. However, as will be shown in
Chapter 3, more advanced methodswererecently devel oped that considerably increasethe
quality of the experimental model (i.e. the modal parameters).

The second issue that is treated in this thesis is the detection of damage under varying
environmental conditions. The problem is that both damage and temperature affect the
eigenfrequencies of a structure. A solution is proposed to separate these influences. It
should be noted that only level 1 damage identification (see Subsection 1.1) is addressed
in this thesis. The proposed method detects damage without locating or quantifying it.
However, the development of a damage detection method that can be applied in a
continuous and automatic way isconsidered asacritical step. It would mean that an early-
warning system becomes available that is only based on afew sensors and does not need
anumerical model of the structure.

More specifically, the original contributions of this work are the following:

m  Finite Element models of vibrating structures excited by white noise are related
to stochastic state-space model sand modal models. The analysis of these models
and the relations between them are indicating how they can be estimated from
measurement data and subsequently used in modal and spectrum analysis. The
modal parameters are considered asimportant features for identifying structural
damage.
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Almost all state-of-the-art stochastic system identification methods are critically
reviewed and synthesized. They are classified by the primary data type they
require: spectra, covariances or the original time data. The methods are not only
theoretically compared but also by means of a Monte-Carlo simulation study.
Among other things, the theoretical comparison reveals that — due to historical
reasons — essentialy the same methods have received different names in
literature. For instance, the well-known polyreference time domain method
applied to covariances (instead of impulse responses) can be considered as an
instrumental variable method and the eigensystemrealization algorithm applied
to covariances is equivalent to the covariance-driven subspace method. The
comparative simulation study illustrates the practical use of the methods and
allows to assess the quality of the identification results.

The data-driven stochastic subspace method was adapted and extended to make
it more suitable for modal analysis. The adaptation consists of reducing the
dimensions of the matrices (and the computation time) by removing some of the
redundancy that is typically present in a modal analysis experiment because
usually many sensors are used. The extension consists of efficiently combining
the (classical) stabilization diagram with subspace methods. The stabilization
diagram is used to extract the modal parameters from the identified state-space
models. Also the technique to split the total measured time response in modal
responses is an original contribution. The first applications of the data-driven
stochastic subspace method to output-only modal analysis are dating from 1995
[PEET95].

A method is proposed to distinguish environmental effectsfrom damage events.
Both are influencing the measured eigenfrequencies of a structure. The method
consists of identifying a dynamic environmental model from temperature-
eigenfrequency data of the healthy structure. A statistical test is developed to
decidewhether new datastill followstheoriginal environmental model or that the
structure isdamaged. The originality of the method liesin the factsthat subspace
identification is used in an automatic way to obtain the eigenfrequencies from
acceleration dataand that dynamic ARX environmental models are used instead
of static linear regression models.

On the level of implementation, the development of a Graphical User Interface
for output-only modal analysis was managed. Also an automatic modal analysis
procedure is developed that is based on the automatic interpretation of
stabilization diagrams. Such a procedure is crucia in a continuous monitoring
system that relies upon the evolution of the modal parameters.
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®  Onthelevel of applications, afair amount of experimental work was carried out.
Four reinforced concrete beams were progressively damaged and vibration
experiments were performed at each intermediate damage stage. The aim of the
beam tests was not only to provide experimental data to validate system
identification methods but also to verify whether it is fundamentally possible to
measure the damage-induced changes in the dynamics of a structure. Also
vibration experiments were performed on a steel transmitter mast and some
Belgian highway bridgesin order to get a"feeling” for real-life testing and data.

m  Finally athorough analysis of datafrom the Swiss Z24-Bridgeis presented. The
data are unique in that they combine long-term monitoring with the application
of realistic damage scenarios. It is demonstrated that damage could successfully
be detected under varying environmental conditions.

1.3 ORGANIZATION OF THE TEXT

In our contribution to vibration-based health monitoring, two system identification
approachesemerge. Thefirst (and largest) part deal swith output-only systemidentification
and describes how important features of a structure can be extracted from vibration
measurements. Hereby it isnot necessary to have an exact knowledge of the excitation (the
input) that causesthe structural vibrations (the output). The modal parameters— which are
in fact the mentioned features — contain useful information about the condition of the
structure.

The second part is an application of input-output system identification. A remaining
problem after the first part is that the modal parameters do not only change with the
structural condition but also with environmental parameters. The separation of both
influencesisachieved by identifying an environmental model of the healthy structurefrom
measured ambient information such astemperatures (theinput) and extracted featuressuch
as eigenfrequencies (the output).

A more detailed chapter-by-chapter overview is given in the following (see aso
Figure 1.3).

Chapter 1
introduces the thesis by situating the subject, highlighting the own contributions and
clarifying the organization of the text.
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Chapter 2
discusses several models of vibrating structures. Step-by-step, models that are close
to physical redlity are transformed to general dynamic models that are useful in
system identification. This chapter connects Finite Element Models of civil
engineering structures, state-space model soriginating from el ectrical engineeringand
modal modelsinitially developed in mechanical engineering. A simulation example
isintroduced that illustrates the modelling concepts.

Chapter 3
dealswith stochastic system identification methods. These methodsidentify some of
the models of Chapter 2 from output-only data. Spectrum-driven, covariance-driven
and data-driven methods are consecutively discussed. To clarify the theory and
illustrate the practical use, all methods are applied to a simulation example.

Chapter 4
describes the implementation of a Graphical User Interface to stochastic system
identification methods. Next to identification, also preprocessing and 3D mode shape
visualizationtoolsareincorporated in the program. Additionally, an automatic modal
analysis procedure is proposed making it possible to digest alarge number of data
sets.

Chapter 5
treats two applications. Vibration tests on progressively damaged concrete beams
revealed the damage-detection potential of the modal parameters. The tests were
carried out in controlled laboratory conditions. In the second example, the modal
parameters of asteel mast excited by wind are determined. Thisisatruerea lifetest
in which the possibilities of stochastic system identification can be explored.

Chapter 6
is again a more theoretical chapter. It presents the use of system identification to
obtainan environmental model that rel atestemperaturesto eigenfrequencies. Itisalso
indicated how the model can be used to separate temperature effects from damage
events in measured vibration data.

Chapter 7
presents system identification and damage detection resultsfrom the Z24-Bridge. All
developments of this thesis can be applied to that example. Different excitation
sources are compared, the evolution of the modal parameters of the bridge with
increasing damageisdescribed and an environmental model of thebridgeisidentified
and successfully applied to detect damage.
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Chapter 8
summarizes the conclusions of thiswork. Additionally some unsolved problemsand
suggestions for future research related to vibration-based health monitoring are
mentioned.

Chapter 2

Models of Vibrating
Structures

Chapter 3

Stochastic System
Identification

Chapter 4 Chapter 6

Implementation Environmental Models of
Vibrating Structures

Chapter 5
Applications

Chapter 7
The Z24-Bridge

Figure 1.3: Organization of the text. The left part of the chart is concerned with the identification of a model of
avibrating structure. The right part describes how the environmental parameters are influencing this model. All
theoretical developments come together in the Z24-Bridge application of Chapter 7.
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MODELS OF VIBRATING
STRUCTURES

This chapter discusses models of vibrating structures. Step-by-step, Finite Element
models (Section 2.2) that are close to physical reality are transformed to models
that are more useful in a system identification context. Sections 2.3-2.5 are
discussing different types of state-space models. Section 2.6 introduces ARMA
models. Frequency-domain models are treated in Sections 2.7-2.8. Section 2.9,
finally, concludes the chapter.

11
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2.1 INTRODUCTION

Inthischapter, several modelsof vibrating structuresare presented. Finite Element models
of civil engineering structures, state-space models originating from electrical engineering
and modal modelsinitially developed in mechanical engineering are interconnected. The
main purpose of studying the relation between these modelsisto provideajustification for
the choice of the model structuresin the system identification methods of next chapter. To
make it more concrete, in this chapter it is, among other things, shown that a stochastic
state-space model and an ARM A model can truly represent a vibrating structure excited
by white noise. By consequence, the identification of such models has a physical basis.

The relation between the models are also indicating how the modal parameters can be
extracted once a model is identified from data. The frequency-domain models are
necessary to perform a spectrum analysis.

The discussed models differ in that they describe continuous-time relations (cf. analytical
models) or discrete-timerelations (cf. experimental models). Some models are describing
input-output relations; others — if the deterministic input is unknown — are describing
output-only relations. Finally, all modelsareavailablebothintimeasin frequency domain.

2.2 FINITE ELEMENT MODELS

Thedynamic behaviour of adiscretemechanical system consisting of n, massesconnected
through springs and dampers is described by following matrix differential equation:

Md(t) + C,a@t) + Ka(t) = f(t) = B,u(t) (2.1)

where M,C,,KeR™™ are the mass, damping and stiffness matrices; q(t)eR™ is the
displacement vector at continuoustimet. A dot over atimefunction denotesthe derivative
with respect totime: ¢(t) isthevelocity vector and ¢(t) the acceleration vector. The vector
f(t)eR™ isthe excitation force. It is factorized into amatrix B,eR™™ that specifiesthe
locations of the inputs and avector u(t) cR™ describing the minputsin time. For systems
with distributed parameters (e.g. civil engineering structures), Equation (2.1) is obtained
astheFinite Element (FE) approximation of the systemwith only n, Degrees Of Freedom
(DOFy9) left. The structure is divided in elements. From the geometry and material
properties of the elements, the global mass matrix M and stiffness matrix K are generated.
The presence of the damping term is partially based on physical observation and partially
on mathematical convenience: by adding viscous damping the observed decaying
vibrations are modelled. However due to the lack of identifiable or measurable material
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constants that govern the global damping behaviour of a structure, it is generaly
impossibleto assemble the damping matrix C, inthe sameway asM and K. Damping will
be introduced in Subsection 2.2.2.

It is assumed that the FE model (2.1) is a good representation of a vibrating structure,
athoughitisalready an approximation of thetrue behaviour. Besides, the primary interest
of thiswork lies not in obtaining the FE model as such. It is used as a starting point to
derive other models that are more suited in an experimental modelling context. Firstly, it
isnot possible (and also not necessary) to measure all DOFsof the FE model. The number
of DOFs needed for an accurate FE model is typically some orders of magnitude larger
than the number of DOFs required for an accurate experimental model*. Secondly, this
equation isin continuous-time, whereas measurementsare mostly sampled at discretetime
instants. And finally, there is some noise modelling needed: there may be other unknown
excitation sources apart from f(t) and measurement noise isalways present in real life. In
the following sections we will evolve to models that overcome these shortcomings of
model (2.1).

221 Theundamped eigenvalue problem

The computation of the eigenvalues and eigenvectorsfrom Equation (2.1) isstudied. The
following material is standard and can be found in many moda analysis textbooks
[EWIN84, HEYL95, MAIA97]. One of the reasons why it is till repeated here is to
introduce the notation used in this thesis. The derivation starts with the most simple case
where damping is assumed to be zero. The solutions of the homogeneous FE model
differential equations without damping:

Mgt + Ka(t) =0 (2.2)

will have the following form: q(t) = o, e, By inserting thisform into (2.2), ageneralized
eigenvalue problem is obtained [GOLU89]:

Ko, = Moy(-1) (23)

where o, eR™ (i =1,...,n,) represents any of the n, real eigenvectors and —xﬁ isarea
eigenvalue. In the undamped case, an eigenvalue is usually denoted as the square of an
eigenfrequency miz, therefore:

“The number of DOFs required for an accurate experimental model depends on the envisaged use of the
model. If oneisinterested in measuring the eigenfrequencies of the structure, one well-chosen DOF suffices. If
the experimental model will be used to locate damage based on mode shapes changes, more DOFs need to be
measured in order to obtain a mode shape with a fine spatial resolution.
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L= o,

wherej istheimaginary unit, defined as j 2= -1. All n, eigenvalue problems (2.3) can be
reformulated in one matrix expression:

KO = MOQ? (2.4

where ®R"™™"™ containsthe eigenvectorsas columnsand Q =[\w, |eR™™ isadiagonal
matrix containing the eigenfrequencies o, [rad/s]. It can be proven that the following
orthogonality conditions hold:

OMD = [\mi\] , OKD = [\ki\] (2.5)

where m, are the modal masses and k; the modal stiffnesses. The superindex ‘T’ denotes
transpose. Introducing Equation (2.5) in (2.4) yields:

2 k;

_ 1
o =

m

Eigenvectors are determined up to a scaling factor. In many cases they are mass-
normalized and Equation (2.5) becomes:

O'M® -1, DK - O

where Inz denotes an identity matrix of dimension n,xn, . In the following, we will drop
the subindex of theidentity matrix if itsdimension is clear from the context. Eigenvectors
are also called modal vectors and in a structural vibration context also mode shapes,
becausethey haveanicevisual interpretation asthe deformation shape of astructure. Note
that in the undamped case the eigenvectors are real. One speaks also of normal modal
vectors.

2.2.2 Proportional damping

By pre-multiplying by @ andintroducing thecoordinatetransformation g(t) = ® gt ,the
second order FE model Equation (2.1) is transformed into:

O'MDG (1) + OTC,0q, (1) + DTKD.(t) = ®B,u(t) (2.6)

The vector q,(t) eR™ contains the so-called modal displacements. The orthogonality
properties (2.5) can beintroduced to simplify thefirst and third term of the left hand side.
Up to now the damping matrix C, was undefined. Here the special case of proportional
damping is imposed: the eigenvectors are also diagonalizing C,:
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o7C,0 - [\Ci\] - [\2§io)imi\] -T [\mi\] 2.7)

The second equality follows by the definition of the modal damping ratios & =c, /2m o;
thethird defines T = \Zgiwi . By introducing Equations (2.5) and (2.7) into (2.6), thislast
equation is decoupled (all |eft hand side matrices are diagonal):

\
ld, () + T, (1) + Q2. - { %
i\

@B, u(t) (2.8)

Again, thesol utionsof thehomogeneousFE model differential equationswith proportional
damping will havetheform q(t) = ¢, "', Itisstraightforwardto provethat the eigenvectors
arethesameasin theundamped case. From Equation (2.8) itisfoundthat theeigenvalues i,
satisfy:

(O + Cl)iz =0

W2

yielding the following solutions:
Moo= go £ j1-Eo

where superindex ‘*’ denotes complex conjugate. If adamping descriptionisrequired in
aFE analysis, one often specifies anumber of modal damping ratios & corresponding to
the number of modes of interest. Theseratiosare, for instance, experimentally determined
by applying system identification techniquesto vibration data (see Chapter 3). Eventually
afull damping matrix can be synthesized from Equation (2.7):

\1

C,-0T [\2§iwimi\] ot - MO —
i\

[\2@ (’Ji\]q)TM (2.9

The second equality follows by introducing Equation (2.5).

A special case of proportional damping is the so-called Rayleigh damping: the damping
matriX is alinear combination of the mass and stiffness matrix:

C, = aM + BK (2.10)

where o and 3 aretwo scalar constants. At first sight this seemsto be a strange constraint
on the damping behaviour of a structure. However, Equation (2.10) only means that the
damping isdistributed over the structure in the same way asthe mass and the stiffness are;
whichisaquite natural assumption. Asalready said, it isvery difficult to quantify thetrue
structural damping mechanisms. Therefore one is often satisfied with the mathematically
simple proportional damping assumption in a FE analysis.



16 CHAPTER2 MODELSOF VIBRATING STRUCTURES

2.2.3 General viscous damping

If the assumption of proportional damping is not valid, e.g. in the case of a localized
damper, another approach has to be followed to find the eigenvalues. Also the
experimental determination of damping most often relies upon general viscous damping
models. In case of non proportional damping, the eigenvectors @ of the undamped system
(2.2) are not the same as the eigenvectors of the damped system. In order to find the
eigenvalues of a structure with general viscous damping the second order equation of
motion (2.1) has to be reformulated as a first order equation. By adding the identity
Mq(t) =Mq(t) and defining:

_(a® (G M (K 0
o (@) P (o) 2 (53 @1
following first order equation is derived from (2.1):

Px(t) + Qx(t) = (%2) u(t) (2.12)

where x(t) eR" is called the state vector (see also Section 2.3). The related eigenvalue
problem is:

PY¥A, - Q¥ =0 (2.13)

where WYeC™ contains the n=2n, complex eigenvectors as columns and
[ ]e@“*“lsadlagonal matrix contammgthencomplex eigenvalues ), [rad/s]. Itcan
be showﬁ that A, and ¥ have the following structure:

A O ® 6 )
A = =
c (o A*) ’ (@A A (2.14)

where A,®eC™"™ are the eigenvalues and eigenvectors of the original second order
system. It is easy to show from Equation (2.13) that they satisfy:

MOA? + C,OA + KO =0 (2.15)
Note that the symbol ® isused hereinstead of the symbol @ asinthe case of proportional
damping (2.6) because they are indeed different vectors. Unlike @, the matrix @ is

generally not diagonalizing any of the matrices M, C,,K. Anaogous to the proportional
damping case, the complex eigenvalues %; are written as:

Mo A= Eo £ ji1-Eo (2.16)

It can be proven that following orthogonality conditions hold:
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T _ T —

TPY = [\ai\] , YTQVY = [\bi\] (2.17)
where \a ]E are called the modal a matrix and modal b matrix respectively.
Introdum né quan\)n (2.17) in (2.13) yields:

A = [\k_ ] = - i [\b. ] (218)
C Y ai\ i\ .

Example

At this stage, an example is introduced to illustrate the concepts of this chapter. An FE
model of astructureisbuilt that will be converted to the other modelsto be presented in this
chapter. Afterwards a vibration experiment is simulated. The simulated data are then used
toillustrate and compare the systemidentification methods of next chapter. We have chosen
to discuss the different aspects of the simulation study in close connection to the theory,
instead of the whole example after the theory. Therefore the example is spread over two
chapters.

The considered structure is a mast structure consisting of two segments and with an
equilateral triangular section. Thestructureisrepresentedin Figure2.1. Nodes 1, 2 and 3are
clamped; the others have 3 DOFs: two translations in the xy-plane and one rotation around
the z-axis. The other DOFs are put equal to zero. So, the FE model has n,=18 DOFs. The
geometry and material properties of the columns differ from each other to break the
symmetry. However, the differencesaresmall, resulting in 2 pairsof closely-spaced bending
modes (see further). Tower-like structures often have closely-spaced modes. The Structural
Dynamics Toolbox [BALM97] for use with MATLAB [MATL96] is used to build the FE
model.

8

7
(7] ]

(5]

[4] [6]

[2]

Q( (1 -

Figure2.1: FE model of a
mast structure.
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The eigenfrequencies f, =, /2n [HZ] and the mode shapes are obtained from the mass and
stiffness matrices, M and K, by solving the generalized eigenvalue problem (2.4). Thefirst
six eigenfrequencies of the structure are represented in Table 2.1. Thefirst six mode shapes
are shown in Figure 2.2. Damping, finally, is modelled as the special case of proportional
damping (Subsection 2.2.2). Thereforethe mode shapesremain the sameasin theundamped
case. Moreover, for ease of verification of the system identification results, all modal
damping ratios are put equal to 1% (which is arealistic number for a vibrating structure).

Table2.1: First six modal parametersof the FE model of themast structure. A torsion mode
isdenoted by ‘T’, abending mode by ‘BX’ or ‘BY’, where‘X’ or ‘Y’ specify the bending
direction. The frequencies of mode 2 and 3 and also mode 5 and 6 are close to each other.
Damping is modelled as proportional damping. The modal damping ratios are equal for al
modes.

# Mode type Eigenfrequency f, [Hz] =~ Damping ratio & [%]

1 T1 1221 1
2 BX1 2.375 1
3 BY1 2.403 1
4 T2 4.083 1
5 BX2 6.936 1
6 BY2 7.015 1

Figure 2.2: First six mode shapes: 1% torsion mode (T1), 1¥ bending mode in x-direction (BX1), 1%
bending mode in y-direction (BY 1), 2™ torsion mode (T2), 2™ bending mode in x-direction (BX2), 2™
bending mode in y-direction (BY 2).
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2.3 CONTINUOUSTIME STATE-SPACE MODELS

2.3.1 A state-space model of avibrating structure

The state equation

By casting the second order equation of motion (2.1) infirst order form (2.12), an equation
similar to the state equation from control theory is obtained. This equation usually has a
normalized termin X(t) . The normalization is obtained by pre-multiplying (2.12) by P *:

()
RN YA Vil Vi

to yield the state equation:

Xt = AX® + B.u(t) (2.19)

where A_eR™" and B .eR™™ are defined as:
0 I B 0
- _p1n = _p-1 2| =
AC = P Q = ( -M {LK -M lcz) ’ BC = P ( 0) = ( M 182) (220)

Thesubindex ‘¢’ denotes continuoustime. In Section 2.4, the discrete-time equival ents of
these matrices will be introduced. Using the modal decomposition of P and Q (2.17) and
property (2.18), A, isrewritten as:

\1

al\

A = P1Q=-%

C

¢ToyT [\bi\] gt

(2.21)

YA Y

whichisinfact astandard eigenvalue problem (A, ¥ =¥ A ). Thisshowsthat A contains
the eigenvalues and ¥ the eigenvectors of A_. The difference of using P and Q (2.12)
instead of A (2.19) is that P and Q can be reduced to diagonal forms by using the
eigenvector matrix and its transpose whereas A requires the inverse of ¥ to make it
diagonal.

The observation equation

Inapractical vibration experiment, not all n, DOFsof thestructure are measured, but only
asubset. If it isassumed that measurements are taken at | locations and that the sensors can
be either accelerometers, velocity or displacements transducers (to keep it general) the
observation equation is:
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y(© = C4(n) - Ca(t) + Cya(t) (2.22)

where y(t)eR' are the outputs; C,C,C, eR™™ are the output location matrices for
acceleration, velocity and displacement respectively. These matrices consist of alot of
zerosand afew onesand arein fact just sel ecting the measured DOFs out of the FE model
DOFsto store them asthe elements of the output vector y(t) . Inreality it can happen that,
for instance, both accelerations and velocities are simultaneously measured. Using
Equation (2.1) to eliminate ¢j(t) and with the definition of the state vector (2.11), Equation
(2.22) can be transformed into:

y(t) = C.x(t) + D.u(t) (2.23)

where C_cR"™" isthe output matrix and D cR™™ isthe direct transmission matrix. They
are related to the FE model matrices as:

C. = (CdfcaMilK C,-CM 71(:2) » D¢ = CaMilBZ (2.24)

In many publications this direct transmission matrix D, is omitted for some reason.
However themodelling of avibration experiment whereaccel erometersareused (and these
are the most widely used sensors) requires a direct transmission term. If C_=0 (i.e.
displacements and/or velocities are measured), there is no direct transmission.

The state-space model
Theclassical continuous-time state-space model is found by combining Equations (2.19)
and (2.23):

X(t) = AX() + B.u(t)
y(t) = C.x(t) + D.u(t) (2.25)

The order of the state-space model n is defined as the dimension of the state vector. The
equations of motion are now written in state-space form and can be used to compute the
response y(t) of the structure to a given input u(t). The state vector x(t) contains the
displacements and the velocities of all DOFs; see Equation (2.11).

A new state vector can be defined such that:
X(t) = Tzt) (2.26)

where TeC™" is a non-singular complex square matrix. This is called a similarity
transfor mation. Substitution of this coordinate transformation into Equation (2.25) yields:
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At) = THATZ) + T'B.u(t)

yt) = CTz) - Du() (2.27)

Itisimportant to see that the transformed matrices (T *A. T, T 'B,, C.T, D,) describe
the same input-output relationship as the original matrices. However, unlike x(t) the new
state vector z(t) has not the meaning of physical displacements and velocities.

2.3.2 Modal parametersand model reduction

Relation to classical modal analysis

A specia similarity transformation is the transformation to (complex) modal states
X(t) eC":

X(t) = ¥x (1)

The modal state-space model is obtained by substituting T by ¥ in Equation (2.27) and
inserting the modal decomposition of A (2.21):

X () = Ax (1) + L, u(®)

2.28
y(t) = V. x (O + Du(t) (2.28)
where the following definitions have been introduced:
L = ¥'B, 229
VvV, = CY¥ '
As stated before, the eigenvalue matrix has the following structure (2.14), (2.16):
A O \ . 2
Ac = 0 A*) A= *éimi + lf%i COi\
and the eigenvector matrix can be written as (2.14):
® o0
VY =
(@A @)*A*) (2:30)

The relations to notions from classical modal analysis are clear by taking a closer look at
the modal input and output matrices LCT, V.. By introducing the orthogonality condition
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for P (2.17) and the definitions of P, B, and ¥ (2.11), (2.20), (2.30), the modal input
matrix can be written as:
T ( Bz) _
0

By itsdefinition (2.1), matrix B, selectsthecomponentsof the mode shapescorresponding
to an input location. Classically, the last expression of Equation (2.31) is called modal
participation matrix and its rows are the modal participation factors. The superindex ‘H’
denotes complex conjugate transpose.

\1

ai\

\1

ai\

\1

L, = ¥B, -
a, \

YTPB, -
@H

( ®T) B, (231

Similarly, by introducing thedefinitionof C, (2.24) and ¥ (2.30), themodal output matrix
can be rewritten:

(2.32)

V, - C¥ - (C,-C,M K cv—caM*lcz)( © o )

OA O°A”

This expression can be simplified by considering only one quantity at a time.
Displacements-only measurements yield:

V. =C, (0 0 (2.33)

If velocities are measured, the modal output matrix becomes:

V, = C, (BA @A)

Specializing the expression to accelerations only yields, after introducing Equation (2.15)
into (2.32):

V, = C, (8A? @A) (2.34)

By their definition (2.22), the matrices C;,C, and C, are selecting the components of the
mode shapes corresponding to an output location. The post-multiplication by A or A™,
being diagonal matrices, scalesthe mode shapeshby their eigenval ues. Sowhatever quantity
is measured, V, denotes the part of the mode shapes that can be observed from the data.
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Thetriplet (A, L, ,V ) arethe modal parameters’ of the structure. It is easy to verify that
the modal parameters are insensitive to a change of basis of the state-space model.
Applying asimilarity transformation (2.26) will not affect the modal parameters.

Modal decomposition in continuous time

I nteresting about themodal state-space model (2.28) isthat, owing tothediagonal structure
of A, the contributions of the different modes to the total response y(t) of the structure
can be decoupled. Thecontri butionsof modei are described by %;, thei™ diagonal element
of A,; thei™ row of L, denoted as <I_ T>; and thei" column of V.., denoted as {v, }. It
|slessobV|oust0 disti ngwshthe dlfferent modesin matrix D_. The modal decomposmon
of the direct transmission term is developed in the following. In case of displacement or
velocity measurements, there is no direct transmission term. Therefore the derivation is
restricted to the acceleration-only case. It isstraightforward to show that, if C,=0,D_ can
be written in terms of the state matrices:

CA.'B,=CM™B, =D (2.35)

C

The first equality is found by inserting the definitions of the state-space matrices, see
Equations (2.20) and (2.24); the second equality issimply the definition of D (2.24). The
modal decomposition is achieved by inserting the eigenvalue decomposition of A_ (2.21)
and the definitions (2.29) into Equation (2.35):

n
-1, T 1
Do = VAo Lo = 3 —={vg}<I> (2.36)

i=1 4

Matrix D, decomposes as a sum of n rank-one matrices. We will call this modal
decomposition.

The total output vector can be split in n modal contributions y; (t) :

y(t) = Z; y; (1)

where each vector y, (t) isthe output of following order-one state-space model:

More often, instead of the complex eigenvalues &, (the elementsof A), the eigenfrequencies o, or f; and
the modal damping ratios &; are specified. Their equivalence s clear from Equation (2.16).
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X0 = 4 xPO + <IT> ul)
yi(© = {ve ) + %{vci}<ICiT> u(t)

The complex scalar x{ (t) denotesthe i component of the modal state vector.

Model reduction in continuous time

The modal state-space model offers a nice interpretation of model reduction as the
elimination of certain modes. The following model reduction procedureis proposed. The
modal state-space model (2.28) is rearranged to have the r to-be-retained modes first:

Acr 0 Xr(t) Lc-rr
0 A ) (%) (LT "o

t
yo - (v, V)| o

ro3 [ X%®
n-r 3| X[t

xe(t)) " Detll)

where x (t) eC" isthe state vector of the reduced system and x (t) eC" " are the states that
will beeliminated. Typically, model reduction isobtained by setting the derivative of x(t)
to zero in the state equation. The resulting expression for x(t) is introduced in the
observation equation. Doing so, the reduced state-space model reads:

(0 = A % (1) + Lchu(t)

y(®) = Ve x® + D u() (2.37)

where the reduced matrix DCr equals:

De, = D¢ = Ve ALl = Ve AL T
Thefirst equality follows from the elimination of x (t) from the observation equation; the
second equality is obtained by introducing the modal decomposition of D (2.36).

The reduced model (2.37) is again a step closer to the experimental world. A vibration
experiment is always band-limited. This means that the data contains information over a
certain frequency bandwidth. Only modes that have frequencies in (or close to) this
bandwidth will show up in the data. This experimental fact corresponds very well to the



2.3  Continuous-Time State-Space Models 25

ideaof the reduced model that only containsalimited number of modes, whereasthe order
of the original state-space model istypicaly avery large number (afew thousands for a
complex structure) because it was derived from a FE model®.

2.3.3 The special case of proportional damping

Proportional damping wasintroduced to simplify the mathematicsrelated to the modelling
of vibrating structures. Because viscous damping (which includes proportional damping
as aspecial case) ismore genera and realistic, this subsection will not take a step closer
to the experimental world. The interest of this subsection liesin performing simulations,
where often the proportional damping assumption is preferred. Also some system
identification methods explicitly assume a proportionally damped model.

Proportional damping isjust aspecial case of viscousdamping and the expressionsderived
in previous subsections could still be used, eventually taking into account the special
structure of the eigenvector matrix (2.14):

(e e ) (o o
¥ _(®A ®*A*) _(ch CDA*) (2.39)

where the general complex modes ® have been replaced by the normal modes @, see
Equation (2.4). These modesarerea or have at | east aconstant phase angle and can always
be scaled to real ones. In case of proportional damping, the modal a matrix can be
rewritten, by combining Equations (2.17), (2.11), (2.5), (2.7) and (2.16), as:

[\ai\] - yTpy
] [\miZj 1-¢ wi\] 0
0 [\—miZj 1-¢ wi\]
i [\mi\] (A-A") 0
0 [\mi\] (A"-A)

3n fact an FE model can on its turn be considered as a reduced model of area structure. Indeed, areal
structure with distributed parameters has an infinite amount of modes, whereas the number of modes of the FE
model equals the number of DOFs.
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In case of normal modes the state-space model is often written in a different form. This
normal mode state-space model is obtained by applying following similarity
transformationtotheoriginal state-space model that isexpressed intermsof the FE model
matrices M, C,,K (2.25):

®0 ) (2.40)

X(t) = Tnz(t) N ( 0 @

where the subindex ‘n’ denotes the normal-mode case. Obviously, with Equations (2.40)
and (2.11), the new state vector z(t) combines the modal displacements and velocities
(2.6):

The normal-mode state-space model iswritten as:

At) = A zZ(t) + B u(t)

y() = C,Zt) + D u(t) (2.42)

wherethe state-space matricesare obtained, by introducing (2.40), (2.20), (2.24), (2.5) and
(2.7), as.

A, = T,'AT, :( 0 ')

n 7Q2 T
B, =T, B, = ( ° )

n = 'n B [\1/mi\](I)TB2 (2.42)
C, = C.T, - (C,@-C,0Q* C,0-C,0I)

. =D, = CaCD[\llmi\]d)TBz

Itisstraightforward to apply model reduction to thisnormal-mode state-spacemodel. Only
therelevant modescan be sel ected from the modal parameter matrices Q, T, [\ m, \] , D,

Finally, the normal-mode state-space model (2.41) can also be related to the (complex)
modal state-space model (2.28). In case of proportional damping, following relation exist
between both state vectors:

At = Tx (M), T, - ( /l 'A)

and theinverserelation is:
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Xt = T.hzt) , T, -

C

( _(A_A*)flA* (A_A*)fl)
(A-A)IA —(A-A)T

2.4 DISCRETE-TIME STATE-SPACE MODELS

24.1 About sampling

Up to now al equations were expressed in continuous time, whereas in redlity
measurements are taken at discrete time instants. In order to fit models to measurements
(i.e. system identification), these models need to be converted to discrete time. Another
reason for looking at discrete modelsis that they are needed for performing simulations.
If it would be possible to find an analytical solution for the response of a structure to a
giveninput, thisanalytical expression could be evaluated at any timeinstant t, without the
need to convert the model to discrete time. However in most cases there is no analytical
solution and one hasto rely upon anumerical solution method to simulate the response of
astructure. For instance, timeintegration schemeswith apossible adaptivetime step could
be used. The approach that is useful for this thesis starts by choosing a certain fixed
sampling period At [s]. The continuous-time equations are discretized and solved at al
discretetimeinstantsk [-], where t =kAt, keN. Typical for the sampling of acontinuous-
time eguation is that a certain behaviour of the time-dependent variables between two
samples has to be assumed. A Zero-Order Hold (ZOH) assumption for instance, means
that the input is piecewise constant over the sasmpling period. Under this assumption, the
continuous-time state-space model (2.25) is converted to the discrete-time state-space
model:

X1 = A% + Buy

Y, = Cx, + Du, (2.43)

where x, =x(kAt) =(q/ d})" is the discrete-time state vector containing the sampled
displacementsand velocities; u,,y, arethesampled input and output; Aisthediscrete state
matrix; B is the discrete input matrix; C is the discrete output matrix; D is the direct
transmission matrix. They are related to their continuous-time counterparts (2.20) as:

t

At
A=  B-= feAcTﬁT B, = (A-1)A, "B,
0

(2.44)
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These relations are classical and are, for instance, derived in [JUAN94]. The second
equality for Bisonly validif A_ isinvertible. The matrices C_ and D, are not influenced
by ZOH-sampling.

If one assumes that the inputs are piecewise linear over the sampling period, one speaks
of First-Order Hold (FOH). In this case more complex relations exist between the
continuous-time and discrete-time state-space matrices (seefor instance [FRAN97]). The
matrix D will differ from D_. Also the discrete state vector is not the sampled
displacement-velocity vector anymore.

2.4.2 Modal parametersand model reduction

The eigenvalue decomposition of the discrete state matrix A is found by inserting the
eigenval ue decomposition of the continuous state matrix A into Equation (2.44):

A - eACAt _ e‘PAC\P 1At _ \PeACAt\Irl _ \I’Ad‘l"l _ ll,[\ui\]ll;—l (2.45)

Thethird equality can be proven by the series expansion of the exponential function®; the
two last equalities define the notation of the discrete eigenvalue matrix. So, the discrete
eigenvectorsare equal to the continuous ones and the discrete eigenval ues, denoted as |,
are related to the continuous eigenval ues as:

_In@)
! At

U = it
=

Similar to definition (2.29), thediscrete modal participation matrix and the observed mode
shapes are written as:

LT =v'B

V - C¥ (2.46)

The discrete modal participation factors are different from the continuous ones due to the
different B-matrix. The observed mode shapes, on the contrary, arethe samein discrete as
in continuous time. In the accel eration-only case, the modal decomposition of D isfound
asfollows:

*The McLaurin series expansion of the exponential functionis: eM= Z i MK,

ko K
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n

-1, T - 1
D-D,=VA L =V (A-D)ILT =Y

i=1 ui71

{Vi}<|iT>

The derivation makes use of Equations (2.44), (2.36), (2.29), (2.46) and (2.45). The
notation for the columns and rows of a matrix has been introduced before.

The discrete-time model reduction is similar to the continuous one. This reduction can be
formally proven by putting the next states (that have to eliminated) equal to the current
states. Thisisthe discrete-time equivalent of setting the derivative of the continuous states
to zero.

2.4.3 Impulseresponses

Impulse responsesplay animportant rolein systemidentification. A discrete-timeimpulse
isdefined asaunitinput at k=0 and otherwise zero. Theimpul se responsesare the outputs
of the system when excited by an impulse applied at any of the minput locations. These
m response vectors are usually combined in a | xm impul se response matrix. Under zero
initial conditions x,=0, it is straightforward to prove from (2.43), that the impulse
response matrices hkeR'x’“ can be computed from the system matrices as:

hy = D

h - CAKIB  (k>0) (2.47)

Therelation betweenimpul seresponsesand state-space matrices(2.47) originatesfromthe
famous paper by Ho and Kalman [HOK A66]. Many identification methods (the so-called
realization methods) are based on this property. Theimpul se responses can also bewritten
as afunction of the modal parameters:

hy = V(A 1)ILT

‘ 2.48
he = VASTLT (k>0) (248)

Example

The FE mode of the mast structure (Figure 2.1) is converted to state-space form. It is
assumed that the structure is excited at al nodes in both x and y-direction independently.
Therefore, theinput matrix B,eR™™ (2.1) isa 18x 12 matrix consisting of zerosand ones
at the appropriate positions. By assuming that the triangles at each floor are undeformable,
it suffices to measure 3 DOFs per floor to characterise the complete deformation of the
structure. The sensorsand measurement directionsareshownin Figure2.3. Asinredlity, the



30

CHAPTER2 MODELSOF VIBRATING STRUCTURES

.
[ ]< [0

[2]

Y w -

Figure 2.3: Sensors and
measurement directions.

measurements are accelerations. The output matrix CaeIRi'x”2 (2.22) is a 6x18 matrix
consisting of zeros and ones.

The approach of Subsection 2.3.3 is followed to obtain a state space model. The reduced
modal parameter matrices are used to build anormal-mode state-space model (A, B, C,,
D,). see Equations (2.41) and (2.42). The reduction consists of selecting only the first six
modes:

Q - [\mf\] L= (20, Um0 = (o)) (=12..6)

The dimensions of the state-space model are: the model order n=2n, =12, the number of
inputs m=12 and the number of outputs | =6.

Assuming a ZOH on the inputs, and a sampling period At =0.01s, a discrete-time state-
spacemodel (A, B, C, D) isobtained, see Equations (2.43) and (2.44). Notethat the sampling
frequency f_=1/At is chosen such that the Nyquist frequency f, =f./2 is well above the
largest eigenfrequency: f,=7.015Hz (see also Table 2.1). Asinput u,, random numbers
fromanormal distribution aretaken. Theinputsarewhite, both in space and intime, and the
covariance matrix is the identity matrix:
Eluug] = Rdy, = 1,8,

where E is the expected value operator; 8, is the Kronecker delta (if p=q then Spq =1,
otherwis;eESpq =0); p, g are two arbitrary time instants.

The first input signal is shown in Figure 2.4 and the first output signal is shown in
Figure 2.5. A typical impulse response function, computed from the discrete state-space
model according to Equation (2.47), is shown in Figure 2.6.
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Figure2.4: Part of the first white noiseinput signal. Thissignal isapplied to node
4 in the x-direction. There are 12 independent input signals.
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Time sample, k

Figure 2.5: Part of the first output signal. This signal is the simulation of the
accelerations of node 4 in the x-direction. There are 6 output signals.
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Figure2.6: Part of element (1,1) of theimpulseresponsefunction matrix h,. Only
the time lags k>0 are shown. The represented impul se response function is the
acceleration response of the structure at node 4 in the x-direction of an impulse
applied at the same DOF.
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2.5 STOCHASTIC STATE-SPACE MODELS

25.1 Thestochastic components

This section describes the final step towards the experimental world: noise is added. Up
to now it was assumed that the system was only driven by a deterministic input u,.
However, the deterministic modelsare not ableto exactly describe real measurement data.
Stochastic components have to be included in the models and following discrete-time
combined deter ministic-stochastic state-space model is obtained:

X1 = Ax + Bu, + w,

y, = Cx + Du, + v, (2.49)

where w, eR" isthe process noise due to disturbances and modelling inaccuracies; v, eR'
is the measurement noise due to sensor inaccuracy. They are both unmeasurable vector
signals assumed to be zero mean, white and with covariance matrices:

E[(VVV;’) CHERTI T (250)

where E is the expected value operator; 9, is the Kronecker delta (if p-q then Opg =1
otherwise Spq =0); p, g aretwo arbitrary time instants.

However, asexplained in Section 1.2 the primary case of interest for thisthesisisapurely
stochastic system. In a civil engineering context, the only vibration information that is
available are the responses of astructure excited by some unmeasurableinputs. Dueto the
lack of input information it is not possible (from a system identification point of view) to
distinguish between the terms in u, and the noise terms w,, v, in Equation (2.49). The
discrete-time stochastic state-space model reads:

Xep = AX + W

Y- Cx v, (2.51)

The input is now implicitly modelled by the noise terms. However the white noise
assumptions of these terms cannot be omitted: it is necessary for the proofs of the system
identification methods of next chapter. The consequence is that if this white noise
assumptionisviolated, for instanceif theinput containsadditional to whitenoiseal so some
dominant frequency components, these frequency components cannot be separated from
the eigenfrequencies of the system and they will appear as (spurious) poles of the state
matrix A.
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25.2 Propertiesof stochastic systems

Someimportant propertiesof stochastic systemsarebriefly resumed. They arewell-known
and can, for instance, befound in [VANO96]. Asaready stated, the noisetermshave zero
mean and their covariance matrices are given by Equation (2.50). There are some further
assumptions. The stochastic process is assumed to be stationary with zero mean:

ElxX%] =X, E[x] =0 (2.52)

where the state covariance matrix X isindependent of thetimek. Since w,, v, have zero
mean and are independent of the actual state, we have:

Elxw] = 0, E[xV] =0
The output covariance matrices R eR"'are defined as:

Ri = E[yk+i ykT] (253)

where i is an arbitrary time lag. The "next state - output" covariance matrix GeR™ is
defined as:

G - ElX., %] (254)

From stationarity, the noise properties and previous definitions following properties are
easily deduced:

T =AXAT + Q
R, - CzCT +R (2.55)
G=AXC"+S
Andfori=1,2,...:
R = CA'G
R. = GT(Aifl)TCT (256)
i

Thislast property isvery important. This equation alone nearly constitutes the solution to
the identification problem: the output covariance sequence can be estimated from the
measurement data; so if we would be able to decompose the estimated output covariance
sequence according to (2.56), the state-space matrices are found. This idea will be
elaborated in Chapter 3. The factorization of output covariance matrices into state-space
matricesissimilar to thefactorization property of impul se responses(2.47). For stochastic
systems, the matrices (A,G,C,R;) play the role of the deterministic system matrices
(A,B,C,D). Thanks to this equivalence, input-output impulse-response-driven
identification methods are easily tranglated into output-only covariance-driven methods.
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This stochastic realization problem (see also Chapter 3) was first solved by Akaike
[AKAI74D].

By introducing the modal parameters, Equation (2.56) can be written as:

cC Al G

- CYAL'YIG (i>0) (2.57)
VALY G

R

m

where G_,eC™ isthe "next modal state - output" covariance matrix or stochastic modal
participation matrix. Apparently, this matrix G, plays the role in output-only modal
analysis of the modal participation matrix L T in input-output modal analysis. compare
Equation (2.57) with (2.48). In modal analysis, this observation is also used to feed
classical modal parameter estimation methodsthat normally work with impul seresponses,
with output covariancesinstead. A paper that isoften referred to in thiscontext waswritten
by James et al. [JAME95]. This paper contributed to the introduction in the mechanical
engineering community of the idea that it is possible to extract modal parameters of
systems that are excited by natural, unmeasurabl e excitation.

25.3 Theforward innovation model

An alternative model for stochastic systemsthat is more suitable for some applicationsis
the so-called forwardinnovation model . It isobtained by applying the steady-state Kalman
filter® to the stochastic state-space model (2.51):

= Az, + Ke
4 i 4 k (259)
Yo = Cz + g
The elements of the sequence e, are called innovations, hence the name of the model. It
is awhite noise vector sequence, with covariance matrix:

m _
E[epeq = R96pq
The computation of the forward innovation model (A, K,C,R,) from the stochastic state-

space model (A,G,C,R,) starts by finding the positive definite solution P of the discrete
Riccati equation®:

5The Kaman filter is standard in control theory. Some more information is provided in Subsection 3.5.1.
The reason to introduce forward innovation models at this occasion isthat the ARM A models of next section can
be obtained from these innovation models.

®An implementation to find the solution of this equation can, for instance, be found in [CONT97].
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P-APAT + (G-APCT) (R,-CPCT)* (G-APCT)T

Thematrix PeR™" isthe forward state covariance matrix P =E[z,z]]. The Kalman gain
is then computed as:

K = (G-APCT) (R,-CPC)*?

And the covariance matrix of the innovations equals:

R, = R,-CPCT

Example

The mast structure of Figure 2.1 is excited by white noise inputs. If these input
"measurements’ are not passed to the system identification methods of next chapter, the
input terms of the state-space model can be considered as the stochastic components:

w, = Bu,
v, = Du,

Since R, =1, their covariances can be written as:
(Q s) (BRUBT BRUDT)
ST R) \DRBT DRDT

(BBT BDT)
DBT DDT

From these covariances, the matrices G and R, can be computed according to
Equation (2.55). A typical output covariance sequence, computed from the stochastic state-
space matrices (A,G,C,R,) according to Equation (2.56), is shown in Figure 2.7.

0.2
0.15 i
0.1 i
0.05 7 i

-0.05 J

Output covariances, R

-0.151 J

0.2 . . . . . . . . .
0 100 200 300 400 500 600 700 800 900 1000

Time sample, k
Figure 2.7: Part of element (1,1) of the output covariance sequence R, . Only the
timelags k> 0 areshown. Therepresented covarianceisthe auto-covariance of the
acceleration response of the structure at node 4 in the x-direction.
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2.6 ARMA MODELS

The more classical system identification methods [LIJUN99] identify models that do not
contain the state. In this section the state vector is eliminated from the forward innovation
state-space model (2.58) to yield the so-called ARMA model.

2.6.1 Obtainingthe ARMA model

An ARMA model iswritten as:
Ye ¥ 0q¥er T 7 U‘nuykfna = ek * Ylekfl toa ynvekan (2.59)

where, as before, y, isthe output vector and e, awhite noise vector sequence The left-
hand side is called the Auto-Regressive (AR) part and the right-hand side the M oving
Average (M A) part, hence the name of the model. The matrices eR™ arethe AR matrix
parameters; matrices v, eR"™ aretheM A matrix parameters. Sometimes, in caseof multiple
outputs, one speaks of ARMAYV models as to stress their multi-Variable character. 1t will
become clear that an ARM A model that is deduced from a state-space model hasthe same
AR order n, asMA order n,. Thisis denoted as:

n,=n =p

The ARmatrix parametersare obtained by solving thefollowing linear system of equations
for o, [AKAI744]:

p .
)} o, CAPT = -CAP
i=1

or in matrix form:

(0, @y ... 0y) O = -CAP?P (2.60)

where Op eRP™" js the so-called observability matrix defined as:
C
0O, = CA (2.61)
CAP1
There are pl 2 unknowns and nl equationsin (2.60). It is assumed for a moment that the

original model order n is an integer multiple of the number of output channels|. In this
case, the ARM A model order can be computed as:
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©
I
—I=

Moreover, if the system is observable, i.e. rank(Op) =n, the system of Equations (2.60)
is a determined system. On the contrary, if p>n/I or the system is not observable, the
system of Equations(2.60) isunder-determined and the AR matrix parametersare obtained
by applying |east-squares.

The determination of the M A parameters starts by following set of equations that is built
from the forward innovation state-space model (2.58):

Yip C I 0 ... 0 €-p
Yepa| _| CA Xy CK | o 0| &pa 2:62)
i) lea)  lewmcin o)l e
Thisis denoted in short as:
kap - Op-rlxkfp * HEkfp (2-63)

where the notation is explained by comparing Equation (2.63) with (2.62). This equation
is pre-multiplied by (o, @, ... o, I) toyield:

(0 @,y -ooap )Y,

kp = (ocp IV

p1 e O 1) HE _, (2.64)

Thetermin X p disappeared because of Equation (2.60). The left-hand side of (2.64) is
just another way of writing the AR part of (2.59). Therefore, the right-hand side of (2.64)
equalsthe MA part:

(Yp Vpo -- Y2 1) = (ay 0y ..o 0p 1) H

2.6.2 Modal parametersof an ARMA model

This subsection discusses the determination of eigenvaluesand eigenvectorsof an ARM A
model. They are obtained as the homogeneous solutions of the ARMA equations. In
continuous time, such solutions have the form: y(t) =v, "', The discrete-time equivalent
is:

Y= Vil (2.65)
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where v, eC' (i=1,...,pl) represents any of the pl eigenvectors and M = e isadiscrete
eigenvalue. By inserting (2.65) into the homogeneous ARMA eqguations, following
expression is obtained:

Vi s av R WP =0 (2.66)

By using the symbols v, and %, it is already suggested that the ARMA eigenvectors and
eigenvaues will be the same as the state-space eigenvectors and poles. Thisisformally
demonstrated in the following.

Remember that the eigenval ue decomposition of the state matrix A can bewritten as(2.45):

A= YA

Introducing this decomposition into Equation (2.60) and post-multiplying by ¥ yields:

p .
CYAL + Y oC¥AL" =0 (2.67)

i=1

where the following property of the eigenvalue decomposition has been used:

Al = WALW?

Since V=C¥ (2.46) and A al (2 45), it iseasy to seefrom Equation (2.67) that the
observed eigenvectors of thest esﬁace model and their associated eigenval ues satisfy the
modal ARM A Equation (2.66). So in case of observability of thesystemand p=n / I, the
ARMA modes are equivalent to the state-space modes. On the contrary, if p>n / | orthe
system is not observable, the ARMA model will contain, next to the state-space modes,
some additional numerical modes.

The question remains how to compute the poles and eigenvectorsfrom an ARMA model
directly without having the initial state-space model. Thisisimportant for identification
methods that identify an ARM A model from the data. Equation (2.66) iswritten in matrix
form:

VAE + 011VA§71 ot (xpVAEip =0 (2.68)

Thisp™ order eigenvalue problem can be reduced to astandard first order problem through
the companion matrix of the matrix polynomial (2.68):
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o I .. © \ v

0 0 .. O VA4 VA4

e |2 A (2.69)
0 0 .. I ||var? vARZ

oy o e —ag | | VAR VAR

In amore compact form, the last equation is written as:

comp _
Ap Op’m = Op, mi\y

where A>""™ cRP*P jsthe companion matrix containing thep AR parameters o, ; thematrix
0, ,€C**® isthe modal observability matrix, defined as.

Op‘m = Op\lf

From the definition of the observability matrix (2.61) and the modal decomposition of A,
it is found that the modal observability matrix indeed corresponds to the matrices in
Equation (2.69).

To conclude, the discrete eigenvalues are obtained by computing the eigenvalue
decomposition of the companion matrix of the AR matrix parameters. The observed
eigenvectors are thefirst | rows of the eigenvectors of the companion matrix, in MATLAB
notation:

V = Op'm(l:l,:)

In this section it was shown that a p™ order ARMA model is agood representation of a
vibrating structure with pl modes. Note that a p™ order AR model is not an equivalent
representation of such a structure. The M A part should be taken into account too. It can
however be shown that an AR model with infinite order is theoretically equivalent to a
finite-order ARM A model. This motivated the use of AR modelsin system identification
of vibrating structures. Unfortunately the theoretical assumption of infinite order,
practically means that many numerical poles need to be introduced to obtain areasonable
data fit in the identification. The difficulty is to separate these numerical poles from the
true system poles. This matter will also be discussed in the system identification chapter.
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2.7 CONTINUOUS-TIME FREQUENCY-DOMAIN MODELS

Although measurement data are usually available as samples of the input and output time
signals, it is very useful to look at the frequency-domain representation of these signals.
Many interesting signal’s features are revealed in frequency domain. For instance, the
eigenfrequencies of a lightly damped structure emerge immediately as the peaksin a
frequency-domain plot of ameasurement signal. The mathematical tool to convert atime
signal to the frequency domain is the Fourier transform. Next to the fact that it provides
useful insights, another reason for the popularity of frequency-domain representationsis
that, since a few decades, a very efficient agorithm exists that implements the Fourier
transform, known as the Fast Fourier Transform (FFT) algorithm [COOL65].

Asthe paradoxical title of this section indicates, modelsare going to be studied that arethe
frequency-domain equivalents of the continuous-time models of Section 2.3. The main
reason to look at these models is that many identification methods exist that identify a
continuous-time frequency-domain model from samples of the Fourier transforms of the
signals. A special class of these methods assumes amodel that is parametrized in terms of
the modal parameters of the structure instead of the rather abstract state-space matrices.

We will first introduce the Laplace transform. When applied to time-domain models, the
Laplace transform leads to the concept of transfer function. Finally the spectrum is
introduced which ismore relevant in case of output-only data (and wheretheinput datais
assumed to be white noise).

2.7.1 TheLaplacetransform

The Laplace transform converts linear time-variant differential equations to algebraic
equations. The one-sided Laplace transform of atime function x(t) is defined as:

X(s) = L[x(®)] = fx(t)e’s‘dt
0

where seC is a scalar complex variable. It is assumed that x(t) =0 prior to t=0. An
important property of the Laplace transformiis:

LX(®)] = sX(9 - x(0)

If the initial condition is zero x(0) =0, a derivative in time domain is equivalent to a
multiplication by sin the Laplace domain. For obvious reasons the Laplace transform is
also called the s-transform
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2.7.2 Thetransfer function
Under zero initial conditions, the application of the s-transform to the continuous-time
state-space model (2.25) yields:

sX(s) = A X(s) + B.U(s)
Y(s) = C.X(s) + D U(s)

By eliminating the states X(s), following input-output relation is obtained:
Y(s) = H (9 U(9) (2.70)

The matrix H(s) iscalled transfer function and equals:
HJ(s = C.(s-A)'B, + D,

Similar as in time domain, modal decomposition can be applied to this expression. By
inserting theeigenvaluedecompositionof A (2.21) and the definitionsof the participation
factors LCT and the observed mode shapes V, (2.29), we obtain:

H(9 = V (s -A) L, + D, (2.71)

Thismodal state-spacetransfer function can bewrittenin morefamiliar formsknown from
classical modal analysis. The transfer function is then expressed in terms of the modal
parameters of the original FE model. Thisis elaborated in Appendix A.1.

The Freguency Response Function

From a practical point of view, the Frequency Response Function (FRF) is more
important. It is defined as the transfer function in which the complex Laplace variable is
restricted to purely imaginary values s=jo where o [rad/s] can be any frequency of
interest. The FRF is denoted as:

H(j®) = C(8 -A) B, + D,

sjo (2.72)
or equivalently asone of itsmodally decomposed forms (see Apendix A.1). The practical
relevance of the FRF liesin thefact that it iseasily identified from the measured time data
by applying so-called non-parametric methods. These methods are mainly based on the
application of the FFT. The second identification step consist then of identifying
parametric models like (2.72) from the estimated FRF (see Chapter 3).
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Figure2.8: Part of element (1,1) of the FRF matrix H_(jo). It representsthe FRF
from the input at node 4 (x-direction) to the output at the same DOF. The top
figure isthe absolute value of the FRF; the bottom figure shows the phase angle.
Thefull lineisthefull FRF. The bending modesin the y-direction are not visible.
The dashed line represents the contribution of the second mode to the FRF.

Example

The FRF matrix of the mast structure (Figure 2.1) is computed by evaluating expression
(2.72) at frequenciesf, ranging from 0to 12.5Hz (s=jw, ® =2xf). A typica element of the
FRF isshownin Figure 2.8.

2.7.3 Thespectrum

In this section we will examine the case where the input signal u(t) isnot a deterministic
signal. Stochastic signals are characterized by their statistical properties. The discussion
is restricted to the case of a zero mean E[u(t)] =0, white noise input sequence. The
covariance function R (t) of such asequence can be written as:

R,(® = E[ut+t)uT(®)] = R,8(7)

where R,eR™™ isaconstant matrix and () isthe Dirac deltafunction (8(t) = co at 1=0
and 3(t) =0 elsewhere). The Dirac delta function has the following property:

f f(t)s(t-a)dt = f(a) (2.73)

-0
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for any function f(t) whichiscontinuousat timea. These definitions of whitenoisearethe
continuous-time counterparts of the discrete white noise definitionsgivenin Section 2.5.1.

The spectrum S (s) of astationary stochastic process x(t) is defined as the double-sided s-
transform’ of its covariance functionR (t):

S(9 = [Rie“dt

So in case of white noise, the spectrum is a constant matrix because of property (2.73):

S(9 = [Ryedt =R,

-0

Thisisaso caled a "flat" spectrum. The diagona elements of the spectrum matrix are
called power spectra and the other elements cross spectra.

If two processes u(t), y(t) arerelated by the transfer function H (s) asin Equation (2.70),
it can be proven [LJUN99] that their spectra are related by:

S,(9 = H(9S,(9H, (s7)

or, more specifically in case of awhite noise input:

S,(9 = H(9RH/(s) (2.74)

By inserting themodal decomposition of thetransfer function (2.71), following expression
is obtained for the spectrum:

(9 = (V,(s-A) L, + D) R, (D] + L (s°1-Ay) V) 275
Sy c c c c u c C ( )

Some identification methods of Chapter 3 need an expression for the spectrum that is
written asasum of modal contributionsinstead of aproduct. The application of the partial
fraction expansion to Equation (2.75) require the solution of a continuous-time Lyapunov
equation. Thisis elaborated in detail in Appendix A.2.

For purely imaginary values of s, the double-sided stransform equals the Fourier transform:

(i) = [ R(®eotdt.
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Figure2.9: Part of element (1,1) of the spectrum matrix %(Jm) . It representsthe
power spectrum of the acceleration response of the structure at node 4 (x-
direction). The full lineisthe full FRF. The bending modesin the y-direction are
not visible. The dashed line represents the contribution of the second mode to the

spectrum.

Example

The spectrum matrix of themast structure (Figure 2.1) iscomputed by eval uating expression
(2.74) at frequenciesf, ranging from0to 12.5 Hz (s=jm, o =2xf). A typical element of the
spectrum matrix is shown in Figure 2.9.

2.8 DISCRETE-TIME FREQUENCY-DOMAIN MODELS

Unlike in time domain, frequency-domain identification does not require discrete-time
models. Itis, for instance, possibleto identify acontinuous-time frequency-domain model
from samples of the Fourier transforms of the signals. The reason why this section on
frequency-domain equivalents to the discrete-time modelsis added is that there do exist
identification methods that assume such models. Another reason is that these models
provide atool to assessthe quality of atime-domain identification method. Theidentified
time-domain model can be analytically converted to frequency domain and can be
compared to a non-parametric estimate of the frequency data (obtained by applying the
FFT to the data).

2.8.1 Theztransform

The z-transform is the discrete-time analogy of the s-transform. It is defined as:

X2 = Z[x] = kz:% Xz k
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where zeC isascalar complex variable. An important property of the z-transformiis:
Z[%.4] = 2(X(@) - X))

If theinitial condition iszero x,=0, aforward time shift in time domain correspondsto a
multiplication by zin the z-domain.

By taking the s-transform of a continuous-time signal that equals a given discrete-time
signal at the discrete samples and is zero elsewhere, it can be shown that the z-transform
coincides with the s-transform by setting z=esA [JUAN94]. Therefore, arestriction to
purely imaginary values of the s-variable in continuous-time corresponds to a restriction
to values on the unit circle in discrete-time:

Z = egiolt (2.76)

2.8.2 The spectrum of a stochastic state-space model
In discrete-time, the spectrum of a stationary stochastic processis defined as the double-

sided ztransform of its covariance sequence. Therefore the discrete-time output spectrum
equals:

§@ = ) Rz @2.77)

k--co

where R, istheoutput covarianceat timelagk, defined in Equation (2.53). By substituting
z according to Equation (2.76), the Fourier transform in discrete-time is obtained:

Sy(eju)At) — Z Rkefju)kAt (278)

k--oo

In case of astationary process, the following property holds:

R, =R/
and the spectrum (2.77) can be written as:
@ =5@ + (5 @)

where S, (2) is defined as:



46 CHAPTER2 MODELSOF VIBRATING STRUCTURES

S @ - % + kzl Rz (2.79)

The important factorization property of the output covariances was given in Equation
(2.56):

R, = CA¥IG
If Aisastable matrix, we have the following series expansion:

(zI-A)t = ) Akz
k=1

This series is found after inserting the factorization property (2.56) into (2.79).
Consequently, following closed-form expression is found for the spectrum (2.77):

§/(eieat) = C(zl -A)G + Ry + GT(zU-AT)ICT

2 - ejoks (2.80)

2.8.3 The spectrum of aforward innovation model

Analternative expression for the spectrum of astochastic systemisfound fromtheforward
innovation model that was defined as (2.58):

Z.1 = Az + Ke
Yo = CZ + g

where the innovation sequence is a zero mean white noise sequence with covariance R,.
The forward state covariance matrix is denoted as P =E[z, /] .

By introducing the forward shift operator q (qz, =z, ,), the state vector can be eliminated
from the model to yield:

Y = H(@)e, (2.81)
where H(q) isthe transfer operator that can be computed as:

H(@) = C@l,-A) 'K + I,

Since a forward time shift in time domain corresponds to a multiplication by z in the z
domain, we can simply substitute q by zto yield the transfer function. If zis restricted to
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values on the unit circle z=eieAt (2,76), the discrete-time Frequency Response Function
is obtained.

Theinterpretation of Equation (2.81) isthat y, isastationary stochastic process obtained
by filtering white noise through the filter H(q). By consequence the spectrum of y, can
be written as [LJUN99]:

§(ele2) = H@RH(z )

7z = eloAt

or, after introducing the expression for the transfer function:

Sy(eju)At) = (C(Z|n—A)’1K + )R (1) + KT(Zflln—AT)flCT)

2 cion (2.82)

Of coursg, this forward-innovation spectrum is equivalent to the covariance spectrum
(2.80). The latter can be considered as the partial fraction expansion of the forward-
innovation spectrum (2.82). Similar to the continuous-time case (see Appendix A.2), the
matrices of the partial fraction expansion are obtained by solving a Lyapunov equation.
The forward state covariance matrix P is found as the solution of:

P=-APAT + KRKT

which is a so-called discrete-time Lyapunov equation. The matrices G and R, are
recovered as:

G = APCT + KR,
R, = CPCT™ + R,

Example

The discrete-time spectrum matrix of the mast structure (Figure 2.1) is computed by
evaluating expression (2.80) at frequenciesf, ranging from 0to 12.5 Hz (z= ei»At, o =2xf).
A typical cross spectrum is shown in Figure 2.10. The discrete-time spectrum is compared
to the continuous-time spectrum. Due to the high sampling rate (f = 100Hz), there is not
much difference.
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Figure2.10: Part of element (5,4) of the spectrum matrix %(jm) . Itrepresentsthe
cross spectrum between the acceleration in the y-direction at node 8 and the
acceleration in the x-direction at node 7. Thetop figure is the absolute value of the
spectrum; the bottom figure shows the phase angle. Thefull lineisthe continuous-
time spectrum and the dashed line represents the discrete-time spectrum. The two
pairs of closely-spaced modes are visible on this cross spectrum plot.

2.9 CONCLUSIONS

This chapter presented several models of vibrating structures. They differed in that they
are in continuous-time or discrete-time; that they are input-output or output-only models
and that they are in time domain or in frequency domain. The chapter started by FE
models. Theevolutionfrom theanalytical to theexperimental world consisted of following
steps: the FE model isreduced, sampled and anoise model isadded. A simulation example
illustrated the modelling concepts.

Next chapter relies heavily upon the results obtained in this chapter. It will be shown how
the stochastic state-space model, the ARM A model and the continuous-time frequency-
domain models can be identified from measurements.



STOCHASTIC SYSTEM
IDENTIFICATION

In this chapter stochastic system identification methods are discussed and
compared. Section 3.2 introduces the primary data types that are required by the
identification methods: time data, covariance sequences or spectra. In Section 3.3,
spectrum-driven methods are discussed. Section 3.4 deals with covariance-driven
methods and Section 3.5 treats data-driven methods. Covariance- and data-driven
subspace methods are compared in Section 3.6. Useful postprocessing tools are
presented in Section 3.7. In Section 3.8, all methods are experimentally compared.
Section 3.9, finally, concludes the chapter.

49



50 CHAPTER3  STOCHASTIC SYSTEM IDENTIFICATION

3.1 INTRODUCTION

This chapter deals with stochastic system identification methods. In a civil engineering
context, structures such as bridges and towers are the systems; the estimation of the modal
parameters is the particular type of identification and stochastic means that the structure
is excited by an unmeasurable input force and that only output measurements (e.g.
accelerations) are available. In these methods the deterministic knowledge of theinput is
replaced by the assumption that the input is a realization of a stochastic process (white
noise).

System identification starts by adopting a certain model that is believed to represent the
system. Next, values are assigned to the parameters of the model as to match the
measurements. In previous chapter, severa equivalent models for a vibrating structure
were studied. From that chapter, the type of modelsto work with are clear, only the model
order remains to be chosen. In this chapter an overview is given of system identification
methods that estimate the parameters of the stochastic models of previous chapter. These
methods can be divided according to the type of data that they require: raw time data,
covariances or spectra. The overview of the methods is given in the reverse order as
compared to the overview of the models of chapter 2: we start with frequency-domain
spectrum-driven methodsto end with time-domain data-driven methods. Thispresentation
order correspondsto the historical application of stochastic system identification methods:
from picking the peaks of spectral densitiesto subspace methodsthat make extensively use
of concepts from numerical linear algebra.

3.2 DATATYPES

Inprinciple (output) data y, isavailableasdiscrete samplesof thetimesignal. Thissection
deals with the transformation of time datato covariances or spectra. Also some notations
are introduced.

3.21 Timedata

Measurements for modal analysis applications typically contain some redundancy. Since
the spatial resolution of the experimental mode shapes is determined by the position and
the number of the sensors, usually many sensors (mostly accelerometers) are used in a
modal analysis experiment. Theoretically, if none of the sensorsis placed at a node of a
mode, all signals carry the same information on eigenfrequencies and damping ratios. To
decrease this redundancy, some signals are partially omitted in the identification process,
leading to algorithmsthat are faster and requireless computer memory without losing alot
of accuracy. In the end, the omitted sensors are again included to yield the "full" mode
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shapes'. Assume that the | outputs are split in a subset of r well-chosen reference sensors
and asubset of | -r other sensors, and that they are arranged so asto have the references
first:

s 4 _ Ly, L=(, 0
Yi = yore ) W =Ly, L=( 0 (3.1
k

where y;¥cR" are the reference outputs and y, " cR'" are the others; LeR™ is the
selection matrix that selects the references. The choice of the reference sensorsin output-
only modal analysis corresponds to the choice of the input locations in traditional input-
output modal analysis[EWIN84, HEY L95].

It isuseful in the development of some of the identification methods to gather the output
measurements in a block Hankel? matrix with 2i block rows and N columns. The first i
blocks have r rows, the last i have | rows. For the statistical proves of the methods, it is
assumed that N— co . TheHankel matrix H'"® eR(""™N can bedivided into apast reference
and afuture part:

y(;ef Y1 yr\rﬁfl

ref ref ref
Yi© Yo YN

Href:

of o \
1 1 AP i i _ Yoi1 _ Y, |3 mpag
\/N Yi Y o Yina Y. Yf $|| "future" (32)

i|2i-1
yi+1 yi 2 "t yi+N

Yore Yo oo Yoino2

Note that the output datais scaled by afactor 1//N. The subscriptsof Y, , ,cR"™" are
the subscripts of the first and last element in the first column of the block Hankel matrix.
The subscripts p and f stand for past and future. The matrices Yf and Y, are defined by
splitting H ™ in two parts of i block rows. Another division is obtained by adding one
block row to the past references and omitting the first block row of the future outputs.
Because the references are only a subset of the outputs, |-r rows are left over in this new

division. These rows are denoted by Y,/ eR(N:

“This rather abstract explanation will become more clear when the identification methods are devel oped.

%A Hankel matrix isamatrix that is constant along its anti-diagonal .
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i Yo |ty
Hre - Yi‘]mf - y”*i“—‘f T l-r (3.3)
Yi+1\2i—1 Y{ 0 1(i-1)

3.2.2 Covariance estimates

Output covariances are defined in Equation (2.53) as:

L
R = Ely.%] = lim N kz% Yii Y

N— oo

The second equality follows from the ergodicity® assumption. The reduced covariances
between al outputs and the references are defined as the first r columns of the full
covariance matrices:

R™ = Ely,(yy)7 = RLT eR™ (3.4)

Similarly, the reduced "next state - output" covariance matrix G™ is defined as:

G™ = E[X.,, ()] = GLT eR™" (3.5)

Andfori=1,2,...:
ref B i of
R® = RLT = CA"'G"

LR,i - (Gre'f)T(Aifl)TCT

( Riref )T (36)

These equations are equivalent to the factorization properties of the full covariance
matrices (2.56).

The output covariances are gathered in a block Toeplitz* matrix Tlrﬁf eR'™" that can be
computed from the datablock Hankel matrix. Indeed, for N— co and assuming ergodicity,
we have:

3Ergodi city meansthat the expected value of atime sample of astationary stochastic process (i.e. theaverage
over aninfinite number of processes) can bereplaced by the average over oneinfinitely long record of the process.

A Toeplitz matrix isamatrix that is constant along its diagonal.
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ef ef ef
R R ... R/

ref ref ref
T vy | R R R (37)

Ry% Ry ... R™

Of course, in redity afinite number N of datais available and a covariance estimate Ifii is
simply obtained by dropping the limit:

) g N2
R, = N D Vi (3.8)
k=0

Instead of computing the covariance estimate by multiplication and summation of time
samples, a high-speed implementation of the convolution in Equation (3.8) is possible by
applying the FFT to the time signals, cross-multiplying the Fourier transforms and
applying the inverse FFT to the cross-products. The inverse FFT results in a periodic
covariancefunction estimate. The biaserror dueto thiscircular convolutionisavoided by
zero-padding the original signals [BEND93]. A disadvantage of using covariances as
primary datain identification isthat it squares up the data. This may affect the numerical
accuracy [GOLU89].

3.2.3 Spectrum estimates

Another useful data format is the spectrum %GC'X', defined in Equation (2.78) as the
discrete-time Fourier transform of the covariance sequence:

Sy(eju)At) = Z Rkefju)kAt

k=00

Introducing the reference sensors (3.1) yieldsa |xr complex spectrum matrix %’d = %L T
that consists of the first r columns of the full spectrum matrix.

Again, only afinite number of datais available: the covariances are estimated asin (3.8)
and cannot be computed up to infinitetime lag. There is awhole literature on estimating
spectrafrom data[MARP87, BEND93, STOI97]. Two popular non-parametric spectrum
estimates are the weighted averaged periodogram (also known as modified Welch's
periodogram) and the weighted correlogram. Weighting meansthat the signal isweighted
by one of the classical windows (Bartlett, Hamming, Hanning, ...) to reduce |eakage.
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Welch's method starts with computing the Discrete Fourier Transform (DFT) of the
weighted output signal:

N-1
Y(elox) = 3w ye ik (3.9)
k=0

where w, denotesthe window function in this context. If N isapower of 2, the DFT can
be efficiently computed at the discrete frequencies

2n

oo:L —, 1 =0,...,N-1
N At

by using the FFT. An unbiased estimate of the spectrum isthe weighted periodogram, i.e.
the DFT of (3.9) timesits complex conjugate transpose and scaled by the squared norm
of the window:

1 . T
oAt - j oAt
= (el Y T(elon)

¥y |Wk|2 (3.20)
k=0

éy(e joAt) =

The variance of the estimate isreduced by splitting the signal in segments, computing the
weighted periodograms of all segments and taking the average. The spectrum estimate in
(3.10) yields a rank-one matrix (a column vector multiplied by a row vector). Segment
averaging increasesthe rank of the estimate because several rank-one estimates are added.

Theweighted correl ogram method startsby computing the covariance estimatesasin (3.8).
The weighted correlogram is defined as the DFT of the weighted covariance estimates:

L
S,(eieat) = kZ:L W, Redokat (3.11)

where L is the maximum number of time lags.

By using measurement hardware such asfrequency analyserswhich deliver spectrainstead
of the original time data, the user could forget that these spectraarein fact computed asin
(3.20) or (3.11). Consequently, they have to be considered as estimates and not as true
spectra. Limitations and drawbacks of the DFT related to modal analysisare discussed in
[MITC86] and [PAND914)]. Advantagesof frequency-domainidentification are discussed
in [SCHO91] and aso recapitulated in [McKE95] and [LJUN99]. Evidently, the
frequency-domain advantagesrelated to the use of aperiodic input signal are not carrying
over to the output-only case.
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Example

The mast example of previous chapter (Figure 2.1) isused again in this chapter to illustrate
and compare the system identification methods. As explained previously (see Page 29), the
structure is excited by white noise inputs and 6 accel eration outputs are simulated, sampled
at 100 Hz. The output data are filtered with an eight-order Chebyshev type | lowpass filter
with a cutoff frequency of 10 Hz. Afterwards the data is resampled® at a lower rate:
f,=25Hz. This preprocessing corresponds to practice where the measurements are filtered
with an (analog) lowpassfilter before sampling to prevent aliasing. Thefiltering introduces
additional polesin the data. Finally, white measurement noise is added to the outputs, with
anoise-to-signal ratio N/S=10%. TheN/Sratio istheratio of the standard deviations of the
noise sequence and the output signal . After resampling 16384 data points per output channel
are |eft. The first (preprocessed) output signa is partly shown in Figure 3.1. A typical
estimated covariance sequence Fil (1,1) (3.8) isshowninFigure3.2. Itiscompared with the
true covariance sequence, computed from the stochastic state-space matrices (A,G,C,R,)
according to Equation (2.56).

An estimated power spectrum éy(l,l) , using Welch’ smethod, is shown and compared with
the true spectrum (2.80) in Figure 3.3. The cutoff frequency (10 Hz) of the lowpassfilter is
clearly visible. One of the consequences of adding measurement noise, isthat the spectrum
does not go to zero for f—>0Hz, as would be expected in the case of acceleration
measurements (and indicated by the true spectrum). Finally, two non-parametric spectrum
estimates are compared in Figure 3.4: the weighted averaged periodogram (3.10) and the
weighted correlogram (3.11).

QOutput, Yy
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Figure 3.1: Part of thefirst output signal. By comparing this preprocessed signal
with the original signal (Figure 2.5), the lower sampling rate is obvious.

*The described filteri ng and resampling procedure corresponds to the application of the decimate
command of MATLAB's Signal Processing Toolbox [SIGN97].
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Figure 3.2: The full line represents the true output covariance sequence. The
dashed linewith the ‘+' markersisthe estimated output covariance sequence. The
sampling frequency of the true covariance sequence is 4 times higher, but

otherwise both sequences correspond very well.
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Figure 3.3: The full line represents the true spectrum and the dashed line the
estimated spectrum using Welch' s averaged periodogram method: the 16384 data
samples are divided in 8 segments of 2048 points; after multiplication with a
Hanning window, an FFT was applied to every segment; finaly the 8 FFTs are
averaged to yield the spectrum estimate. The influence of the lowpass filter at
10 Hz and the added measurement noise are clearly visible.
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Figure 3.4: Comparison of non-parametric spectrum estimates. The full line
represents the weighted correlogram (3.11) with the number of timelags L =512.
Theestimated covariances are multiplied with aHanning window beforethe FFT.
The dashed line represents the weighted averaged periodogram (3.10), see aso
Figure 3.3. The correlogram looks smoother.

3.3 FREQUENCY-DOMAIN SPECTRUM-DRIVEN METHODS

A spectrum-driven identification method estimates the parameters of a spectrum model
from "measured” samples of the spectrum matrix. Asexplained in previous section, these
samples are obtained by applying a non-parametric identification method to the time-
domain measurements. The spectrum can be parametrized in terms of the modal
parameters® as in (A.6) or (A.8) or in terms of rather abstract matrices as in (2.80) or
(2.82), from which themodal parameterscan be extracted in asecond stage. The overview
starts with the peak-picking method which seems to be very relevant for the civil
engineering practice. In more than 90% of the cases, a peak-picking variant is used to
estimate the modal parameters of astructure excited by an ambient load. Next, asingular-
val ue-decomposition extension to peak picking is discussed that overcomes some of the
drawbacks. A fina section reviews some recent, more advanced methods that solve the
spectrum-driven identification problem.

3.3.1 Peak picking (PP)

The method

The most simple approach to estimate the modal parameters of a structure subjected to
ambient | oadingisthe so-called Peak-Picking (PP) method. The method isnamed after the

®This particular parametrization is also called pole-residue form.
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key step of the method: the identification of the eigenfrequencies as the peaks of a
spectrum plot. Probably because of itssimplicity it isthe most widely used method in civil
engineering. Themethod isfor instance discussed in[BEND93]. Wewill giveatheoretical
justification of the method in view of the results of previous chapter.

In case of acceleration measurements, the following expression for the modally
decomposed spectrum was obtained (A.7):

(S*)z {1, }<v T>

& s ) (3.12)
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This expression is the product of two summations wherein each term represents the
contribution of a certain mode. A term of the left factor is proportional to (s-4, yland
reaches a maximum if s approaches i, = -& o, +j(1- &f)”zwi (2.16). For low damping
ratios, this is achieved around s=jo,. If additionaly the assumption is made that the
modes have well-separated frequencies, the spectrum at any eigenfrequency o, is
dominated by a single mode and can be approximated by:

{VCI}<IC;I—> RU {ICT}<VC|I-|>

S (jo) =
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By defining the complex scalar o, as:
o = <lg T> R, {l. *}

(&)

the approximated spectrum at resonance can be rewritten as:

SGe) = o {v, } <v > (3.13)

Theinterpretation of thisequationisthat at resonance, each column (or equivalently each
row) of the:spectrum matrix can beconsidered asan estimate of the observed mode shape { v, }
up to some scaling factor. Of course, if the column (or row) correspondsto a DOF of the
structure that is situated at a node of a certain mode, this mode cannot be identified.

The damping ratios remain to be determined. In [BEND93] it is suggested to use the half-
power bandwidth method to estimate the damping. Assume that o, and w, are the two
frequencies left and right from, and as close as possible to the eigenfrequency o,, where
the magnitude of acertain element of the spectrum matrix ishalf the resonance magnitude.
A damping estimate is then obtained as:
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Itishowever believed (and confirmed by our numerical example; see Figure 3.19) that this
estimate is not very accurate.

Refinements and practical issues

Some refinements of the PP method exist. The coherence function between two channels
tend to go to one at the resonance frequencies because of the high signal-to-noise ratio at
these frequencies [BEND93]. Consequently inspecting the coherence function can assist
in selecting the eigenfrequencies. Also the phase angles of the cross spectraare helpful: if
real modes are expected, the phase angles should be either 0° or 180° at the resonance
frequencies.

A practical implementation of the PP method was realized by Felber [FELB93]. In order
to get a global picture of the eigenfrequencies, he suggested to compute an averaged
normalized power spectrum from the diagonal elements of the spectrum matrix. By adding
and subtracting signalsfrom symmetric points of the structure the "nature” of amode (e.g.
torsion versus bending) may be highlighted.

If a good reference sensor (3.1) is chosen only the spectra between all sensors and the
single reference sensor need to be estimated from the time data and not the full spectrum
matriX. This reduces the work in (3.10) or (3.11). The reason is that, theoretically one
column (or one row) of the spectrum matrix suffices to obtain the mode shape estimates
(3.13).

Discussion

The method assumes that the damping is low and that the modes are well-separated. A
Violation of these assumptions leads to erroneous results. In fact the method identifies
operational deflection shapes’ instead of mode shapes and for closely-spaced modes such
an operational deflection shape will be the superposition of multiple modes. Other
disadvantages are that the selection of the eigenfrequencies can become a subjective task
if the spectrum peaks are not very clear and that the eigenfrequencies have to be a subset

"An operational deflection shape is here defined as the deformation of the structure when it is excited by a
pure harmonic. Theoretically it is a combination of al mode shapes, but in practice only the modes having an
eigenfrequency close to the excitation frequency contribute significantly.
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of the discrete frequency values of the DFT (Thisisof course no problem if the frequency
resolution is fine enough).

Degspite these drawbacks many civil engineering cases exist where the method is
successfully applied; see for instance [FELB96] and [CUNH99]. The popularity of the
method is due to its implementation simplicity and its speed, because it basicaly relies
upontheFFT. For tower-like structuresthe peak-pi cking method may become problematic
since the bending modes along any of the 2 principal axesand/or any of the torsion modes
are likely to have closely-spaced frequencies. For bridge-like structures this seems to be
less the case.

Example

The PP method is applied to the simulated data from the mast structure (Figure 2.1). The
spectrum matrix is estimated by Welch's method (3.10) according to the processing
parametersexplained in Figure3.3. Thefrequency resolutionis Af =1 /T =0.0122Hz, where
T is the measurement time of one segment T =NAt =2048x0.04s (N isthe number of data
points per segment). The trace® of the spectrum matrix is shown in Figure 3.5. Thiskind of
plotistypically used inthe PP method toidentify the el genfrequencies by picking the peaks.
Thetrueeigenfrequenciesarealso shown asverticd lines. It isimpossibletoidentify thetwo
closely-spaced modes around 2.4 Hz. The spectrum trace has only one peak at this
frequency. Eventually, the two close modes around 7 Hz could be identified (see zoom of
Figure 3.5). Itishowever morelikely that the two peaks of the spectrum trace are dueto the
typical erratic behaviour of the non-parametric spectrum estimates.

6 8
f[Hz] 68 7 7.2

Figure 3.5: The trace of the spectrum matrix as a function of the frequency. The
true eigenfrequencies are shown as dash-dotted vertical lines. The overlayed plot
isazoom of the trace around 7 Hz.

8The trace of amatrix is the sum of its main di agonal elements. By consequence the trace of the spectrum
matrix isthe sum of the power spectra.
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Figure3.6: Thetransformed spectra. Thefull lineisthe spectrum of thex-bending
signals; the dotted line represents y-bending and the dashed line representstorsion.
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Figure 3.7: Two coherence functions. The full line is the coherence function
between channels 4 and 5 (i.e. one channel in x-direction, the other in y-direction);
the dashed line is the coherence between channels 4 and 6 (i.e. two channelsin x-
direction).

More information can be obtained by further processing the signals. By applying asuitable
transformation to the spectrum matrix, the "nature" of the modes can be highlighted. The
transformation is based on the geometry of the structure and the location of the sensors. The
transformed spectra are shown in Figure 3.6. The x-bending, the y-bending and torsion
components of the modes have been separated. Even from this plot, the close modes are not
easily identifiable. Both the x-bending and y-bending graph have a peak around 2.4 and
7 Hz, but this can also signify that these modes are a combination of x- and y-bending.

Plots of coherence functions are most useful to improve the results of the PP method. In
Figure 3.7 the coherence functions between channels 4 and 5 (full line) and channels 4 and
6 (dashed line) are shown. The torsion modes are clear in both coherence functions, but the
bending modes do not show up in the coherence function between a signal in x-direction
(channel 4) and a signal in y-direction (channel 5). This means that the x and y-bending
modes are different modes, although they have very close frequencies.
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By transforming the spectrum matrix and inspecting coherence functions, it was possible to
identify the close modes with the PP method. It may however be clear that the success of
these proposed enhancements heavily depends on the geometry of the structure and the skill
of the analyst. The identified modal parameters are presented at the end of this chapter,
together with the results of the other identification methods.

3.3.2 Complex modeindication function (CMIF)

The method

A more advanced method consi sts of computing the eigenval ue decomposition or Singular
Value Decomposition (SVD) of the spectrum matrix®. This "method based upon the
diagonalization of the spectral density matrix" (asit was called) was already used in the
beginning of the eighties to obtain the modes of a vibrating system subjected to natural
excitation [PREV 82]. Some years|ater, the method was al so applied to FRFsand became
known asthe Complex M ode I ndication Function (CM I F). Assuggested by the name, the
CMIF was originally intended as a tool to count the number of modes that is present in
measurement data. Asauseful by-product the CM I F also identifiesthe modal parameters
from FRFs [SHIH88]. Recently the spectrum-driven method received again attention as
an alternative for the PP method in civil engineering applications [BRINOO] .

The method is based on the fact that the transfer function or spectrum matrix evaluated at
a certain frequency is only determined by a few modes. The number of significantly
contributing modes determinesthe rank of the spectrum matrix. The SVD istypically used
for estimating the rank of amatrix: the number of non-zero singular values equal sthe rank
[GOLUB89]. The spectrum matrix isrelated to the transfer function matrix H, and theinput
covariance matrix R, as (2.74).

S,(9 = H(9RH(s7)

Let usassumethat R isof full rank. Since the rank of a product of matrices equals the
lowest rank of any of itsfactors, it sufficesto discussthe rank of the transfer function H_,
which, in case of acceleration measurements, is modally decomposed as (A.3):

9Since the spectrum matrix is aHermitian matrix, its eigenvalue decomposition coincides with its SVD.

lOAlthough in this paper, the method is called "frequency domain decomposition method", we will stick to
the best-known name (CMIF) in this thesis.
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As already indicated in previous section, at a certain frequency only a few modes are
determining theresponse. At resonancethetransfer function reachesalocal maximum and
incaseof well-separated modesonly onemodeisimportant. Thismeansthat therank of H_,
is approximately one at resonance. If two or more modes have about the same
eigenfreguencies, the rank will be two or more at that frequency.

Assaidtherank of H carriesover to therank of the spectrum matrix Sy The SVD of this
matrix can be written as:

§(9 = VXU (S = 3 o (9{u9}<u(9)> (3.14)

v=1

where U (s), V(s) arecomplex unitary matrices. The diagonal matrix Z (s) containsonits
diagonal the real positive singular values in descending order. At resonance, the number
of singular valuesthat reach alocal maximum equal the number of closely-spaced modes.
The function X(s) isthe actual CMIF.

If only one mode is important at a certain resonance frequency o,, the spectrum
approximates a rank-one matrix and can be decomposed as (3.14):

S(io) = ojjo) {u(e)} <ufi(je)> (3.15)

By comparing this expression to (3.13) it is concluded that the first singular vector at
resonanceisan estimate of the mode shape at that frequency. In case of mode multiplicity
at aresonancefrequency, every singular vector corresponding to anon-zero singular value
yields a mode shape estimate, if the mode shapes are orthogonal to each other. This last
condition is only approximately true.

Discussion

The CMIF method can be considered as an SVD extension to the PP method. The SVD
is able to resolve mode multiplicity. The method can aso be applied to the reduced
spectrum matrix ajd:%L TeC™ . In this case, the maximum number of detectable
multiple poles cannot exceed r, the smallest dimension of Sff. Another limit on the
maximum pole multiplicity is the number of rank-one averages that constitutes the
spectrum estimate (3.10).
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Extensions of the CMIF method are possible that do estimate eigenfrequencies and
damping ratios differently asin the PP method. After applying the SVD to the spectrum
matrix, thismatrix isinfact decomposed in single-DOF systems. To such asystem, single-
DOF modal parameter estimation methods could be applied [EWIN84, HEYL95,
MAIA97, ALLE99].

Example

The SVD isapplied to the estimated spectrum matrix of the mast structure (Figure 2.1). The
obtained singular values as afunction of the frequency are plotted in Figure 3.8. Since the
full spectrum matrix is used, there are six singular values. Around 2.4 and 7 Hz, there are
two significant singular values, indicating that there are two close modes at these
frequencies. In the neighbourhood of these frequencies, the first singular vector is an
estimate of the "strongest” mode, whereas the second singular vector is an estimate of the
other mode. Since the maximum mode multiplicity istwo, it would have been sufficient to
apply the SVD to the reduced spectrum matrix that only consists of the spectra between all
sensors and two reference sensors. The detailed modal parameter estimation results are
presented at the end of this chapter.
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Figure 3.8: The Complex mode indication function (CM|F). The singular values
of the spectrum matrix are plotted as a function of the frequency. Around 2.4 Hz
and 7 Hz, two singular values are significant, indicating that there are two close
modes.
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3.3.3 Other spectrum-driven methods

In this section some other more advanced spectrum-driven methods are briefly reviewed.
Contrary to the PP method or the CMIF that consider only one mode at a time, these
methods estimate the parametrized spectrum matrix as awhole.

Freguency-domain maximum likelihood identification

Maximum Likelihood (ML) identification isan optimization based method that estimates
the parameters of amodel by minimizing an error norm. A discussion onthe use of theM L
estimator to identify parametric frequency-domain models can be found in [SCHO91,
PINT94]. The ML method results in equations that are non-linear in the unknown
parameters. This requires an iterative procedure with related problems such as:
convergence not being guaranteed, local minima, sensitivity to initial values and a high
computational load. However, it seems that these drawbacks have been overcome and it
has been shown that M L identification isarobust method to find the modal parameters of
astructure from alarge and noisy data set [GUIL98]. Originally intended for application
to FRFs, the method was extended to use spectra as primary data, so that it also could be
used in output-only cases [HERM 98, GUIL99].

Soectrum-driven stochastic subspace identification

Subspaceidentification will beexplainedin detail in the sectionson covariance-driven and
data-driven identification methods. The major advantage of subspace identification isthe
absence of non-linear parametric optimization problems. In [VANQO97] a "typica”
subspace algorithm was developed to identify a state-space model (2.51) by fitting the
expressionfor adiscrete-time spectrum (2.80) to measured sampl es of the spectrum matrix.
The algorithmis perhapsnot a pure spectrum-driven method because thefirst step consists
of transforming the spectrum sampl es back to time domain by applying theinverse DFT.
The agorithm is certainly useful in these cases where, for some reason, only spectrum
measurements are available. For lightly damped systems and for a small number of
frequency samples, theinverse DFT of the measured spectrumisnot avery good estimate
of the output covariance function. Thisfact istaken into account in [VANQO97], based on
resultsfrom [McKE95] where an explicit formulaisderived for theinverse DFT of afinite
sequence of FRF samples, which differ from the impul se response expression.
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34 TIME-DOMAIN COVARIANCE-DRIVEN METHODS

In this section some covariance-driven methods are reviewed. An important feature of a
covariance matrix isthat it can be factorized into the system matrices, as pointed out in
Equation (2.56). A first method belongs to the class of so-called instrumental variable
methods. Although itsalgorithm isformulated in terms of the covariances, it does not use
the factorization property. The second method, on the contrary, iscompl etely based onthe
factorization property. It is a so-called subspace method.

34.1 Theinstrumental variable (1V) method

Although the Instrumental Variable (V) method is far from new, it is extensively
discussed in this thesis in order to highlight the correspondence to the so-called
Polyreference Time Domain (PT D) method after substituting impul seresponsesby output
covariances. The PTD method is probably the most widely-used traditional™ modal
parameter estimation method.

Instrumental-variable theory

In Chapter 2, it wasfound that an ARM A model of suitable order can represent avibrating
structure. Unfortunately, the application of a classical prediction error method [LIJUN99]
toan ARMA model resultsin ahighly non-linear parameter estimation problem; see also
Subsection 3.4.3 and 3.5.2. The non-linearity is caused by the MA parameters. The
advantage of the IV method isthat it identifies only the AR parameters (and that thisis
achieved in alinear way), while the underlying model structure still isan ARM A model.
In Subsection 2.6.2, it was shown that for the extraction of the modal parametersthereis
no need to identify the MA part, since they only rely upon the AR part. The ARMA
representation of a vibrating structure was given by Equation (2.59):

yk * 0Llylel oA 0(pykfp - ek + y1ekfl o A ypel«p

If the ARMA order p times the number of outputs| is equal to or larger than the system
order n (pl = n), the system poles are included in the model.

The idea of system identification is to "fit" such a model to measured data y,. A good
parameter estimation method should extract the maximum information from the data,
leaving residuals e, that are uncorrelated with past data. Thisis formally written as.

Mraditional means here that it is an input-output based method.
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Vi>0: E[gyl] = E[6]JEly ] = 0 (3.16)

where the first equality saysthat e, and y, ; are uncorrelated; and the second equality
follows from the zero-mean property of the noise sequence. If on the other hand, the
residualsare correlated with past data, they still contain useful but unmodel ed information
and the model isnot ideal. The derivation of the IV method starts by imposing conditions
like (3.16) to the ARMA model in order to get rid of the right hand side (the MA part).
The "oldest" noiseterm is & ps SO by post-multiplying the ARMA model by ykapfi (for
i>0) and by taking the expectation we obtain:

Vi>0 : E[Y, Vi pil * GEN  Yipid *oee t apE[ykfpykapfi] =0

Because of stationarity we have: E[y, y, "] =E[y,.;Y{] =R, and thebasic |V equation can
be written in terms of the output covariances R:

Vi20 R+ ogR Gy v oR =0 (3.17)

By replacing the output covariances by their estimates Iii (3.8) and writing down the
equation for all available time lagsi, the AR parameters Oy, -+, 0t CEN be estimated by
solving the resulting over-determined set of equationsin aleast squares sense. Finally, the
eigenvalues and the observed mode shapes are obtained from the eigenvalue
decomposition of the companion matrix of the AR coefficients as described in Section
2.6.2.

A more general discussion and some more references on 1V methods can be found in
[LIJUN99]. Interesting to note (and very relevant for civil engineering practice) isthat the
IV method is robust against non-stationary inputs (e.g. awhite noise sequence with time-
varying covariance). The proofs are more involved in this case [BENV85].

Introducing the reference sensors

A formulation in terms of the covariances between all sensors and the subset of reference
sensors (3.4) is now be derived. We start with a reversed-time (or backward) ARMA
model that only uses the reference outputs:

ref b\, ref b yref _ ab bab bab
Yo T 0 Yiep toee U‘p yk-rp L 1 U P ypek+p

The model is running backward in time: the current output y; cR" iswritten in terms of
future outputs. Sinceonly reference outputsare used, the backward matrix coefficientsand
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the residual's have reduced dimensions: a®cR"™", yPcR™ and ePcR". The order p of the
reduced model is now related to the system order as: p>n/r.

A good (backward) model yields residuals that are uncorrelated with future outputs:

Vi>0: E[ePy] = O

Note that thisis, theoretically, a stricter condition as (3.16): the residuals eP of a model
that only usesthe reference outputs are uncorrelated with all future outputs. However, due
to the redundancy in the data, there is practically not much difference between this
condition and (3.16). Using (3.4), the basic |V Equation (3.17) is now written as:
vi>0: LR + o LR g + e ocg LR, =0 (3.18)
From the definition of the covariances and because of stationarity, it holdsthat: R | = R.
By taking the transpose of previous equation and writing it down for g availabletime lags

i, following set of equations is obtained that can be solved for the backward AR
coefficientsin aleast squares sense:

ref ref ref T ref
R, RS .. R () Ry

ref ref ref b\T ref
AL R A . (3.19)

of of of of
Rpr+qu Rpr+w Rqr (QS)T Rpr+q

Theinteger gisrelated to the overdetermination of this system of equations: thereare qglr
equations for pr2 unknowns.

Computing the modal parameters

Similarly to the derivations in Section 2.6, it can be shown that the backward ARMA
model is equivalent to a so-called backward-innovation state-space model and that the
backward AR matrices are related to the state-space matrices as:

(G™)T(AT)P + ) a?(G™)T(AT)P" = 0 (3.20)
i-1

where G™cR™ has been defined in Equation (3.5). By introducing the eigenvalue
decomposition of A, post-multiplying by ¥ T and defining:
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Equation (3.20) can be rewritten as:

ef - ef
(G)TAS + o (GR)TAS™ + .. + a8 (G)T = 0 (3.21)

This equation reveals that the eigenvalues A, and the reduced stochastic modal
participation matrix G,ff can be computed from the eigenvalue decomposition of the
companion matrix of the backward AR coefficients (see a'so Section 2.6.2).

The observed mode shapes need to be determined in a second step. The factorization
property of the output covariances (3.6) is useful for this purpose:
R_mf = C Aifl Gref
1
CYA g iG™
V] Aifl Gref
d

m

By writing down this equation for p timelagsi, following set of equationsis obtained in
V:

v, = (R RS .. R®) (3.22)

where F;‘ffme(cnx’” is the so-called reversed extended modal stochastic controllability
matrix, defined as:
L = (ARG ARZGH . AGH G

p.m m

This matrix can be constructed from the results of the first step of the method. The right
hand side of Equation (3.22) was already estimated from the datain the first step of the
method: it isthe first row of the Toeplitz matrix in Equation (3.20).

Implementation and stabilization

A typical problem of estimating a parametric model from data is the determination of the
model order. A p™" order ARMA model based on r reference outputs contains pr poles.
Conseguently, anindication of themodel order isgiven by the"expected" number of poles
covered by the data. Thisexpected number can be based on physical insight or counted as
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twice™ the number of peaks in the frequency-plot of a non-parametric spectrum estimate
(see also the PP method, Subsection 3.3.1). A more accurate model order estimate is
provided by the CMIF, a frequency-plot of the singular values of a non-parametric
spectrum estimate (Subsection 3.3.2).

More formal procedures estimate models of different order and compare these models
according to a quality criterion such as Akaike's Fina Prediction Error (FPE) or
Rissanen’s Minimum Description Length (MDL) criterion [LJUN99]. These criteria
include a penalty for model complexity, avoiding an overfit.

However, in moda analysis one is usually not interested in a good model as such, but
rather in the modal parameters extracted from that model. Practical experience with
parametric modelsin modal analysis applicationslearnt that it is better to over-specify the
model order and to eliminate spuriousnumerical polesafterwards. Thefamousstabilization
diagram (see for instance [HEYL95, ALLEQ9]) is a great tool to achieve this goal. The
poles corresponding to a certain model order are compared to the poles of a one-order-
lower model. If the eigenfrequency, the damping ratio and the related mode shape (or
modal participation factor) differences are within preset limits, the pole is labelled as a
stable one. If we choose, for instance, the following limits: 1% for eigenfrequencies, 5%
for damping ratios and 2% for the modal vectors, the stability requirements are:

f® _fP+1)
100% ——— < 1%
f®

) _ glpr1)
100% % < 5% (3:23)
S

100% (1-MAC(p,p+1)) < 2%

where‘p’ denotes the model order at which f, & and the mode shapes {v} areidentified™.
The Moda Assurance Criterion (MAC) is nothing else than the (squared) correlation
between two modal vectors:

| votve 2

MAC(p,p+1)) =
ve Ve (veDye) (3.24)

12Every spectrum peak correspondsto apair of complex conjugated poles. Thereforethemodel order istwice
the number of resonance frequencies.

13The mode shapes {v} are sometimes replaced by (the transpose of) the modal participation factors {g}.
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By definition the MAC is a number between 0 and 1. It is often used in modal analysis
applications becauseit is ableto characterize the correspondence between mode shapesin
one number.

The spurious numerical poleswill not stabilize at all during this process and can be sorted
out of the modal parameter data set more easily. For an efficient construction of the
stabilization diagram, it is important to avoid repetitive computations of common steps
when estimating models of different order. For the IV method thisistrivially achieved by
estimating the covariance Toeplitz matrix (3.7) only once. First the maximum number of
poles n . is specified. Depending on the quality of the data n_ should significantly
exceed the number of expected poles: ahigh model order isrequired to identify poles that
areburied in noise. The maximum ARM A model! order p, . isthenearest integer towards
infinity to nmax/r. Including the right hand side of (3.19), the IV method requires a
covariance Toeplitz matrix of maximum p_. +1 block columns and g block rows.
Comparing the two expressions for the Toeplitz matrix, (3.7) and (3.19), i can be
determined as i=p,,+1 and g can be chosen equa to q=i. By this choice, the
overdetermination of (3.19) isensured. The lower order models (for p<p,.., ) are smply
obtained by selecting the last p block columns of the initially constructed covariance
Toeplitz matrix and solving (3.19) for the AR coefficients.

Relation to other methods

It is known for some time that there exist similar mathematical expressions for impulse
responses and output covariances (of a system excited by white noise), see for instance
[AKAI74b, BEND93] and Subsection 2.5.2. In modal analysis, this observation isused to
feed classical modal parameter estimation methods, that normally work with impulse
responses, with output covariancesinstead. Although derived in a different way, the fina
equationsof thelV method correspond to the Polyreference Time Domain (PT D) method
after substituting impul se responses by output covariances. The PT D method is probably
themost widely-used traditional modal parameter estimation method. It containsthe (L east
Squares) Complex Exponential (L SCE) and thel brahim Time Domain (1 TD) methods as
special cases. For an overview, rel ations between thesetraditional (input-output) methods
and the original references, see [LEUR84, ALLE94, HEYL95, ALLE99].

The backward reference model (3.18) isthe most useful in practice: in afirst stage (3.21)
the poles A and the stochastic participation matrix G,:ff areobtained in an efficient way.
In afull model (i.e. al outputs are considered as references) the involved matrices are
larger. This has a negative effect on the computational efficiency. Also the stabilization
diagram makeslesssensein case of afull model: every timethemodel order pisincreased
by one, there are | additional poles (against only r in case of a reference model). This
meansthat already in afew stepsamodel isobtained that includes alarge number of poles
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and that thereis not much stability information. In asecond stage the full mode shapesare
obtained according to Equation (3.22). Note that a forward reference model (similar to
(3.17)) isn't too useful: afirst stage would yield the mode shapes at the referencelocations
only LVeC™" and a second stage the full participation matrix Gme(C'X”, whereas oneis
obviously more interested in the full mode shapes.

Instead of estimating the mode shapes according to Equation (3.22) that re-usesthe output
covariances, it is common practice to use a frequency-domain fitting procedure
[HERM99]. Inthiscasethe spectrum matrix i sestimated from the databy anon-parametric
identification method (see Subsection 3.2.3). Afterwards parametric spectrummodels, like
(A.6) or (A.8), arefitted to the nonparametric spectrum estimate. Because the poles and
covariancematrices Gf areknownfromthefirst IV step, themodels(A.6)(A.8) arelinear
in the mode shapes V, and linear least squares can be applied.

Example

The 1V method is applied to the simulated data of the mast structure (Figure 2.1). Sensor 5
in the y-direction and sensor 6 in the x-direction are considered as reference sensors. The
output covariances Iikref are estimated for lags k=1,2,...,2i-1 with i =40 (Thisisauser's
choice). They are gathered in a lixri (=240x80) Toeplitz matrix (3.7). A stabilization
diagram is constructed by identifying ARMA modelsfor orders p=1,2,...,30. Since r =2,
these modelshave 2,4, ...,60 poles. Note that the maximum ARM A-mode! order would be
Prax =1-1=39. In afirst stage, the discrete-time eigenvalues ; (diagonal elementsof A )
and the output-only modal participation factors <gi”9fT> eC? (rows of Grff) are computed
fromthe AR coefficients (3.21). The eigenfrequencies and damping ratios are related to the
discrete-time eigenvalues as (see Equations (2.16) and (2.45)):

ol = exp((-go)y1-8 o)At

The stabilization diagram isshown in Figure 3.9. The two zoomsreveal that it ispossibleto
distinguish the two pairs of close modes. Although the trace of the spectrum matrix is not
directly related to the IV method, it is plotted over the stabilization diagram asavisual aid
to select the stable poles.

By selecting one stable pole at each vertical frequency line where stable poles are present,
the analyst obtains a set of eigenfrequencies f;, damping ratios & and output-only modal
participation factors <g "> From this stable set the full mode shapes can be obtained in
asecond stage as formulated in (3.22). The detailed modal parameter estimation resultsare
presented at the end of this chapter.
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Figure 3.9: Stabilization diagram obtained with the |V method. The criteriaare 1% for frequencies, 2%
for damping ratios and 1% for the participation vector correlations (3.23). The used symbolsare: ‘@’ for
astable pole; *.v’ for a pole with stable frequency and vector; ‘.d’ for a pole with stable frequency and
damping; ‘.f’ for apole with stable frequency and ‘.’ for anew pole. The model orders are ranging from
1 to 30. Since the number of referencesis 2, the number of polesis twice the model order. Two zooms
are added that concentrate on the close modes around 2.4 and 7 Hz.

3.4.2 Covariance-driven stochastic subspaceidentification (SSI-COV)

Likethe CMIF method can be considered as an SV D-enhanced PP method, covariance-
driven subspace can — somewhat disrespectful — be considered as an SV D-enhanced
instrumental-variable method. While in the 1V method, the factorization property of the
output covariances(2.56), (3.6) wasonly used in asecond stage to obtain the mode shapes,
itisreally the basis of the subspace method. The COV ariance-driven Stochastic Subspace
Identification method (SSI-COV) is addressing the so-called stochastic realization
problem, i.e. the problem of identifying a stochastic state-space model from output-only
data

Stochasticrealizationisclosely rel ated to deterministic (input-output) realization, that goes
back to Ho and Kalman [HOK A66] and was extended with the SV D to treat noisy datain
[ZEIG74] and [KUNG78]. The so-called Eigensystem Realization Algorithm (ERA),
developed by Juang [JUANS8S5, JUAN94], is a moda analysis application of these
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deterministic realization algorithms. The stochastic (output-only) realization problem is
solved in [AKAI74b, AOKI187, ARUN9Q]. Application of stochastic realization to modal
parameter estimation wasreported by Benvenisteand Fuchs[BENV85]. They also proved
that their algorithmisrobust agai nst non-stationary inputs(e.g. awhite noise sequencewith
time-varying covariance).

TheSSI-COV method identifiesastochasti ¢ state-space model from output-only data. The
stochastic state-space model, introduced in Subsection 2.5.1, has the following form:

X1 = AX + W,
v - Cx o v, (3.25)

where w, and v, are vector signals assumed to be zero mean, white and with covariance
matrices:

el ) g v = (& 5 (3.29)

Sochastic realization theory

In this section amodified version of the classical covariance-driven stochastic realization
algorithm is presented. The modification consists of reformulating the algorithm so that it
only needs the covariances between the outputs and a limited set of reference outputs
instead of the covariances between al outputs. This corresponds to classical modal
analysis, where the impulse response matrices h, are rectangular matrices having | rows
(i.e. the number of outputs) and m columns (i.e. the number of inputs). In output-only
cases, the impulse responses are substituted by output covariances and the inputs by the
reference outputs (see also [JAME95, HERM99]). As in the 1V method, the output
covariances are gathered in ablock Toeplitz matrix Tlrﬁf (3.7). Applying the factorization
property (3.6) to Tlrﬁf yields:
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(3.27)

CAifl
<>
n

where the definitions of the extended observability matrix O, cR"™" and the reversed
extended stochastic controllability matrix T/ cR™"" are obvious from (3.27). For ri>n,
and if the system is observable and controllable, the rank of the lixri Toeplitz matrix
equalsn, sinceit isthe product of amatrix with n columns and amatrix with n rows. The
SVD isanumerically reliable tool to estimate the rank of amatrix. The application of the
SVD to the block Toeplitz matrix yields:

o| [V
Tlr\eif = UsvT = (U Uy) (310 O) [Vl'r = UlslvlT (3.28)
2
where UeR™" and VeR™" are orthonorma matrices (UTU=-UUT=1, and

VTV=VVT=| ) and Se(R")™ is a diagonal matrix containing the positive singular
values in descending order. The rank of a matrix is found as the number of non-zero
singular values. In the last equality of (3.28), the zero singular values and corresponding
singular vectors are omitted: U, eR"™", Slg(RJ)“x“, V,eR™". By comparing (3.27) to
(3.28), the matrices O, and Firef can be computed by splitting the SVD in two parts:

o, = U, 8T

ref 12y, T
" =TV,

(3.29)

where TeC™ is a non-singular matrix. It is easy to see that this matrix T can be
considered asasimilarity transformation that isapplied to theidentified state-space model;
see aso Equation (2.26). In other words, whatever the choice of T may be, similarity-
equivalent state-space models will result and we can simply set: T=1. The solution of the
identification problem is now straightforward. From the definitions of the extended
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observability matrix O, and the reversed extended stochastic controllability matrix Frd
(3 27) we know that C equalstheflrst | rowsof O, and G™ equalsthelast r columns of
FI ; or written in MATLAB notation:

C =01l
G™ = I'(,r(i-1)+1Lri)

(3.30)

A first possible way [ZEIG74] to compute the state transition matrix A follows from the
decomposition property of a shifted block Toeplitz matrix:

Ty = O AT (3.31)

where the shlfted matrix Tz\. .1 hasasimilar structure as Tl‘I (3.7), but is composed of
covariances Rk fromlag 2to 2i. Matrix A isfound by introducing (3.29) in (3.31) and
solving for A:

o -u ef -u
A= O T2\|+1 (rr ) = S ’ UlT Tzr\i+1 Vis ’ (3.32)

where(s)" denotes the Moore-Penrose pseudo-inverse of amatrix.

Alternatively [KUNG78], matrix A could al so be computed by expl oiting the shift structure
of the extended observability matrix O;:

A =0 (L1G-12),)7 O, (I+1:i,2) (3.33)

An equivalent |east-squares expression could be derived that makes use of the reversed
extended stochastic controllability matrix instead. However, since r <l , thereisless over-
determination in this case.

At this point the identification problem istheoretically solved: the system order nisfound
asthe number of non-zero singular valuesin (3.28) and the system matrices A, G™,C,R}®
can be computed asin Equations(3.30) and (3.32) or (3.33). Thefourth system matrix ROref
(seediscussion in Subsection 2.5.2) is simply the zero-lag output covariance matrix. The
two matrices A,C are sufficient to compute the modal parameters. As discussed in
Subsection 2.4.2, the discrete poles A ; and the observed mode shapes V are computed as
(see dlso (2.45), (2.46)):

A= YA

V- o (3.34)
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I mplementation and stabilization

In reality the number of measurementsis not infinite and the output covariances have to
be estimated Iiiref (3.8). Since these output covariances form the basis of the realization
method (3.27), it is evident that the identified system matrices also have to be considered
asestimates: A, G, C,R".

Another remark is that in theory the system order n can be determined by inspecting the
number of non-zero singular values of Tlrﬁf (3.28). In practice however, the estimated
covariance Toeplitz matrix f{ﬁf is affected by "noise" leading to singular values that are
al different from zero. Astypical noise sources we have:

m  Modelling inaccuracies. It ispossible that the true system that generated the data
cannot be modelled exactly as a stochastic state-space model. An attempt to
model this system by a state-space model introduces an error in these cases.

m  Measurement noise: introduced by the sensors and the electronics of the
measurement hardware.

®  Computational noise due to the finite precision of any computer.

m  The finite number of data. The covariances have to be estimated, so that the
factorization property (3.6) does not hold exactly. As a consequence the rank of
the covariance Toeplitz matrix will not be exactly n; see Equation (3.27).

In practice, the order can be determined by looking at a "gap" between two successive
singular values. The singular value where the maximal gap occursyieldsthe model order.
This criterion should however not be applied too dogmatically. For large, rea structures
there is generally no clear gap.

To obtain a good model for modal analysis applications, it is probably a better idea to
construct astabilization diagram, by identifying awhol e set of model swith different order.
The stabilization diagram wasalready introduced in Subsection 3.4.1 and Equation (3.23).
In case of the SSI-COV method, an efficient construction of the stabilization diagram is
achieved by computing the SV D of the covariance Toeplitz matrix (3.28) only once. The
number of block rows and columnsi of Tlrﬁf should be such that ri>n__ , the maximum
model order (see also the discussion on page 70, Subsection 3.4.1). Models of different
order are then obtained by including a different number of singular values and vectorsin
the computation of O, and Firef (3.29), from which the system matrices and the modal
parameters are deduced as described in previous subsection.
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The SSI-COV method isapplied to the simulated dataof the mast structure (Figure2.1). The
same 240x 80 covariance Toeplitz matrix asinthelV exampleisformed (see Page 72). The
key step of SSI-COV is the SVD of this Toeplitz matrix (3.28). The singular values are
plotted on alog scale in Figure 3.10.
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Figure 3.10: Singular values of the covariance Toeplitz matrix. Thetrue
model order is 12, but it seemsthat 16 singular values are significant. By
lowpassfiltering the data (see Page 55), additional poleswereintroduced.
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Figure 3.11: Stabilization diagram obtained with the SSI-COV method. The criteria are 1% for
freguencies, 2% for damping ratios and 1% for the mode shape correlations (3.23). Theused symbolsare:
‘@’ for astablepole; ‘.v’ for apole with stable frequency and vector; ‘.d’ for apolewith stable frequency
and damping; ‘. for a pole with stable frequency and *.” for anew pole. The model orders are ranging
from 2 to 60. Two zooms are added that concentrate on the close modes around 2.4 and 7 Hz.
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A stabilization diagram is constructed by identifying state-space models for orders
n=2,3,...,60. Themodal parametersare computed fromtheidentified model matricesAand
C, according to Equation (3.34). The stabilization diagram isshownin Figure 3.11. Thetwo
zooms revedl that it is possible to distinguish the two pairs of close modes. Although the
trace of the spectrum matrix isnot directly related to the SSI-COV method, it isplotted over
the stabilization diagram as a visua aid to select the stable poles. The detailed modal
parameter estimation results are presented at the end of this chapter.

3.4.3 Other covariance-driven methods

The random decrement technique

The Random Decrement technique (RD) wasintroduced by Cole [ COLE68] and evolved
to an output-only modal analysis technique [IBRA77, ASMU97, IBRA98]. The RD
technique converts random responses due to unknown or unmeasured stationary random
input to free decays. In [ASMU97] it is shown that so-called RD functions are closely
related to output covariance functions. That is the reason to classify the RD technique as
acovariance-driven method in thisthesis (although RD functions are not exactly the same
as covariances). It must be added that the RD technique is not a "new" system
identification method, but sincethe RD functions can be considered asfree decaysand are
related to covariances, all covariance-driven methods can be applied to RD functions as
well.

Recent devel opments

Recently, it isshown how the problem of M A parameter estimation from covariances can
be formulated as a semidefinite program [STOI00]. The proposed agorithm is
computationally fast, statistically accurate, and reliable. In [MARIQQ], these ideas are
extended and combined with subspace-based techniques to solve multivariate ARMA
parameter estimation problems. Their solution method does not suffer from stability and
positive realness problems that other subspace methods may experience when applied to
specialy designed simulated data [DAHL98]. It is beyond the scope of this thesisto go
into further detail; the interested reader is referred to the cited references.
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3.5 TIME-DOMAIN DATA-DRIVEN METHODS

The main advantage of data-driven algorithms is that they do not require any further
preprocessing in order to obtain spectra or covariances. These methods identify models
directly from the time signals. A first method is the data-driven subspace method, that is
closely related to the covariance-driven subspace method of Subsection 3.4.2. Afterwards
the classical prediction error method that identifies AR(MA) models from time data is
briefly reviewed.

3.5.1 Data-driven stochastic subspace identification (SSI-DATA)

Recently a lot of research effort in the system identification community was spent to
subspace identification as evidenced by the book of Van Overschee and De Moor
[VANQO96] and the second edition of Ljung’ sbook [LJUN99]. Subspace methodsidentify
state-space modelsfrom (input and) output data by applying robust numerical techniques
such as QR factorization, SVD and least squares. As opposed to SSI-COV, the DATA-
driven Stochastic Subspace | dentification method (SSI-DAT A) avoid the computation of
covariances between the outputs. It is replaced by projecting the row space of future
outputsinto the row space of past outputs. In fact, the notions covariances and projections
are closely related. They both are aimed to cancel out the (uncorrelated) noise. The first
SSI-DATA adgorithmscan befoundin[VANO91, VANO93]. A general overview of data-
driven subspace identification (both deterministic and stochastic) is provided in the book
of Van Overschee and De Moor [VANQO96]. Although somewhat more involved as
compared to previous methods, it is also possible with SSI-DATA to reduce the
dimensions of the matrices by introducing the idea of the reference sensors. This is
demonstrated in [PEET99f, PEET99d] and also in this subsection.

Thederivation of SSI-DAT A isgivenfor thereference-sensor case. Theoriginal a gorithm
issimply recovered by considering all sensorsasreferences. First, the Kalman filter states
will be introduced because of their importance in subspace identification. Next, the
principles of SSI-DATA are explained. And finally, theimplementation of the projection
in terms of the QR factorization is discussed.

Asthe SSI-COV method, the SSI-DAT A method identifiesa stochasti c state-space model
(3.25), (3.26) from output-only data.

Kalman filter states

The Kalman filter plays an important role in SSI-DATA. In Subsection 2.5.3, it was
indicated how theforwardinnovation model (2.58) can be obtained by applying the steady-
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state Kalman filter to the stochastic state-space model (2.51). In this section, the non-
steady-state Kalman filter isintroduced. The Kalman filter isdescribed in many books. A
nice derivation can be found in Appendix B of [JUAN94]. The aim of the Kalman filter
isto produce an optimal prediction for the state vector x, by making use of observations
of the outputs up to time k - 1 and the avail able system matrices together with the known
noise covariances. These optimal predictions are denoted by ahat: X, .,. When theinitial
state estimate X, =0, the initial covariance of the state estimate P,=E[X,%}] =0 and the
output measurements y,,...,Yy,_, ae given, the non-steady-state Kalman filter state
estimates X, are obtained by the following recursive formulas:

X = A%y~ K (Y- CXy)
Kea = (G_ApkflcT)(Ro_CPkflcT)il (3.35)
Py = APkflAT + (G—APHCT)(RO—CPkflCT)’l(G—APkflcT)T

expressing the Kalman state estimate, the Kalman filter gain matrix and the Kalman state
covariance matrix. The Kalman filter state sequence X; eR™N is defined as:

X = (R Rip oo Rina) (3.36)

The correct interpretation of the (q+1)™ column of this matrix is that this state >2i+q is
estimated according to Equation (3.35) by usi ng only i previous outputs: Yo -+ Yivqo1- BY
consequence, two consecutive elements of X, cannot be considered as consecutive
iterations of (3.35). More details can be found in [VANO96]. Important to note is that a
closed-form expression exists for this Kaman filter state sequence and that it is this
sequence that will be recovered by the SSI-DATA algorithm (see further).

Data-driven stochastic subspace identification theory

The SSI-DATA agorithm starts by projecting the row space of the future outputsinto the
row space of the past reference sensors. The idea behind thisprojectionisthat it retains al
theinformation in the past that is useful to predict the future. The notation and definition
of thisprojectioniis:

A A AU I A A LI (3.37)
The matrices Y,cR™ and Y,"cR™ are partitions of the data Hankel matrix
H ™ cR DN "as indicated in Equation (3.2). From the definition (3.37), it is clear that
projectionsand covariancesaredosely related. Indesdlthematrix products Y, (Yo )T and Yo (Y, )T
areinfact block Toeplitz matrices containing covariances between (reference) outputs; see
also Equation (3.7). Note that expression (3.37) is only the definition of TPirEf; it does not
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indicate how the projection is computed. As we will see further, it is computed by the
numerically robust QR factorization.

The main theorem of stochastic subspace identification [VANO96] states that the
projection ‘.Piref can be factorized as the product of the extended observability matrix O,
(3.27) and the Kalman filter state sequence X; (3.36):

(3.38)

The prove of this theorem for the case where all outputs are considered as references
(YF:Ef - Yp) can befound in[VANQ96]. In the present case, where only the past reference
outputs have been used, the proof is almost the same, except for the significance of the
obtained Kalman filter state sequence )Zi . The non-steady-state Kalman filter isapplied to
a reduced state-space model that includes only the reference outputs. Following
substitutions have to be made in Equation (3.35):

Vi > Ve = Ly,
G~ GLT
C -~ LC

R, > LRLT

At first sight, the choice of the reference sensors seemsto be unimportant: for all choices
the factorization (3.38) is found. Indeed, theoretically the internal state of a system does
not depend on the choice and number of observed outputs. However in identification
problems where the states are estimated based on observations, the choice and number of
outputs does matter: different reference outputs will lead to different Kalman filter state
estimates X..

Since the projection matrix is the product of a matrix with n columns and amatrix with n
rows(3.38), itsrank equalsn (if li > n). The SVD isanumericaly reliabletool to estimate
the rank of a matrix. After omitting the zero singular values and corresponding singular
vectors, the application of the SV D to the projection matrix yields:

P - U5V, (3.39)
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where U, eR"™", Sle(]Ro+ )™ and V, eR™". The extended observability matrix and the
Kaman filter state sequence are obtained by splitting the SVD in two parts:

o, = U, ST

3.40
X = OiT‘PirEf ( )
In the following, we will set the similarity transformation matrix T=1; see aso the
discussion after Equation (3.29).

Up to now we found the order of the system n (asthe number of non-zero singular values
in Equation (3.39)), the observability matrix O; and the state sequence X;. However, the
identification problem is to recover the system matrices A, G,C,R,. If the separation
between past reference and future outputs in the Hankel matrix is shifted one block row
down, asindicated in Equation (3.3), another projection can be defined:

of - ef + 5

fPir—l =Y / Yp: - Oi—l X1

where the proof of the second equality is similar to proof of the main subspace theorem
(3.38). The extended observability matrix O,_, issimply obtained after deleting the last |
rowsof O;:

0., = O,(LI(i-1),)

The state sequence X, can now be computed as:

i+1
v _ T pref
X1 = O

At this moment the Kalman state sequences )Zi , X;,, arecalculated using only the output
data. The system matrices can now be recovered from following overdetermined set of

linear equations, obtained by stacking the state-spacemodelsfor timeinstantsito i + N-1:

X1
Y.

A
C

W,

V.

X, +

where Y, eR™" isaHankel matrix with only oneblock row (3.2) and W, eR™", V, eR"™"
are the residuals. Since the Kalman state sequences and the outputs are known and the
residuals are uncorrelated with X, , the set of equations can be solved for A, Cin aleast
sguare sense:
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)-

The noise covariances Q, R and S are recovered as the covariances of the least-squares
residuals:

%) ot
y 1) X (3.41)

($3- (o>

From the properties of stochastic systems (Subsection 2.5.2), it is easy to see how the
matrices A,C,Q,R,S can be transformed to A,G,C,R,. First the Lyapunov equation is
solved for X:

T=AZAT+Q
after which G and R, can be computed as:

R, = CZC™ +R
G=AxCT+S (343)

At this point the identification problem is theoretically solved: based on the outputs, the
system order n and the system matrices A, G, C, R, are found.

The matrices A,C are sufficient to compute the modal parameters. As discussed in
Subsection 2.4.2, the discrete poles A, and the observed mode shapes V are computed as
(see dso (2.45), (2.46)):

A
\%

YAMN!
cvy

Positive realness

The computation of Q,R,S according to (3.42) only leads to asymptotically** unbiased
estimates if the number of block rows in the Hankel matrices goesto infinity: i—oco. So
in practice, since i = co, a bias will be introduced on Q,R,S (and thus also on G, R)"™.

14A:symptotic means that the number of data (theoretically) goesto infinity: N—oo.

2 The modal parameters are only determined from A, C and are by consequence not suffering from thisbias
on G,R,.
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Other algorithmsexist that compute asymptotically unbiased estimates. Unfortunately these
algorithms do not guarantee the positive realness of the identified covariance sequence.
More details on positive realness can be found in [VANO96]. |mportant for the following
of thisthesisisthat only positivereal sequenceshaveacorresponding spectrum matrix that
is positive definite for al frequencies . If a matrix is positive definite, then al its
diagonal entriesarepositive[ GOLU89]. In Subsection 3.7.1, wewill encounter anexample
of an identified power spectrum that becomes negative at certain frequencies (which has
of course no physical meaning). A power spectrum is a diagonal entry of the spectrum
matrix and therefore this matrix cannot be positive definite. The model was indeed
identified with the SSI-COV method, a method that does not guarantee the positive-
realness of the identified covariance sequence.

Also important is that only positive real sequences can be converted to a forward
innovation state-space model. Such amodel is sometimes useful, as we will see further.
The conversion starts by solving the Riccati equation for P (see aso Subsection 2.5.3):

P=APAT + (G-APCT) (R,-CPCT) (G-APCT)T

The covariance matrix of the innovations is computed as:
R, = R,-CPCT

And finally the Kalman gain is obtained as:

K = (G-APCT) R*

Although, we never encountered practical positive realness problems when applying the
SSI-DATA method to our numerous examples, it isshownin [DAHL 98] that the problem
istheoretically not solved by the outlined SSI-DATA algorithm. More discussions on the
topic can be found in [MARIQ0Q]; see also Subsection 3.4.3.

I mplementation

Reslly crucial in the successful implementation of data-driven subspace algorithms in
general isthe RQ factorization of data Hankel matrices. Such afactorisation applied to the
output Hankel matrix of Equation (3.2), (3.3) reads:

Href -

Yref P
2= %W | =rRQT (3.44)
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where QcRN*N isan orthonormal matrix: Q 'Q = QQT = | and ReR" "N isalower
triangular matrix. Since (r+l)i<N, it is possible to omit the zeros in R and the
corresponding rowsin Q T:

rir I-rl@i-1 N-oo

i1 (Ry 00 0) (1) 5
et r 1 |Ry Ry, 0 0 ol + ¢
Ir 3 Ry Ry Ry O T
. Q3 i l_r

I(-1) T (R Ry R Ry
Q) ¢ -1

Thedivisionin block rowsand columnsis made such that the submatricesin (3.44) can al
be expressed in terms of the R and Q submatrices. It is easy to show that the RQ
factorization yields following very simple expressions for the projections of future row
spaces into past row spaces:

ref RZl T ref QlT
Po= Ry Q. Ti—lz(R41 R42) QT

Ru 2

Also Y, RN, the output sequence that is present in the |east-squares equationsin A, C

(3.41) is easily written in terms of the RQ factors:

Q'
Y - Ry Ry 0 T
17 Ry Ry Ry | 2

Since X, =O"P¥ and X, =0, P , all right-hand-side quantities of the least-squares
Equation (3.41) can be expressed in terms of the RQ factors. Because of their
orthonormality, the Q factors cancel out in this equation. So in thisfirst step (3.44) the Q
matrix should not be calculated. TheMATLAB functiongr [MATL96], for instance, allows
for the computation of the R factor only. Since typically (r+l)i«j, an important data
reduction is obtained by replacing the (r +1)i x N data Hankel matrix H'® by its R factor
of dimension (r+1)ix(r+l)i.
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The computation of this R factor isthe most demanding step of the SSI-DAT A algorithm.
The number of flopsfl is proportional to the number of columns and to the square of the
number of rows of the data Hankel matrix:

fl = ((r+1)i)?N

Assuming the same number of block rowsi and the same number of datapointsN, thegain
in computational efficiency by introducing the reference sensors (subindex ‘ref’) as
opposed to using all sensors as references (subindex ‘al’) can be expressed as.

T =( 2 )2 3.45
i\l (349

which is significant in modal analysis where often many sensors| are used and only few
of them need to be considered as referencesr.

Evidently, dueto thefinite datalength, theidentified state-space model isonly an estimate
of the true underlying state-space model that generated the data. This is denoted as
AG,C, Iféqur acovariance model and as A, K, C, R, for aforward innovation model. The
matrices A, C areasymptotically unbiased estimates, but as stated before, asmall biaswas
introduced on the estimates of the other matrices.

The same remark asin the SSI-COV method concerning the determination of the model
order n applies here. Due to noise (modelling inaccuracies, measurement noise and
computational noise) none of the singular values in Equation (3.39) are exactly zero and
the order can only be determined by looking at a"gap" between two successive singular
values. Thesingular valuewhere the maximal gap occursyieldsthe model order. However
in many practical cases, no gap is visble. As previously, the problem of order
determination is better solved by constructing a stabilization diagram (3.23). The number
of block rowsi of H™ should be such that ri > N the maximum model order. Models
of different order are then obtained by including adifferent number of singular values and
vectorsin the computation of O, and )Zi (3.40), from which the system matrices and the
modal parameters are deduced as described previously.
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Example

The SSI-DATA method is applied to the simulated data of the mast structure (Figure 2.1).
The first step of SSI-DATA is the computation of the R-factor of a (r+1)ixN
(=320%x16305) data Hankel matrix (3.44). Next the SVD of this R-factor is computed
(3.39). Several variants of stochastic subspace identification exist (Section 3.6). They differ
in the weighting of the R-factor before application of the SVD. One of these variantsis so-
called Canonical Variate Analysis (CVA), in which the singular values can be interpreted
as the cosines of the principal angles between two subspaces: the row space of the future
outputs Y, and the row space of the past (reference) outputs YF:Ef. These principal anglesare
plotted in Figure 3.13.

A stabilization diagram is constructed by identifying state-space models for orders
n=2,3,...,60. Themoda parametersare computed from theidentified model matricesAand
C, according to Equation (3.34). The stabilization diagram isshownin Figure 3.12. Thetwo
zooms reveal that it is possible to distinguish the two pairs of close modes. Although the
trace of the spectrum matrix is not directly related to the SSI-DATA method, it is plotted
over the stabilization diagram as avisual aid to select the stable poles. The detailed modal
parameter estimation results are presented at the end of this chapter.
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Figure3.12: Stabilization diagram obtained with the CV A variant of the SSI-DAT A method. Thecriteria
are 1% for frequencies, 2% for damping ratios and 1% for the mode shape correlations (3.23). The used
symbols are: ‘@’ for astable pole; *.v' for a pole with stable frequency and vector; ‘.d’ for a pole with
stable frequency and damping; ‘.f' for a pole with stable frequency and ‘.’ for a new pole. The model
ordersareranging from 2 to 60. Two zooms are added that concentrate on the close modes around 2.4 and
7Hz.
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Figure 3.13: Principal angles between the row space of future outputs
and the row space of past reference outputs. The true model order is 12,
but it seemsthat 16 principal angles are significantly different from 90°.
By lowpass filtering the data (see Page 55), additional poles were
introduced.

3.5.2 Other data-driven methods

The prediction error method applied to an ARM A model

Prediction Error M ethods (PEM) can be considered as a general system identification
framework [LJUN99]. These methods identify the parameters of amodel by minimizing
the so-called prediction errors'®. The straightforward application of PEM to estimate an
ARMA model (2.59) from data resultsin a highly nonlinear optimization problem with
related problemsas: convergence not being guaranteed, local minima, sensitivity toinitial
valuesand ahigh computational |oad. Despite these drawbacks, the PEM hasbeen applied
toidentify themodal parametersof civil engineering structures, seefor instance[ PIOM 93,
ANDE97]. However, in contrast to nonlinear frequency-domain methods (see
Subsection 3.3.3), nonlinear time-domain methods (such as PEM applied to an ARMA
model) never reached an acceptable level of robustness for civil engineering modal
analysis applications [PEET99a]. Apparently the PEM works on simulated examples or
single-output cases, but suffers from divergence or an unreasonable computation time in
case of alarge number (10 or more) of sometimes noisy outputs.

The prediction error method applied to an AR model

Thenon-linearity of the PEM iscaused by the M A part of the ARM A model. By omitting
the moving-average part, an auto-regressive model is obtained:

prediction errors are the part of the output data that cannot be predicted from past data.
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and the PEM reduces to a linear least squares problem, which is easily solved.
Unfortunately, a p"™-order AR model is not an equivalent representation of a vibrating
structure with pl modes. However, the use of an AR model as asubstitution of an ARMA
model can be judtified if the AR model order goes to infinity: p—oo. In practice this
means that many spurious poleswill be introduced that need to be separated from the true
system poles. The use of AR models for modal parameter estimation is, for instance,
demonstrated in [PAND91a, DERQO95].

3.6 COVARIANCE-DRIVEN VS. DATA-DRIVEN SUBSPACE

This section points out some of the similarities and differences between the SSI-COV
(Subsection 3.4.2) and the SSI-DATA method (Subsection 3.5.1). First the similarities.
Both methods start with a data reduction step. In the SSI-COV algorithm the raw time
histories y, , consisting of | channels of N data points, are converted to the covariances of
the Toeplitz matrix T{ﬁf = YfY’;e“T (3.7). The number of elementsis reduced from [ xN to
lixri; with r the number of referencesand N— co. Inthe SSI-DATA algorithm asimilar
reduction is obtained by projecting the row space of the future outputsinto the row space
of the past reference outputs ‘.Pi"*f =Y, / Yf (3.37). This projection is computed from the
QR factorization of the data Hankel matrix (3.2). A significant data reduction is obtained
because only a part of the R factor is needed in the sequel of the algorithm. Both methods
then proceed with an SV D. The decomposition of T{ﬁf revealsthe order of the system, the
column space of O, and the row space of l"irEf (3.29). Similarly the decomposition of TPirEf
reveals the order of the system, the column space of O, and the row space of )Zi (3.40).

Several variantsof stochastic subspaceidentification exist. They differ intheweighting of
the data matrices (T, for SSI-COV and P for SSI-DATA) before the application of
the SVD. Thewei ghting determinesthe state-space basi sin which theidentified model will
be identified. More details can be found in [ARUN90] and [VANQO96]. One of these
variantsis so-called Canonical Variate Analysis (CVA), in which the singular values can
beinterpreted asthe cosines of the principal angles between two subspaces. the row space
of the future outputs Y; and the row space of the past (reference) outputs YFE‘*f . In the
SSI-COV implementation of CV A, theweighting of the covariance Toeplitz matrix before
the application of the SVD goes as follows [AKAI74b, ARUN9Q]:

(YfoT)fﬂ2 Tj{ﬁf (Yr:ef Y,;en)fﬂz
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Inthe SSI-DATA implementation of CVA, the weighting of the projection matrix before
the application of the SVD goes as follows [VANO96]:

T - ¢
(Yfo ) vz J)iﬁEf

Also the other subspace variants have equival ent implementations for both SSI-COV and
SSI-DATA.

There are also differences between the covariance-driven and data-driven approaches. As
indicated in Subsection 3.2.2, the covariance Toeplitz matrix can be computed in avery
fast way by using the FFT algorithm. The corresponding step in SSI-DATA agorithmis
therelatively slow QR factorization. Therefore SSI-COV ismuch faster than SSI-DATA.
Infavour of thedata-driven method isthat it isimplemented asanumerically robust square
root algorithm: the output data is not squared up as in the covariance-driven algorithm.
More advantages of the data-driven method become clear in next section, where some
postprocessing tools for the identified state-space model are presented: an analytical
expression for the spectrum matrix and the separation of the total response in modal
contributions.

3.7 POSTPROCESSING

This section deals with some useful postprocessing tools. In the present context,
postprocessing meanseverything that comes after theidentification of aparametric model.
Once such a model is available, it can be analytically converted to other presentation
forms. Modal analysis, a first type of postprocessing, was in fact already discussed in
connectionwith thevariousidentification methods. For instance, themodal parameterscan
be extracted from the AR parametersidentified with the |V method; see Equations (3.21),
(3.22). Similarly, the state-space matrices identified with SSI-COV or SSI-DATA alow
us to compute the modal parameters, as formulated in (3.34). Other postprocessing tools
such as spectrum analysis and modal responses are subsequently treated.

3.7.1 Spectrum analysis

Thecovariance-driven and data-driven systemidentification methods usetime-domain data
toidentify amodel. It ishowever interesting to assess the frequency-domain performance
of these methods. Hereto, the identified models are converted to a spectrum model and
compared with a non-parametric spectrum estimate, such as the periodogram (3.10) or
correlogram (3.11). These estimates are directly obtained by applying the FFT to thetime
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data without any modelling involved. In Chapter 2, a closed-form expression for the
spectrum of adiscrete-time stochastic state-space model was derived, see Equation (2.80):

S/elon) = C(zl -A)'G + Ry + GT(z1I-AT)!CT

2 - elont (3.46)

By introducing the eigenvalue decomposition of A (A:‘PAd‘I”l), following "modal”
spectrum is obtained:

Selort) = V(zI-A)) G + Ry + G (z 1 -Ay) VT

Z = ejoAt (347)

The |V method

ThelV method yieldsthemodal matrices A ,eC™", G,ff eC™ and VeC™", see(3.21) and
(3.22). Thematrix Rgef eR"™ isdirectly estimated from the data. So only in case all sensors
were considered as references, the complete spectrum matrix can be computed according
to Equation (3.47). Otherwise only the power and cross spectra between the reference
channels can be computed: LS L Tecm,

The SSI-COV method

TheSSI-COV methodyieldsthestate-space matrices AeR™", G eR™ and CeR™", see
(3.30) and (3.32). The matrix R(;Ef eR™ isdirectly estimated from thedata. So only in case
all sensorswere considered as references, the compl ete spectrum matrix can be computed
according to Equation (3.46). Otherwise only the power and cross spectra between the
reference channels can be computed: LSyL Tecm™,

The SSI-DATA method

The SSI-DATA method yieldsthefull state-space matrices AcR™", GeR™,CeR™" and
R,eR™, see(3.41) and (3.43). So, whatever the number of referencesis, itistheoretically
possible to compute the complete spectrum matrix § eC™"according to Equation (3.46).

Example

The simulated data of the mast structure (Figure 2.1) is used to compare the parametric
spectrum estimates (3.46), (3.47) with anon-parametric estimate. For all three methods (1V,
SSI-COV and SSI-DATA) a modd is identified that contains 20 poles. The analytical
expression for the spectrum is evaluated for frequencies ranging from 0 to 12.5 Hz. The
comparison is made in Figure 3.14. A 20-pole model is satisfactory for the subspace
methods, but for the 1V method a higher order model should be used. The spectrum matrix
obtained withthe SSI-DAT A method istheoretically thefull spectrum matrix, regardlessthe
number of reference sensors used. However, from a plot of the power spectrum of a non-
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reference channel (Figure 3.15), it isclear that spectrainvolving anon-reference channel are
not as accurately estimated as reference spectra.
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Figure 3.14: Comparison of power spectra of the 5™ output channel. The rather
erratic dotted line is the non-parametric estimate (Welch's method). The full line
isthe IV spectrum; the dash-dotted line is the SSI-COV spectrum and the thick
dashed linerepresentsthe SSI-DAT A spectrum. The20-polemodel resulting from
the 1V method failed to identify the first pole. This was also observed in the
stabilization diagram (Figure 3.9), wherethefirst polewas not yet stableat n = 20.
The 20-pole model sfrom the subspace methods caught all true poles. However the
SSI-COV power spectrum becomes negative at certain frequencies, which is due
to the unsatisfied positive realness (Page 84) condition. Althoughit is not the case
in this example, aso the |V spectrum can become negative. As discussed on
Page 84, the SSI-DATA method overcomes this problem.
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Figur e 3.15: Comparison of power spectraof the4™ output channel (Thisisanon-
reference channel). The rather erratic dashed line is the non-parametric estimate
(Welch’'s method). The thick full line represents the SSI-DATA spectrum. The
correspondence at the peaks is very good, but between the peaks the SSI-DATA
spectrum of a non-reference channel is not as accurate.
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3.7.2 Modal response and prediction errors

This subsection presents a technique to split the total measured response in modal
responses. A modal response is defined as the response of a single DOF system, having
the same eigenfrequency and damping ratio as the considered mode, to the same force as
applied to the full system. The technique assumes that the identified model is written in
forward innovation form (2.58):

Az, + Kg,
Cz + e

Zk+l
Yy

where KeR™ isthe Kalman gain and e, eR' isthe white noise innovation sequence with
covariance matrix E|[ epeqT 1= Requ. Thismodel can be written in the modal basis:

Zoker = Ny Zok K&
Yo =V Z t &

where ¥ 1 z. =z, and V" K= K.,- Because A isadiagonal matrix, each element of the
modal state vector z, represents the contrlbutlon of asingle mode. By eliminating the
innovationsin the first equation and re-arranging the second, foll owing state-space model
is obtained:

Zn, kél i (Aq i|\</mV) Zok Ko Vi (3.48)
k= Znk T Yk
Theideaisnow to use this state-space model (A, -K_V, K, -V, I )inasmulation. All
state-space matrices are known from the identification and the measured output y, serves
asinput in the smulation. The results from the simulation are the modal state sequence
z,,, andtheinnovation sequence e,. Theinnovationscan beinterpreted asone-step-ahead
prediction errors [LJUN99]. The one-step-ahead predicted output is defined as:

Ve =V Zok

Theprediction errors are the differences between the true output and the predicted output:
€YY, Because each element z{) of the modal state vector z_, represents the
contribution of a single mode, the predicted output can be split in modal responses as:

n

B = 29, = 2 v 2 (3.49)

i=1

where ¥, ke(C' isthe (complex) response of thei™ mode. By combining the responses of a
complex conjugated pair, areal output is obtained.
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The approach of this section can only be applied to models that are identified with the
SSI-DATA method. In order to obtain the forward innovation model, the full G matrix is
needed and not only G™ as obtained with the SSI-COV method (see also
Subsection 3.5.1). Another more important problem, that could not be overcome by
considering all sensors as references, is that the implementation of SSI-COV does not
guarantee the positive realness of the identified covariance sequence. One of the
consequences is that it is not always possible to obtain a forward innovation model
[VANO9S6].

Example

The separation of thetotal responsein modal responsesisillustrated with the simulated data
of themast structure (Figure2.1). A 20-polemodel isidentified withthe SSI-DAT A method.
Afterwards, the modal state sequence is simulated according to Equation (3.48) and the
modal responses are computed as in (3.49). The modal responses of channels 5 and 6 are
shown in Figure 3.16 and 3.17, respectively.
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Figure 3.16: Modal responses of channel 5. The measured total response is shown in the top chart. The
amplitudes of this signal have been multiplied by 0.5 for scaling purposes. The contributions of the 6
modes are subsequently presented. The sum of these 6 signals plus the prediction errors equals the
measured response. Channel 5 measures asignal in y-direction, with important contributions from the 3
and 6™ mode, which are bending modes in the y-direction.
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Figure 3.17: Modal responses of channel 6. The measured total response is shown in the top chart. The

amplitudes of this signal have been multiplied by 0.5 for scaling purposes. The contributions of the 6

modes are subsequently presented. The sum of these 6 signals plus the prediction errors equals the

measured response. Channel 6 measures asignal in x-direction, with important contributions from the 2™

and 5™ mode, which are bending modes in the x-direction.
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3.8 EXPERIMENTAL COMPARISON OF SYSTEM IDENTIFICA-

TION METHODS

This section brings together the modal parameter estimation results of the discussed
identification methods. The lay-out of the other parts concerning the simulated example
is used.

Example

The practical application of a certain identification method was aready illustrated in close
connection with its theoretical development. A systematic comparison of the identification
resultsin terms of the modal parameters, however, was postponed until this section. There
exist other validation toolsfor systemidentification (seefor instance [LJUN99]), but we are
most interested in the modal parameter estimation performance of a method. The reason is
that we consider modal parameters as essential information to base damage detection
methods on. The comparison is made by a so-called Monte-Carlo analysis.

One Monte-Carlo simulation consists of the following steps. A white-noise input sequence
is generated and applied to the mast structure (Figure 2.1). The smulated outputs are
corrupted by 10% white measurement noise, see Page 55. These"noisy" outputsarethen fed
to the system identification methods: peak picking (PP), complex mode indication function
(CMIF), instrumenta variable (1V), covariance-driven stochastic subspace identification
(SSI-COV) and data-driven stochastic subspace identification (SSI-DATA). From the six
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outputs, channels5 and 6 are considered asreferences. Thishasthefollowing consequences
for the primary data passed to the identification methods: the "past” part of the data Hankel
matrix (3.2) consists only of these channels; only the covariances between all channels and
these references are computed (3.8) and only the spectra between all channels and the
references are computed (3.10). Every method yields a set of modal parameter estimates.
This procedure is repeated for 100 different realizations of the input sequence and the
measurement noise. Someeffort was spent in automating the parameter estimation procedure
to exclude any user interaction during the 100 simulations.

However, someforeknowledgein favour of the PP method could not be avoided. Although
only 4 peaks are visible in the trace of the spectrum matrix (Figure 3.5), we selected 6
frequencies at the peaks of the transformed spectra (Figure 3.6). The x-bending modes are
determined from the 6™ column of the spectrum matrix, corresponding to a signal in x-
direction. Similarly, they-bending modesaredetermined fromthe 5™ column, corresponding
toasignd iny-direction. Failing to do so would result in completely erroneous mode shape
estimates. Also in estimating the damping rati oswith the hal f-power bandwidth method (that
complements the PP method), the same foreknowledge was present. The other methods
could be applied in an objectiveway. The parametric methods (1V, SSI-COV, SSI-DATA)
are complemented with a stabilization diagram for pole selection. To construct such a
diagram, models containing 2 to 60 poles were identified. The selection of the poles relies
upon an automatic i nterpretation of the stabilization diagrams (See Section 4.2). Asapparent
from Figures 3.9, 3.11 and 3.12, the subspace methods require alower model order to find
stable poles. This observation is valid in general, athough the figures only represent one
Monte-Carlo run.

The results are represented in three Figures and synthesized in one Table. In our discussion
of the CM I F method (see Subsection 3.3.2), we did not include an alternative frequency or
damping estimation procedures as compared to the PP method. The only differenceis that
the CMIF can detect closely-spaced modes and finds the eigenfrequencies in a more
objective way. Thereforethe CM | F frequencies and damping ratios are not presented in the
Figures and Table to follow. The results of SSI-COV and SSI-DATA are so close to each
other, that only SSI-DATA is presented.

Figure 3.18 shows the eigenfrequency estimation results for 100 Monte-Carlo simulations.
The biasand variance of the estimatesaretabulated in Table 3.1. All methodsyield (almost)
unbiased eigenfrequency estimates. Although still small, the standard deviation of the PP
estimates is three times higher than for the other methods.

Figure 3.19 and also Table 3.1 represent the damping estimation results. Notwithstanding
the foreknowledge in favour of the PP method, the very high bias of the damping estimates
(for modes 1, 4, 5 and 6) is striking. It was our experience that this bias can be shifted to
other modes by changing the options of the non-parametric spectrum estimate: frequency
resolution, applied window, number of averages and number of overlapping samples. It
seems however impossi ble to decrease the bias on al modes or to predict the biased modes.
This example confirms the "common sense" that the half-power bandwidth method isnot a
reliable method to estimate damping.
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Figure 3.20 and Table 3.1 represent themode shaperesultsin termsof theMAC (3.24). This
timeasothe CM I F resultsare represented. The mentioned foreknowledgeisthereason why
the PP method performed reasonably well. The quality of a CMIF mode estimate varied
considerably with the selected singular vectors around a peak in the decomposed spectrum.
Moreover it was generally not the singular vector corresponding to a peak that gave the best
estimate. The IV method had some problems in estimating the torsion modes (mode 1 and
4), that have arelatively small contribution in the total response. This smaller contribution
is obvious in time domain (Figures 3.16, 3.17) and frequency domain (Figure 3.14).
Concerning mode shape estimation, the advantage of using subspace methods emerges: they
clearly outperform the others.

By taking a close look at the values in Table 3.1, some (small) differences between the
covariance-driven and the data-driven subspace method can be observed. It seems however
that these differences originate from the weighting of the data matrices that was not
equivaent (see Section 3.6). The CVA weighting was applied in case of SSI-DATA,
whereas the covariance Toeplitz matrix of SSI-COV was not weighted. Afterwards we
performed an additional simulation exercisewith aCVA-weighted Toeplitz matrix and this
yielded almost exactly the same results asthe CVA SSI-DATA method.
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Figure 3.18: Eigenfrequency estimation results from 100 Monte-Carlo simulations. The estimates
aredivided by the true values (avalue of 1 on the graphsindicates a perfect estimate). Theserelative
frequencies are shown as dots. The scatter of this quantity gives an idea about the variance of the
estimate. The average estimate is al so shown (as adashed line). The deviation of this quantity from
1 (full line) corresponds to the bias of the estimate. The rows show the 6 modes; the columns
represent the results of 3 identification methods: PP, IV and SSI-DATA. The eigenfrequency
estimates of the PP method can only take the discrete values determined by the frequency resolution
of the spectrum. All methods yield unbiased eigenfrequency estimates. Although still small, the
standard deviation of the PP estimatesisthreetimeshigher than for the other methods. Seea so Table
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Figure3.19: Damping ratio estimation results from 100 Monte-Carlo simulations. Theestimatesare
divided by the true values (a vaue of 1 on the graphs indicates a perfect estimate). These relative
damping ratios are shown as dots. The scatter of this quantity gives an idea about the variance of the
estimate. The average estimate is al so shown (as adashed line). The deviation of this quantity from
1 (full line) corresponds to the bias of the estimate. The rows show the 6 modes; the columns
represent the results of 3 identification methods: PP, IV and SSI-DATA. Especially the very high
bias of the PP damping estimates is striking. It is rather a coincidence that mode 2 and 3 have
unbiased damping estimates. See also Table 3.1.



3.8 Experimental Comparison of System Identification Methods 101

Peak Picking CMIF Instr. Var. Subspace

Mode 1

Mode 2

Mode 3

<
()
°
o
E o

0.995 — 0.995 0.995 - - 0.995

50 100 O 50 100 O 50 100 O 50 100

[Te)
()
el
o
=
©
[}
©
o
= L ______4 S . . . .

09—~ =] gol— J 09 0.9 :

0 50 100 O 50 100 O 50 100 O 50 100

Simulation Simulation Simulation Simulation

Figure 3.20: Mode shape estimation results from 100 Monte-Carlo simulations. The M AC values (3.24) between
the estimated and the true mode shapes are shown (as dots). The average MAC is a so shown (as a dashed line).
The rows show the 6 modes; the columns represent the results of 4 identification methods: PP, CMIF, IV and
SSI-DATA. The scaling of the y-axis varies in vertical direction (to accommodate to the changing estimation
quality of the different modes), but not in horizontal direction, allowing an easy comparison of the methods. The
1V estimates for the first mode are too bad to fit into the scales. Also the average correlation of the PP estimates
of the third mode could not be represented. The subspace methods clearly outperform the others. See also Table
3.1
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3.9 CONCLUSIONS

This chapter presented 5 stochastic system identification methods in detail, and briefly
reviewed some others. The main focus of thisthesisis on time-domain methods, although
some simple frequency-domain methods were included for comparison and because of
their historical value. Next to the theoretical development of a method, its practical
application was illustrated with a Monte-Carlo simulation study.

The main conclusions are synthesized in Table 3.2.

The basic peak-picking method (PP) finds the eigenfrequencies as the peaks of non-
parametric spectrum estimates. This frequency selection procedure becomes a subjective
task in case of noisy civil-engineering data, weakly-excited modes and relatively close
eigenfrequencies. The related half-power bandwidth damping estimation method is
unreliable; and operational deflection shapes are identified instead of mode shapes. The
advantage of this FFT-based method isits processing speed (‘ ++ in Table 3.2), although
thetotal analysistime can increase considerably by the amount of user interaction needed
toimprovetheresults (-’ in Table 3.2): inspection of spectraform added and subtracted
signals, interpretation of coherence functions, trial of different reference sensors to get
reasonable mode shapes, ...

The complex mode indication function (CMI1F) is an SVD-extension of the PP method,
alowing for an objective sel ection of the eigenfrequenciesand theidentification of closely-
spaced modes. It seems however that the mode shape estimation quality depends on the
sel ected singular vector around resonance (and that it is not alwaysthe vector at resonance
that gives the best estimates). The modal responses can be more or less computed in the
CMIF method by transforming the frequency lines around resonance in the decomposed
spectrum back to time domain (‘+/ -’ in Table 3.2).

Theparametricmethods(1V, SSI-COV, SSI-DAT A) sharethe advantagethat stabilization
diagrams can be constructed by identifying parametric models of increasing order. These
diagramsarevery valuablein separating thetrue system pol esfrom the spurious numerical
poles.

Theinstrumental-variable method (I V) doesnot involve an SVD and consequently suffers
from the lack of anoise-truncating mechanism. Thisisreflected in the fact that the mode
shape estimates are less accurate than in the subspace methods and that higher order
models are required to obtain good modal parameter estimates. A lot of additional poles
are necessary for fitting the noise (*=’ for the stabilization criterion in Table 3.2).

Both covariance- (SSI-COV) and data-driven subspace methods (SSI-DATA) seem to
perform equally well concerning modal parameter estimation performance, athough
theoretically thenumerical behaviour of SSI-DAT A should bebetter thanthat of SSI-COV
sinceit avoidsto square up the data. The SSI-COV method is considerably faster than the
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SSI-DATA method since its data-reduction step can be implemented with the FFT,
whereas SSI-DATA requires a slower QR factorization step. Evidently, because it only
useslinear numerical algorithms, the SSI-DAT A methodisstill much faster than nonlinear
prediction error methodsthat are sometimes proposed to estimate the modal parameters of
civil-engineering structures (see Subsection 3.5.2). When it comesto postprocessing tools
such as spectrum analysis and the computation of modal responses, the implementation of
SSI-DATA ispreferred (see Section 3.7).

Table 3.2: Comparison of stochastic system identification methods. ‘L S’ standsfor L east Squares;
‘EVD’ stands for EigenValue Decomposition. A ‘+' (‘-") means that the methods performs well
(badly) for the row entry criterion. The abbreviation ‘n.r.” stands for ‘not relevant’. In the PP and
CMIF method no complete model is identified, therefore parametric spectrum analysis is not
possible. Sincethe |V and the SSI-COV method yield models that can generally not be converted
to forward innovation form, they obtaina ‘-’ for the modal responses criterion. The slowest method
concerning pure computation time (SSI-DATA) receivesa‘+/ -’ for this criterion becauseit still is
much faster than prediction error methods.

PP CMIF v SSI- SSI -

COV DATA
Primary data Spec.  Spec. Cov. Cov. Data
Numerical tools FFT FFT FFT FFT QR
SvD SvD SvD

LS LS LS
EVD EVD EVD

Computation time ++ + + + +/-
User interaction time - +/- + + +

Modal parameters.

Stabilization n.r. n.r. - + +

Eigenfrequencies +/- +/- + + +

Damping ratios - - + + +

Mode shapes - +/- +/- + +
Postprocessing:

Spectrum analysis n.r. nr. + + ++

Modal responses - +/- - - +




IMPLEMENTATION

This chapter describes the implementation of stochastic system identification
methods to estimate the modal parameters of structures excited by an unknown
force. In Section 4.1, the development of a Graphical User Interface for MATLAB is
described. By pushing buttons the user is guided through the whole process of
output-only modal analysis: converting measurements to engineering units,
preprocessing the data, system identification, extracting modal parameters from
a stabilization diagram, “gluing” mode shape parts together and animating mode
shapes. Section 4.2 describes a “batch” approach to modal analysis. The large
amount of data collected in the course of this thesis forced us to develop an
automatic modal analysis procedure that excludes any user interaction.
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4.1 MACEC, A GRAPHICAL USER INTERFACE FOR OUTPUT-
ONLY MODAL ANALYSIS

4.1.1 Introduction

Thereexist several modal analysis software packages. Originally devel oped in mechanical
engineering for identification based on input-output data (FRFs or impulse responses),
today some of these packages also have modules for output-only modal analysis; e.g.
recent revision of the LMs CADA-X system [CADA98]. However most commercial
dedicated software packages have some drawbacks in a research environment: it is
impossibleto review theimplementation of an algorithm and it is often not straightforward
to add own developments to these packages. MATLAB [MATL96] on the other hand isan
open environment that offerscomputation, visualization and programmingtools. Thebasic
package consists of general-purpose functionsthat can be used to make more application-
specific toolboxes. Most of the functions are accessible A SCI1-files which are compiled
a their first cal in a session; so the user can learn from their implementation or even
modify it. Someexisting toolboxesin thefield of system identification and modal analysis
will be briefly reviewed.

Both the System Identification Toolbox [LJUN95] and the Frequency Domain System
Identification Toolbox [KOLL95] offer data preprocessing, identification and model
validation tools. The first identifies time domain models from the data whereas the latter
operates in the frequency domain. These toolboxes have been written by people with an
electrical engineering background, but since they can identify any linear dynamic system
from measurements, they can aso be used in mechanical and civil engineering (a bridge
isassumed to be alinear dynamic system). In the end both toolboxes offer amathematical
model that matches the data. However, from previous chaptersit might be clear that some
postprocessing is essential for our purposes: the extraction of modal parametersfrom the
model, the construction of stabilization diagrams and the visualization of the structure's
geometry and mode shapes.

Next to official toolboxes supported and distributed by The MathWorks, there exist also
many toolboxesin aconnection program for MATLAB-related third party products. One of
these productsisthe Structural Dynamics Toolbox [BALM97], that offers possibilitiesin
experimental modal analysis, FE analysis and updating. The toolbox has geometry and
mode shape visualization possibilities. Unfortunately, theidentification isbased on FRFs
and therefore not suitable for output-only modal analysis.

From thisoverview of existing software packages, it isclear that the need arose to devel op
an own program for output-only modal analysis. The name of the program is MACEC,
standing for Modal Analysis on Civil Engineering Constructions [LAQU98, PEET99b,
PEET99c, VAND99].
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4.1.2 Development of MACEC

Inafirst stage, the system identification methods described in Chapter 3 areimplemented
as MATLAB command-line functions. These functions are executed by typing their name
together with the input and output variables. For instance:

» [invar] = ssi data(y,i,’cva’,ref);

applies the CVA-variant of data-driven stochastic subspace identification (see
Subsection 3.5.1) to the data matrix y. Half the number of block rowsin the data Hankel
matrix (3.2) is specified by variable i. The reference sensors are specified as column
numbers of y in variable re £. The output variable invar containsintermediate results
after the application of the QR factorization and the SVD. A stochastic state-space model
in forward innovation form [A, K, C, Re] isthenidentified in a second run of the same
command:

» [A,K,C,Re] = ssi data(invar,n, ‘'model’) ;
wheren isthe desired model order.

The difficulty with al these functionsisthat one hasto know the syntax and keep track of
the variables. Therefore a MSc project was set up in order to build a Graphical User
I nterface (GUI) incorporating most of the existing functions for data conversion, system
identification and adding functionsfor mode shapeanimation [L AQU98]. Instead of typing
in commands, the user just has to click buttons (Figure 4.1):

IStochastic Subspace ldentification j

Apply... |

Figure4.1: The GUI approach.

There might exist more flexible environmentsto create a GUI, but probably none of these
have the same matrix computation and 2D and 3D visualization possibilities as MATLAB.
Also agorithm development isvery easy in MATLAB, because of the interaction between
the function under devel opment and the workspace: the programmer can always control
the state of the variables.

Inspiration for the design and implementation of aMATLAB GUI wasfoundin [MARC96,
GUI97]. Two guestions are very important when designing a GUI :

® Do the users aways know where they are?
® Do they aways know where to go next?



108 CHAPTER4  IMPLEMENTATION

Inorder to get positiveanswersto these questionsM ACEC isconstructed around onemain
window (Figure 4.2), that is divided into three main tasks. preprocessing - system
identification - visualization. To perform each of these tasks a new window is opened and
after the user has gone through all desired features of the task, the window is closed and
the user returns to the main window.

4.1.3 Functionsof MACEC

The main functions of MACEC are reviewed. They can be divided into three categories:
preprocessing - system identification - visualization.

Preprocessing

The measured time data can be imported into the program in ASCII-format or a more
efficient binary format. Upon loading into the program, the datais scaled to engineering
unitsand information about the sensor |ocation isadded to the channels. If theoriginal data
was stored in Volts [V], it is scaled to obtain accelerations [m/sec?]. Scaling the data is
straightforward, once the user has created an ASCI|-file containing the sengitivities of all
his sensors (Figure 4.3). For theinterpretation of the channelsit isessential to incorporate
the physical locations of the measurement points and axis (node number and DOF) into

#4 MACEC v2_0 - Modal Analysiz on Civil Engineering Constructions

Macec  Edit  Actions Help
=|Q|%|B| 8| R|E| H|3 2] |
Fil.e[s] in uze: ~ Preprocessing

1 IAscii-format 'l Convert to SIT... |
av d it Edit SIT |
=vt0804_1 mod I~ Show & preprocess sit-data I

avt0805_1.mod
avt0806_1.mod
avt0807_1.mod
avt0808_1.mod
avt0809_1.mod Stochastic Subspace |dentification j
roger]v2d8. mod
roger2yv2d8.mod |
roger3v2ds. mod el
rogerdv2d8.mod
avt0804.sit
simul. sit
avt0804_1 ssi
roger] d.ssi
roger2ds. ssi
roger3ds. ssi s
rogerdds. ssi Gridfile

I C:husershguestisimuligrid ASC

~ System identification methods

View MOD/SHP | Average MOD |

- Postprocessing & vizualization

Slave-file
I C:husershguestisimulhslaves ASC

Beam/surface file
I C:husershguestisimulibeam A5C

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Calculate modeshapes. .. |

|

Figure4.2: MACEC main window.
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the internal data format. In case a sensitivity axis of a sensor does not coincide with one
of the global axis, it can be defined with two angles. ac]-180°,180°], the angle in the
XY -plane; and Be[-90°,90°], the angle perpendicul ar to the XY -plane (Figure 4.4).

Next the true preprocessing can begin. Preprocessing is the data trestment before system
identification and it highly influences the identification result. Following possibilities are
implemented:

m  Decimate: the data is low-pass filtered and resampled at a lower rate. The
identification can concentrate on alimited frequency band.

m  Detrend: the best straight linefitisremoved from the data. Thisremovesthe DC-
component that can badly influence the identification results.

% ASC->SIT conversion [C:‘wusersiguestisimulisimul. asc]

- Sensitivites ———————  ~ Accelerometer summary

< | >
Accelerometer 1 of 4
Js4. N/
Original senzitivity

I 1006.3633 T ALt

Amplification

I‘ID ¥ dB

B4
EE SCHAE_0.25

Save | Load | EE [vert] hd|
ﬂ

Figure 4.3: Scaling raw measurements from Volts to accelerations
[m/sec?] by selecting the used sensor and the amplification factor.

Conversion | Cloze |

4 SIT Specifications [simul.zit]

- Sampling frequency

Hertz COESRYRTRT &7 Ts se0

Select a channel - Mode and DOF infarmation
I Input signal Cw O oew
channel 3 Mode : [SITIE T
channel 4 |4— Tz -z
& Custom
Load | O I‘IDD
B |4 °
_I Save | 4

b | oK Cancel

Figure 4.4: Specifying the location and sensitivity axis of the channels.




110 CHAPTER 4

IMPLEMENTATION

®  NoElec: removal of spuriousfrequencies(e.g. at 50 Hz dueto A C power supply).
Thisoperationisnot the same as stopband filtering, but it really removesonly the
component at a certain frequency.

m  Deletechannel: removal of acomplete channel. For instanceavery noisy channel

can be better removed to improve the identification results.

®  Time window: a certain high-quality time segment can be selected for further
analysis.

The effect of a preprocessing procedure can be seen immediately, both in time and

frequency domain (Figure 4.5). Thereis also an "undo” possibility.

System identification

Currently two complementary methods are implemented: The Peak-Picking (PP) method
and the data-driven stochastic subspace identification (SSI-DATA) method. If the user
selectsthe PP method (Subsection 3.3.1), awindow with the average of the power spectra
is opened, the mouse pointer changes into a cross-hair and the user can pick the peaks
(Figure 4.6). Operational deflection shapes are determined at the selected frequencies.

|4 Data omall.sit - [output] channel 1/11 - node 44 +2

IS [=] B3

Channel

R

- Wisualization
Domain

I Bath 'l
¥ Zoom
I/ Giid

I Logx -,
¥ Log' G\B
- Preprocessing

" Single channel
Al channels

250 300

spectrurm

IDetrend 'l '] |

Apply |

PSD-p
" Default & Custam

‘Windowlength

Overlap

indow
_z & Baoxear ¢ Hanning

kd
Cloze

Figure4.5: MACEC' s preprocessing window with time and frequency domain representation of the signals.
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The second method is SSI-DAT A method (Subsection 3.5.1). First the user hasto specify
someinput-parametersof the algorithm: the sel ection of reference channels, the maximum
model order and the model order range. After some computations (QR factorization and
SVD), a dahilization diagram is constructed (Figure 4.7). The user can change the
stabilization criteria (defaults are 1% for eigenfrequencies, 5% for damping ratios and 1%
for mode shape correlations). The better the quality of the data, the stricter thesetolerances
can be set. The diagram is represented together with the average of the power spectrafor
visua reference. The stable poles are graphically selected.

Visualization

The identified mode shapes are graphically represented as deformations of the structure.
The DOFswere already attributed to the channelsin the preprocessing step (Figure 4.4).
Before visualization, a grid of nodes and the connections between the nodes in terms of
beams or surfaces need to be defined. Thisisrealized by loading two ASClI-filesinto the
program: a grid file and a beam or surface file. The grid file contains 4 columns: node
number and X, Y, Z coordinates. The beam file contain 2 columns: aMATLAB Line object
is defined by 2 nodes; whereas the surface file has 4 columns: 4 nodes define a MATLAB
Patch object. Thesefiles can easily be generated within M ACEC with the "beam/surface-
generator”, see[VAND99]. Visualization of DOFsthat were not measured can be donein
a"daving" procedure: the unmeasured slave DOFsare related to measured master DOFs.

[ Average nommalized psd H=1 E3

Cloze Confirm frequencies ¥ Log¥ 2 |
1

Figure 4.6: lllustration of the peak-picking procedure.
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Every setup of simultaneously measured channels yields after identification a part of the
global mode shape. These parts are glued together with the aid of reference sensors,
common to all setups. These common sensors are automatically detected by MACEC. As
illustrated in Figure 4.8, least squaresapproximation is used to determine the scaling factor
of a certain mode between two setups. The scaling factor is different from one if the
(unknown) excitation changes from one setup to another, which is generally the case.

+ Stabilization plot [ valb5-3.ssi ] M=l &3
Files
valbf-3.ssi = 50
R 45

v Auto pole selection
[T Show legend

Pole inforrmation on

" Rightclicking 5 30
&+ Mavi E
+ Maving mouse g
Freq 2.870Hz £ 25
Damp: 3.3% 'Ej;
Order: 35475 0 ag

Stabilisation criteria

Frequency [%] i ‘
[ramping [%] 10

“Wectar [%]
Frequency — )
range [Hz]
" Show all poles 0
Refash 0 2 4 - B 8 10
ﬂ % Create MOD Close

Figure 4.7: Stabilization diagram for pole selection in the SSI-DATA method.

Reference
Amplitudes of mode
X in setup 2

scale factor

Reference
Amplitudes of
mode X in setup 1

Figure 4.8: Use of reference sensors to glue mode
shape parts.
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Now we are ready to visualize the mode shapes. The visualization window (Figure 4.9)
offers a lot of possihilities: scrolling through all modes, representation of undeformed
structure and node numbers, 3D-view with possibility to change the viewpoint, animation
of mode shapes, ...

<#|Moving modeshapes !Em

|
N I Az -3p 5 ElL 26 WO MW
Mode Options Animation —————— :
. " Basicchap [T Modes T Grid I~ Triad . 1'
[i=1.8820: > | . furiey | ZE Movie |
™ Contours ™ Autofill T~ Complex mod Create SHEI
. | 5 | Color schemes Colormans  molificatio Slow Fast
IBIackand white VI Cool VI |15 ;I J _’I Close |

Figure 4.9: The mode -shape visualization window of MACEC.
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4.2 AUTOMATIC MODAL ANALYSIS

There are cases that user interaction is not desired. A first example was aready
encountered in Chapter 3, where 100 Monte-Carlo simulations were performed to study
the statistical properties of stochastic system identification methods. In each simulation
run, the stabilization diagrams of the 1V, SSI-COV and SSI-DATA method needed to be
interpreted to find the stable poles. A second, more practical example is continuous
monitoring of structures. In this case, the vibration monitoring system yields massive
amounts of data. Modal parameters have to be extracted from these data, since our
approach to damage detection requires the modal parameters as damage indices. Such a
continuous-monitoring case will be treated in Chapter 7.

From this, it is clear that a realistic monitoring system should incorporate an automatic
modal analysis procedure that excludes any user interaction. Neverthel ess the idea of the
stabilization diagram should not be abandoned since it proved to be essential in
distinguishing true system poles from numerical poles. To reconcile these requirements,
a procedure was developed that relies upon the automatic interpretation of stabilization
diagrams. It consists of following three steps:

1. One single representative data set is used to perform a classical identification
(with user interaction!). Such an analysis gives an idea about the quality of the
data and the choices of the stabilization criteria for eigenfrequencies, damping
ratios and mode shapes.

2. The automatic procedure takes off. The stahilization diagram is scanned and
columns of stable polesareidentified. The elements of such acolumn have close
frequencies and high mode shape correlations. To exclude accidentally stable
poles, a column should contain a minimum number of stable poles, otherwise it
is rejected. As representative for a column, the pole having its eigenfrequency
closest to the average of the column is selected. This procedure is repeated for
every data set.

3. There is no guarantee that every data set yields the same stable poles. For
instance, the input may change from one data set to another. Sometimesapoleis
missing (not well excited) or an additional poleisidentified (at an harmonic of
the input). Therefore the stabilization approach is followed again in this step to
pair the pol es between two datasets. Sometimesthe stabilisation requirementsfor
frequencies haveto bereduced. Thiswill bethe casein Chapter 7, wherevarying
frequencies are normal due to varying environmental conditions.
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The proposed automatic modal analysis procedure was tested on data sets of varying
quality: the numerical simulations of Chapter 2 and 3, the reinforced concrete beam data
and the steel mast data of Chapter 5 and the prestressed concrete bridge data of Chapter 7.
The results are presented in the respective chapters. In all these casesit turned out to be a
robust method.

4.3 CONCLUSIONS

In this chapter the development of a GUI for MATLAB was described. The goal was a
completeand user-friendly packagefor output-only modal analysis(with civil engineering
applications in mind). MATLAB was selected as development environment because of its
extensive computation and visualization tools. Another reason wasthat it is a very open
programming environment with access to most of the code, allowing the programmer to
easily modify implementationsor add new features. Thetoolbox haspreprocessing, system
identification and visualization possibilitiesthat allow both afast quality check of the data
on site (PP method) and a more accurate analysis afterwards (SSI-DATA method).

Additionally an automatic modal analysis procedure was proposed that is able to treat a
large number of data sets without any user interaction. This automatization is akey issue
of a continuous monitoring system that is based on modal parameters.
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APPLICATIONS

The simulation example of Chapter 2 and 3 proved to be very useful to compare
system identification methods. Although the simulation study was carefully
designed to be in close agreement with reality, a system identification method
should also be assessed using real vibration data. In Section 5.1, data from
vibration tests on reinforced concrete beams are used. A laboratory test under well-
controlled experimental conditions in terms of boundary conditions and excitation
sources, is a logical second step after performing numerical simulations.
Particularly interesting about the tests on the beams is that they were artificially
damaged in order to verify the damage-detection potential of the dynamic
characteristics. In Section 5.2, data from a steel mast excited by wind load is used.
This is a true real-life test. An application concerning the vibration monitoring of a
rigid prestressed concrete bridge, is deferred to Chapter 7.

117
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5.1 REINFORCED CONCRETE BEAMS

5.1.1 Introduction

As a part of the experimental work of this thesis, 4 reinforced concrete beams were
extensively tested. The aim of the beam testswas not only to provide experimental datafor
the system identification methods, but also to verify whether it is fundamentally possible
to measure the damage-induced changes in the dynamics of a structure. Therefore the
beamswere subjected to progressive artificial damage. At each intermediate damage state,
avibration experiment was set up. The 4 beams differed in the induced damage pattern.
Results from the 2™ and 3" beam are presented in this thesis. Results on the 4 beams can
be found in [PEET96, PEET97, MAEC98a, DEV199, PEET99a, MAEC004].

The usefulness of the beam tests is confirmed by the fact that they were selected as
"benchmark” tests by working group 2 of COST® action F3 on Structural Dynamics.
Published results on this benchmark case can be found in [PASC99b, PASC99a].

First the static and dynamic test procedures are described and some typical measurement
datarepresented. Next the application of stochastic subspaceidentificationto thevibration
data is illustrated. And finally, the evolution of the moda parameters throughout the
damage stages is tracked.

5.1.2 Dataacquisition

The beams

All 4 test beams have the same dimensions. Four objectives were envisaged when
designing the test beams:

m  Thefirst eigenfrequency should have the same order of magnitude as the lowest
eigenfrequencies encountered in typical civil engineering structureslike bridges,
i.e. 2-10 Hz. An advantage of alow fundamental eigenfrequency isthat withina
measurable frequency interval, e.g. 0-1000 Hz, a lot of modes will be present.
This is important because there is some belief that the higher modes are
influenced more by cracking than the lower ones. The eigenfrequencies are

'cosT sands for European Co-operation in the Field of Scientific and Technical Research
[http://www.bel spo.be/cost/], [http://www.ulg.ac.be/ltas-vis/costf3/costf3.html].
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proportional to h/L?. With the height h=0.2m and the length L=6m, afirst
eigenfrequency of about 20 Hz was obtained.

m  Earlier test programsin other institutions[DIET80, ROHR91] haverevesled the
difficulty of obtaining simple supports for dynamic tests. ambient vibration
interferes with the artificial force input, finite rigidity of the supports can
influence mode shapes and eigenfrequencies, and radiation will add extra
damping to the inherent damping of the concrete beam. Therefore, acompletely
freetest setup isadopted which meansthat the beam is supported by a number of
very flexible springs resulting in rigid body eigenfrequencies of about 1 Hz,
which is much lower than the eigenfrequency of the first bending mode,
f,=20Hz. A consequence is that the static test configuration will be different
from the dynamic one. Also in [BRIN95] a free-free dynamic test setup is
adopted. Duetothelimited length of the concretetest beam, the eigenfrequencies
were quite high. The first eigenfrequency was f, =278.8 Hz.

m  Toavoid any coupling effect between horizontal and vertical bending modes, the
width w=0.25 m of the beam is chosen to be different from the height.

m  Thereinforcement ratio should be within arealistic range. By aproper choice of
the steel quality, the interval between onset of cracking and beam failure can be
made large enough to allow modal analysis at well separated levels of cracking.

These four objectives result in a 6 m long beam of rectangular cross section
A=200x250 mm?. There are 6 reinforcement bars of diameter ¢ =16 mm, equaly
distributed over tension and compression side, corresponding to a reinforcement ratio of

Figure5.1: Steel reinforcement for the concrete beams.
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about 1.4%. Shear reinforcement consists of vertical stirrups of diameter 8 mm, every 200
mm. The reinforcement is shown in Figure 5.1. A total beam mass of m=750 kg results
in adensity of the reinforced concrete of p =2500 kg/m?.

Satic tests

As stated in the introduction, we concentrate on beams 2 and 3 in thisthesis. Beam 2 is
simply supported with a span of 3.6 m and two cantilevers of 1.2 m to minimize the
influence of the own weight. A static load isapplied at the centre of the beam, resulting in
a maximum bending moment at the position where the load is applied. The bending
moments decrease linearly to reach zero at the supports. The static test setup for beam 2
isillustrated in Figure 5.2. The loading sequence is represented in Table 5.1.

Beam 3 is also simply supported, but now the full length of the beam isused. Two static
loadsare applied at 2 m from both sides of thebeam. Thisisaso-called four-point bending
test. The bending moments are constant between theloadsand vary linearly between aload
and a support. The static test setup for beam 3 is illustrated in Figure 5.3. The loading
sequence isrepresented in Table 5.2.

Table5.1: Loading sequence of beam 2.

Load step 0 1 2 3 4
Total load [kN] 0 8 15 24 32

Table 5.2: Loading sequence of beam 3.

Load step 0 1 2 3 4 5 6
Total load [kN] 0 2x4  2x6  2x12 2x18 2x24 2x25.3

@ Static load H H Static load
| ‘ | | ‘ ‘
- A | o A | | ‘
12 1.8 1.8 1.2 2 2 2

Figure 5.2: Static test setup for beam 2. A triangle  Figure 5.3: Static test setup for beam 3. A triangle
representsahinge; acircle representsaroller. The unit represents ahinge; acirclerepresentsaroller. The unit
of distanceis1 m. of distanceis1 m.
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During the application of the static load, the deflection of the beams at several locations
is measured (Figures 5.4 and 5.5). At the maximum load of each step, also crack widths
and strains are measured. The progressive cracking of the beams is represented in
Figures5.6 and 5.7. Figure 5.8 gives an idea about the deflection of beam 3 during one of
the final load steps.
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Figure 5.4: Force-Displacement diagram
(Beam 2). The displacements a mid-
section are shown.

—

Displacement [mm]
Figure5.5: Force-Displacement diagram
(Beam 3). The displacements at mid-
section are shown.
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Figure5.6: Progressive cracking (Beam 2). Thevisually observed cracks at the maximum load of the 4 |oad steps
are shown from top to bottom.
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Figure5.7: Progressive cracking (Beam 3). Thevisually observed cracks at the maximum load of the 6 load steps

are shown from top to bottom.

Figure5.8: Deflection of beam 3 during one of thefinal
load steps.
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Dynamic tests

After each load step, the beams are unloaded, flexible springs are connected to the beams
and the supports are removed. The springs are connected at the theoretical nodal points of
the first bending mode, located at a distance from aside of 0.224L =1.344 m. Figure 5.9
givesan impression of the dynamic test setup. Due to the low-passfiltering characteristics
of afree-free setup, there were no ambient sourcesto excite the beam. Therefore artificial
excitation was applied. An impulse hammer and an electromagnetic shaker were
subsequently applied. The dynamic force is applied in vertical direction at an outer point
of an end section. This ensuresthe excitation of both vertical bending and torsion modes.
Every 20 cm, accelerationsare measured at both sidesof thebeam. A pseudo-random (also
called multi-sine) signal was chosen to drive the shaker. Typical impact test datais shown
in Figure 5.10.

5.1.3 System identification

The data-driven stochastic subspace identification (SSI-DATA) method is applied to the
impact response data. It may seem strange to use an impact excitation to validate a
stochastic system identification method. Indeed, strictly speaking one of the assumptions
of astochastic systemisviolated, namely thewhite noi se assumption of theinput. However
the use of an impact instead of white noise does not introduce additional polesin the data
(which would be identified erroneoudy as system poles by output-only system
identification methods). The systemidentification resultsof beam 2 initsundamaged state
are presented in this Subsection.

Figure 5.9: Dynamic test setup for both beams.
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Figure 5.10: Typical impact data. The top row represents the impact force; the bottom row represents an
acceleration response. The left column contain time histories; the corresponding spectra are shown in the right
column. The sampling frequency is 5000 Hz. The impact hammer was able to generate a reasonable response in
afreguency range from O to 700 Hz.

Modal parameters

The whole surface of the beam was scanned with accelerometers in 6 setups. The 2
accelerometers at one of the sides of the beam are the reference sensors which remained
on their position during the 6 setups. They are necessary to merge the relative modal
amplitudes of different setups in an output-only modal analysis. Every impact test was
repeated 4 times. By consequence 24 independent samples are available to estimate the
eigenfrequencies and damping ratios. A typical stabilisation diagram is shown in
Figure5.11. Table5.3representsthemeanvalues f, & and estimated standard deviations &, 5.
of the 12 modesthat could beidentified in therange 0— 700 Hz. The corresponding mode
shapes are shown in Figure 5.12. The represented hammer results are in good agreement
with the shaker results where a pseudo-random input signal was used. A pseudo-random
signal consists of discrete sines, all with the same amplitude but with a random phase
angle. A comparison between hammer and shaker results can be found in [PEET97].
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Figure5.11: Stabilization diagram obtained by applying the SSI-DAT A method to impact
data. The criteriaare 1% for frequencies, 5% for damping ratios and 2% for the mode shape
correlations. The used symbols are; ‘@’ for a stable pole; ‘.v' for a pole with stable
frequency and vector; ‘.d’ for apole with stable frequency and damping; * .f* for apolewith
stable frequency and ‘.’ for anew pole.

Table 5.3 Estimated eigenfrequencies and damping ratios of beam 2 in its undamaged state. The
mean values and estimated standard deviations are based on 24 samples (6 setups x 4 impacts). The
first 12 bending and torsion modes are given. The mode type has to be interpreted as follows: ‘B’
stands for bending; ‘T’ for torsion; then a counter is given and finaly it is specified whether it isa
symmetric mode (S) or an anti-symmetric one ().

Mode type Bl(s) B2(a) B3(s) Tl(a) B4(a B5(9

f [HZ] 2235 6243 1199 1755 1981  293.9
&, [HZ] 002 003 008 008 008 01
& [%] 0.5 038 05 064 044 045
8. [%] 0.1 001 01 006 001 002
Mode type T2(s) B6(@ B7(s) T3(@ B8@ T4(9
f [HZ] 377 400 518.1 551 6475 695
&, [HZ] 0.1 0.1 0.2 0.1 0.2 2
& [%] 037 045 045 041 045 05

G, [%0] 0.03 0.02 0.03 0.02 0.02 0.1
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Figure5.12: First 12 identified mode shapes, ordered from left to right from top to bottom. These mode shapes
are obtained by applying the SSI-DATA method to impact data.

Postprocessing

Some postprocessing tools are applied to impact datafrom thefirst set-up of beam 2 inits
undamaged state. Each setup consists of 12 output channels. The data were sampled at a
rate of 5000 Hz and 12288 data points were measured. Before identification the data was
low-pass filtered and resampled at arate of 1250 Hz. The SSI-DATA method is used to
identify a 70-pole state-space model. Channels 1, 2 and 7 are chosen asreference channels
intheidentification. Asexplainedin Subsection 3.7.1, theidentified stochastic state-space
model can be considered asaparametric spectrum estimate. Figures5.13 and 5.14 compare
some elements of this spectrum matrix with a non-parametric spectrum estimates (using
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Welch's method, see Subsection 3.2.3). There is aremarkable agreement, indicating that
the SSI-DATA method is able to identify successfully a high-order system.

Experience learnt that, when applying subspace methods to impact data, it isimportant to
include enough zerosin the data before the impact takes place. Otherwise the amplitudes
of the estimated spectrum will be a few orders of magnitude lower than Welch’'s
periodogram. It was observed that the number of zeros before the impact should be at least
the number of block rowsinthe dataHankel matrix (3.2). Without sufficient zeros, thelast
rowsof thisHankel matrix would contain response datathat only startsafter theimpact and
would have a much lower energy content.
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Figure5.13: Comparison of power spectraof channel 12. Thefull lineisWelch's
periodogram; the crosses represent the SS|-DAT A parametric estimate. Although
the represented channel is not a reference channel, the agreement is excellent.
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Figure5.14: Comparison of cross spectra between channel 1 and channel 12. The
full lineisWelch's periodogram; the crosses represent the SSI-DAT A parametric
estimate. The top figure shows the absolute value of the spectrum; the bottom
figure shows the phase angle. Again the agreement is excellent.
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In a next stage the frequency content is further reduced by low-pass filtering. We
concentrate on the first 5 modes to study the modal responses and the prediction errors
(Subsection 3.7.2). Themodal responsesof thefirst output signal areshownin Figure5.15.
The prediction error sequence e, of the same signal is shown in Figure 5.16. Classically,
the prediction errors are white noise, but in this case, the prediction error sequence looks
morelike alow-passfiltered impulse. Thisisinfact no surprise, sincethe prediction errors
not only depend on the modelling inaccuracies and the measurement noise but also on the
"unknown" input. Notice that the input was measured in this case, but it isunknown in the
sensethat it was not used in the system identification method. From the covariance matrix
of the prediction errors R, =E[ ekekT] , shown in Figure 5.17, it is even possible to locate
the unknown input.

1/2 total

Mode 1 b
Mode 2 FANANAAANANANARAAANAANANANANAAANANANANANANAAAAANA

Mode 3 JWMM&NW\MAMWWMWWWWWMWWWWMNWMMWWWW
Mode 4 *’NW‘MMWMWWWWW W

Mode 5 WWWWMWWWWWW

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
t[s]

Figure5.15: Modal responses of the first channel. The measured total responseis
shown in the top chart. The amplitudes of this signa have been multiplied by 0.5
for scaling purposes. The contributions of the 5 modes are subsequently presented.
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1 1 1 1 1 1 1 1 1
0 0.02 004 006 008 01 012 014 016 018 0.2
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Figure5.16: Prediction error of thefirst channel. It is not a white noise sequence,
but rather alow-pass filtered impul se, where the offline filter was applied in both
forward and backward direction. This filtering procedure corresponds to the
decimate command of [SIGN97] that was indeed applied to the data.



5.1 Reinforced Concrete Beams 129

0.25
2
0.2

4
©
S 6 0.15
(]
ey
O g
0.1
10
0.05
12

2 4 6 8 10 12
Channel
Figure5.17: Covariancematrix Re of thepredictionerrors. The
largest values indicate the location of the input. The true
excitation was indeed applied between accelerometer 1 and 3.
The location of the sensors and the force is represented in
Figure 5.18.
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Figure5.18: Top view of apart of the beam. Thelocation of the
sensors is represented by large dots. The hammer impact
location is situated at the cross.

5.1.4 Evolution of the modal parameters

The SSI-DATA method is used to estimate the modal parameters of the beams at each
intermediateload step. The evol ution of eigenfrequenciesand damping ratiosof the beams
throughout the damage stages is represented in Figures 5.19-5.22. Due to damage the
eigenfrequencies are decreasing by 25% or less and the damping ratios are increasing by
afactor 2to 5. Contrary to an obstinate belief, it is not the case that the higher modes are
more sensitive to damage.

It isimportant to judge of these changes with respect to the uncertainties of the estimates.
The statistical analysisthat was presented in Table 5.3 for beam 2 in its undamaged state



130 CHAPTERS5  APPLICATIONS

is repeated for every state and for both beams. From the mean value x and estimated
standard deviation 6, of astochastic variable x, the 100(1 - o) % confidence interval on
the true value of x is given by:
i—tgvéx, Z+tgvax
2 2'

wheret, o isfound from astatistical tableof Student’ st-distribution. The symbol v isthe
number of DOFs, which is one less than the number of samples N in this case,
v=N-1=23. In order to compute the 95% confidence interval, for instance, we have
a=0.05and t, o= 2.07. Figures 5.23-5.26 show the evolution of eigenfrequencies and
damping ratios for modes 2, 3 and 4 together with the 95% confidence intervals. The
decrease of eigenfrequenciesisstatistically relevant. Concerning damping, thesituationis
rather unclear. In general the damping seems to increase, but the uncertainty on the
estimatesis quite high.

As shown in [PEET96], the mode shapes are also changing due to damage. The changes
remained small however. The mode shape curvatures are much more sensitive parameters
than the mode shapes themselves. They are also a better indicator for local defects.
Unfortunately itisnumerically not evident to computethe curvaturesof an estimated mode
shape. ldeas related to the computation of modal curvatures and their use for damage
localization can be found in [PAND91b, MAEC99, MAECOQ0a].

As agenera conclusion of the laboratory beam tests, we can state that vibration-based
damage detection isvery promising. We should however not forget that the experimental
conditions were more advantageous than in areal situation. Therefore Chapter 7 of this
thesis will deal with areal case from civil engineering practice: an existing bridge was
subjected to redlistic damage scenarios and the dynamic tests were performed under
varying environmental conditionsthat are possibly eroding the damage-detection potential
of vibration-based monitoring.
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Figure5.19: Relative changes due to damage of thefirst 12 eigenfrequencies of beam 2. The symmetric bending
modes have white bars; the anti-symmetric havelight gray bars and the torsion modes are represented by dark gray
bars. The undamaged state is represented by load step 0, see Table 5.1. The first eigenfrequency decreases with
25% and the others with 14% or less.
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Figure5.20: Relative changes due to damage of thefirst 12 eigenfrequencies of beam 3. The symmetric bending
modes have white bars; the anti-symmetric havelight gray bars and the torsion modes are represented by dark gray
bars. The undamaged state is represented by load step 0, see Table 5.2. The first eigenfrequency decreases with
25% and the others with 22% or less.
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Rel. damp.

Figureb5.21: Relative changes dueto damage of thefirst 12 modal damping ratiosof beam 2. The order of theload
stepsisreversed as compared to Figure 5.19 to improve visibility. The damping ratios are increasing with afactor
2to 5 due to damage.

Figureb5.22: Relative changes due to damage of thefirst 12 modal damping ratiosof beam 3. The order of theload
stepsisreversed ascompared to Figure 5.20 toimprovevisibility. With an exception of mode‘B5(s)’, thedamping
ratios are increasing with a factor 2 due to damage.
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Figure5.23: Relative eigenfrequency changes for mode 2, 3 and 4 (beam 2). The
95% confidence intervals are also given. The full line represents mode 2; the
dashed line is mode 3 and the dotted line is mode 4. The decrease of the
eigenfrequencies due to damage is statistically relevant. The results for the other
modes are similar.
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Figure5.24: Relative eigenfrequency changesfor mode 2, 3 and 4 (beam 3). The
95% confidence intervals are also given. The full line represents mode 2; the
dashed line is mode 3 and the dotted line is mode 4. The decrease of the
eigenfrequencies due to damage is statistically relevant. The results for the other
modes are similar.
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Figure 5.25: Relative damping ratio changes for mode 2, 3 and 4 (beam 2). The
95% confidence intervals are aso given. The full line represents mode 2; the
dashed line is mode 3 and the dotted line is mode 4. Damping seems to increase
with damage, but the uncertainty on the damping estimates is quite high. The
results for the other modes are similar.
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Figure 5.26: Relative damping ratio changes for mode 2, 3 and 4 (beam 3). The
95% confidence intervals are also given. The full line represents mode 2; the
dashed line is mode 3 and the dotted line is mode 4. Damping seems to increase
with damage, but the uncertainty on the damping estimates is quite high. The
results for the other modes are similar.
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5.2 STEEL MAST

5.2.1 Introduction

Inthe design process of asteel transmitter mast, the damping ratios of thelower modesare
important factors. The wind turbulence spectrum (Figure 5.27) has apeak value at avery
low frequency around 0.04 Hz [BALE93]. All eigenfrequenciesof the considered structure
are situated at the descending part of the turbulence power spectrum, and thusin fact only
the few lower modes of vibration are important for determining the structure’' s response
to dynamic wind load. The structure under consideration is a steel frame structure with
antennae attached to the top. In order to prevent malfunctioning of the antennae, the
rotation at the top has to be limited to 1°. Only once in 10 years, this value may be
exceeded. The dynamic response (and thus the rotation angle) of a structure reaches its
maximum at resonance, wherethe amplitudeisinversely proportional tothedamping ratio.
So the damping is directly related to the maximum rotation angle. A high damping ratio
means that the amount of steel needed to meet the specification of limited rotation can be
reduced.

The only way to determine the true damping ratiosis by performing avibration test on the
structure. Such atest does not only yield the damping ratios, but also the eigenfrequencies
and the mode shapes at the sensor locations. Thisallowsto validate and eventually update
afinite element model of the structure. The most practical way to excite the mast isusing
the wind. Since it isvery difficult, if not impossible, to measure the dynamic wind load,
only responses were recorded and the mast tests constitutes an excellent real-life example
to validate stochastic system identification methods.

The mast was tested twice with an interval of more than one year. The reason for the
second test wasthat the dynamic behaviour of the mast changed because of theinstallation

» Earthquake
spectrum

Wind turbulence
spectrum

Power spectral density

0001 m [} 1
Frequency (Hz)

1000 0 10 1 01

Period (s)
Figure5.27: Typical wind turbulence spectrum compared with
an earthquake spectrum [BALE93].
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of eccentric antennae at thetop (seefurther). Both testsare summarized inthisthesis. More
extensiveresultscan befound in [PEET98a, PEET99f, PEET99€]. First the mast structure
and the data acquisition is presented. Next the application of stochastic subspace
identification to the vibration datais illustrated.

5.2.2 Dataacquisition

The tested mast structure isa part of acellular phone network. The mast is situated in the
port of Antwerp. Figure5.28 showsthe mast on 24 February 1997, the date of thefirst test.
Figure 5.29 is a photograph that was taken on 26 March 1998, the date of the second test.
The difference is that the second time the sectorial antennae were installed. They are
expected to have animportant influence on the dynamics of the structure, sincetheir added
massis considerable (+10%) and they are located close to the top, a position where large
displacements occur. A typical cross section is given in Figure 5.30. The mast has a
triangular cross section consisting of 3 circular hollow section profilesof whichthesection
and the thickness decrease from bottom to top. The 3 main tubes are connected with
smaller tubes forming the diagona and horizontal members of the truss structure. The
structure is composed of 5 segments of 6 m, reaching a height of 30 m. At the top in the
centroid of the section an additional tube rises above the truss structure resulting in atotal

Figure 5.28: Steel mast structure on 24 February Figure 5.29: Steel mast structure on 26 March 1998,
1997, before the installation of the antennae. after the installation of the antennae.
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Figure 5.30: Cross section of the mast. The
accelerometer positionsareindicated withH1,
H2 and H3.

height of 38 m. The antennae are connected to this tube at a height of 33 m. A ladder is
attached to one side of the triangle. Together with the diagonals, thisladder is disturbing
somewhat the symmetry of the structure. The mast is founded on athick concrete slab
supported by three piles.

The measured DOFs are the following: every 6 m, from 0 to 30 m, 3 horizontal
accel erations were measured. Their measurement direction areindicated in Figure 5.30 as
H1, H2 and H3. Assuming that the triangular cross section remains undeformed during the
test, the 3 measured accelerations are sufficient to describe the complete horizontal
movement of the considered section. At ground level (O m) also 3 vertical accelerations
were measured in order to have acomplete description of al displacement components of
the foundation. During the second test 2 supplementary perpendicular sensors were
installed on the central tube at 33 m. These 2 sensors, also measuring in horizontal
direction, allow a better characterization of the mode shapes. Due to the limited number
of acquisition channels and high sensitivity accelerometers, the described measurement
grid of 23 sensor positions was split in 4 setups. In output-only modal analysis where the
input force remainsunknown and may vary between the setups, the different measurement
series can only belinked if there are some sensorsin common. The three sensorsat 30 m
aresuited asreferencessinceit isnot expected that these are situated at anode of any mode
shape.

The cut-off frequency of the analog anti-aliasing filter was set at 20 Hz. The data were
sampled at arate of 100 Hz during 5 minutes for each setup. Figure 5.31 compares the
power spectraof the signals measured at the samelocation in both tests. Itis clear that the
dynamic behaviour of the mast changed quite drastically due to the added eccentric mass
of the antennae.
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Figure5.31: Comparison of power spectra of the signals measured at 30 min'Y-
direction (Figure 5.30). The top spectrum represents the first test (24 February
1997); the bottom spectrum originates from the second test (26 March 1998). The
differences are due to the installation of the antennae.

From the relative heights of the peaksin the acceleration spectra, one can definitely not
concludethat only the lower modes areimportant for determining the structure’ sresponse
to dynamic wind load. However, as stated in the introduction, the most important design
criterion for thiskind of structuresisamaximum rotation angle. Therefore displacements
arethe quantitiestolook at. Roughly speaking, the peaksin Figure 5.31 haveto bedivided
by »? to obtain displacementsand, indeed, thelower modesare becoming moreimportant.

5.2.3 System identification

The data-driven stochastic subspace identification (SSI-DATA) method is applied to the
mast response data. We emphasize the differences between the two tests and examine the
influence of the choice and number of reference sensors on the identification results.

Modal parameters

Beforeidentification the datawas decimated with factor 8: it wasfiltered through adigital
low-pass filter with a cut-off frequency of 5 Hz and resampled at 12.5 Hz. This operation
reduces the number of data points and makes the identification more accurate in the
considered frequency range 0— 5 Hz. The higher modes, situated in therange 5— 20 Hz,
areidentified in aseparate analysiswithout low-passfiltering and using only alimited time
frame. As usua, the modal parameters are selected from a stabilization diagram

(Figure5.32). Table5.4 presentsthemeanvalues f E and estimated standard deviations 6;, &,
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of the first 7 modes for both tests. We may have high confidence in the identified
frequencies, sincetheir standard deviations are extremely low. Dueto the increased mass,
the eigenfrequencies of the second test arelower. Asusual the damping ratio estimates are
more uncertain. The very low damping values indicate that there are not much damping
mechanisms present in such a stedl structure. It seems that fixing the antennae had some
positive influence on the damping ratios, in the sense that they are higher for the lower
modes. Nevertheless, they arestill lower than the valuesthat can be found in design codes,
which is a rather unsafe situation. Some representative mode shapes identified from the
second test are shown in Figure 5.33. The mode shape results from the first test and a
comparison with an FE analysis can be found in [PEET983].
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Figure5.32: Stabilization diagram obtained by applyingthe SSI-DAT A method tolow-pass
filtered mast data (second test). The criteriaare 1% for frequencies, 5% for damping ratios
and 2% for the mode shape correlations. The used symbolsare: ‘@’ for astablepole; .v' for
apolewith stable frequency and vector; ‘.d’ for a pole with stable frequency and damping;
*.f" for apolewith stablefrequency and ‘.’ for anew pole. A zoom is added that concentrate
on the close modes around 1.175 Hz.
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Figure 5.33: Some representative mode shapes (second test), identified with the SSI-DATA method. The mode
numbersareindicated in bold. Also the corresponding eigenfrequencies are given. The Z-axisrepresentsthe height
with aunit of 1 m. The other axes represent relative modal amplitudes.
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Table5.4: Estimated eigenfrequencies and damping ratios of both tests of the mast structure (in’97
without and in’ 98 with antennae). The mean values and estimated standard deviations are based on
8 samples (4 setups, each setup measured twice). The first 7 modes are given.

M ode number 1 2 3 4 5 6 7

‘97 Test f [Hz] 1.487 1492 2953 2976 6.793 7.155 7.343
& [HZ] © 0 0 0 0 0 0

E[%] 05 04 02 018 014 032 029
6.[%] 02 03 01 007 003 007 008

'98Test f [Hz] 117 1179 1.953 261 2711 3.687 4.628
& [HZ © 0 0 0 0 0 0

E[w] 05 07 07 03 017 02 02
6.[% 02 02 01 01 005 01 01

Influence of reference sensors

The low-passfiltered data of the second test is used to examine the influence of the choice
and number of references on the identification results. Two types of analyses are
performed. Inafirst analysis, al outputs | =9 areconsidered asreferences r =9. Thiscase
will be called "full analysis'. Next, only the outputs located at a height of 30 m are
considered as references r =3 and the others are partialy omitted in the identification
process, as explained in Subsection 3.5.1. This case is called "reduced analysis'. The
number of data points N and half the number of block rowsi in the data Hankel matrix
(3.2) are the same in both cases, so that the reduced analysis only required 44% of the
computational time as compared to the full analysis; see equation (3.45). We have chosen
i =10, so that the maximum model order equals ri =30 in thereduced analysisand li =90
inthefull analysis. Thisisreflectedin Figure5.34, wherethe principal angles(Section 3.6)
obtained in both cases are shown. The graph suggests that the reduced analysis required
alower-order model to fit the data. We can think of two possible explanations: the reduced
analysis is not able to extract all features from the data or it gets faster rid of the noise
because the reference outputs are chosen so asto have the best signal-to-noiseratios. The
detailed analysisin [PEET99f] revealed that the estimated modal parameters are almost
exactly identical in both analyses. Soif thefirst explanation would betrue, it seemsto have
no conseguences on the quality of the modal parameters.
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Figure5.34: Principal angles between therow space of future outputs and the row
space of past outputs. The used symbolsare: ‘*’ for the reduced analysisand ‘ +'
for the full analysis. The true model order is found from the gap between the
principal angles. The gap for the reduced analysisis situated at n=14 and for the
full analysisat n=18.

However, there are some objective differences between the full and reduced analysis. In
Figure 5.35, the power spectrafrom areference signal are compared. Thefull and reduced
analyses perform equally well. Figure 5.36 showsthe spectraof anon-referencesignal. In
this case the reduced analysis had some problems in modelling the frequency ranges
between resonance pesks.

It is also interesting to take a look at the prediction errors (Subsection 3.7.2). The
prediction errors cumulate model ling inaccuraci es, measurement noise and the unknown
input. In order to obtain one number, the total prediction error g for channel i isdefined
as.

N 0) g ))2
el = D1 009 x 100%

Y (0

where y{) is the i" output channel. In Table 5.5, the prediction errors for two different
reduced analysesand the full analysisare presented. It isconfirmed that the non-reference
channels are not so well modelled as the reference channels.

From the comparison between the reduced and full analysis, we can conclude that the
reduced analysis is considerably faster, while it yields identical results in terms of the
identified modal parameters. The analysis of spectraand prediction errors made clear that
the non-reference channel sare more affected by modelling errors. These errorsaremainly
situated between the resonance peaks and not at the resonances.
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Figure 5.35: Comparison of power spectra of areference signal. The dashed line
is Welch's periodogram; the full line represents the full analysis and the dash-
dotted line is the spectrum from the reduced analysis. All spectraarewell in line.
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Figure 5.36: Comparison of power spectraof anon-reference signal. The dashed
lineis Welch’ s periodogram; the full line representsthe full analysis and the dash-
dotted line is the spectrum from the reduced anaysis. The frequency ranges
between resonance peaks is not well tracked by the reduced analysis.

Table5.5: Total prediction errors ) [%] for all 9 output channels. Two reduced analyses (one with
channels 1, 2, 3 asreferences, the other with channels 2, 3, 8 asreferences) and the full analysis are
presented. In the reduced analyses, the prediction errors are lower for the reference channels and
comparablewith the full analysis. The prediction errors for non-reference channels are considerably

higher.
Channel 1 2 3 4 5 6 7 8 9

References: 1,2,3 15 14 14 17 17 24 23 23 25
References: 2,3,8 17 13 14 18 13 24 22 14 27
Full analysis 13 183 14 13 13 18 13 14 14
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5.3 CONCLUSIONS

To complement the simulation example of Chapter 2 and 3, tworeal vibration experiments
were discussed in this chapter. They confirmed the identification quality of stochastic
subspace identification methods.

The beam tests proved that it is fundamentally possible to measure the damage-induced
changesin the dynamics of astructure. The main purpose of the mast test was to measure
thedamping ratios. The datawas al so used to study the influence of the choice and number
of reference sensors on the identification results.



ENVIRONMENTAL MODELS OF
VIBRATING STRUCTURES

In this chapter, a method is proposed to distinguish temperature effects from
damage events. The chapter is organized as follows. Section 6.1 motivates the
chapter: from literature and our own experience it is clear that there is an influence
of temperature on the eigenfrequencies of a construction. A system identification
approach is proposed to quantify this influence. Section 6.2 discusses how an
accurate environmental model can be obtained from temperature - frequency data.
The use of the environmental model for simulations is outlined in Section 6.3. The
idea is that, if the bridge has changed, the simulated frequencies will significantly
deviate from the measured frequencies. All elements of the proposed damage
detection method are synthesized in Section 6.4. Section 6.5, finally, concludes the
chapter.
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6.1 INTRODUCTION

6.1.1 Motivation

In amost al studies on vibration-based damage detection, the varying environmental
conditions are disregarded. Indeed, in numerical simulations and laboratory tests they do
not play any role, but when it comesto areal-life situation as the monitoring of abridge,
it can be suspected that temperature differences of about 50°C during the year will have
an influence on the dynamic characteristics. It is for instance known that the Young's
modulus of concrete decreases with increasing temperature and that also boundary
conditions may be temperature-dependent. Both parameters have their influence on the
eigenfrequencies. Damage (a loss of stiffness), on the other hand, decreases the
eigenfrequencies (Take a look at Figures 5.19 and 5.20!). The problem is that damage-
induced frequency changes can be compl etely masked by changes due to normal varying
environmental parameters. Figure 6.1 synthesizes the motivation of this chapter. It isa
preview of the results obtained on the Z24-Bridge that will be treated in full detail in
Chapter 7.

i i i i i
1 3 5 7 9 11 13 15 17
Damage scenario [-]

T T T T T T T

i i i

82 83 84 85 86 87 88 89 90
t[day], t, = 11-Nov-1997 00:00:00

Figure 6.1: Damage events vs. temperature effects on the first eigenfrequency of
the Z24-Bridge. The top figure represents the evolution of the frequency as a
function of the applied damage scenarios. Scenarios 3 to 7 are reversible (see
Chapter 7 for details). The bottom figure represents these temperature effects on
the first eigenfrequency during a cold period in the beginning of February 1998.
The results of this chapter were aready used to filter out the temperature effects
inthetop figure. The scaling of the y-axisisthe samein both figures. The normal
frequency changes are as large as the changes due to damage!
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Other experimental evidence of therel ation between temperature and eigenfrequenciescan
be found in literature. Alampalli [ALAM98] reports that the relative eigenfrequency
differences 6 f of abridge dueto freezing of the supports (4 f =40 - 50%) were an order of
magnitude larger than changes due to damage (6f =3 -8%), which was in this case an
artificial saw cut across the bottom flanges of both girders. It must be mentioned that the
studied bridge wasrelatively small, with aspan of 6.76 m and awidth of 5.26 mand it was
tested using an impact hammer. Roberts and Pearson [ROBE98] are describing a
monitoring program on a 9-span bridge with atotal length of 840 m. They found that
normal environmental changes could account for changesin eigenfrequencies of as much
as 3-4% during the year. Farrar et al. [FARR97] found that the first eigenfrequency of
the Alamosa Canyon Bridge varies approximately 5% during a24 h time period. In apaper
by Sohn et al. [SOHN99], the same bridge data is used to build a regression model that
describesthevariation of eigenfrequenciesdueto varying temperatures. Themodel isused
to establish confidence intervals of the frequencies for anew temperature profile. Ricker
et al. [RUCK95] showed that the temperature effects on the dynamicsof a 7-span highway
bridge in Berlin can also not be neglected. Rohrmann et al. [ROHROQ] are examining the
physical phenomenathat are possibly causing the frequency changes of 10% during the
year observed at that bridge. Finally, Askegaard and Mossing [ASKES88] found that a 3-
span reinforced concrete footbridge exhibits normal frequency variations of 10% during
the year.

Mode-shape-based damage identification methods may still work in the presence of
temperature variations. Most of above observations are the result of a continuous-
monitoring program that only consists of a few accelerometers (in order to reduce the
costs). Theoretically, one well-placed sensor suffices to retrieve the eigenfrequency
information. Owing to the limited number of sensors, experimental evidence of the
influence of temperature on the mode shapesislacking. It is however generally assumed
that an eventual influence will be much smaller than the local change in the mode shape
(or its curvature) that would occur at the location of damage. These local changes are
typically the basis for mode-shape-based damage localization methods.

6.1.2 A system identification approach

From literature and our own experienceit isclear that, especially in continuous monitoring
systems, theneed arisesto separate abnormal frequency changesfrom normal changes. The
ideaisto find an environmental model that quantifies the relation between environmental
parameters and eigenfrequencies. Having amodel at hand, it would be possible to predict
the frequencies of the structure from measured temperatures. If the prediction of a
frequency does not correspond (within certain confidence intervals) to the measured
frequency, something "abnormal” is going on and the structure is possibly damaged.
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A first approach to establish an environmental model could be a detailed analysis of the
physicsthat drive the eigenfrequency changes. From material researchit should be ableto
find arelation between temperature and the dynamic Y oung’ s modulus E of concrete and
asphalt. The eigenfrequencies of a homogeneous specimen are proportional to the square
root of Y oung’ smodulus: f~\/E . Another physical fact isthat freezing of the soil changes
the boundary conditions of a structure [ALAM98] and this affect again the structural
stiffness and thus the eigenfrequencies. One could try to quantify this (nonlinear) relation.
Thefull story iseven more complex. A single structure may consist of steel, concrete and
asphalt partsthat all play their rolein the stiffness. In the process of heating up and cooling
down, thethermal inertiaof these materialsareal soimportant and temperaturedifferentials
will exist. Most references cited in previous subsection are giving physical explanations
for the frequency changes, however they do not explicitly quantify it. In Rohrmann et al.
[ROHROQO0] the physical phenomena are examined in more detail by building a combined
thermal-structural FE model that uses meteorological data of the Berlin areato compute
eigenfrequencies of the studied bridge.

From al this, it may be clear that finding a "physical” environmental model is almost
impossible. In these situations, one typically relies upon a systemidentification approach.
Mathematical methods are used to derive a black-box model that is entirely based on
measurements.

In Chapter 3, the inputs are unmeasurable ambient forces and output-only system
identification methods are used to estimate a model from measured output data
(accelerations). In a second step eigenfrequencies are obtained from the modal
decomposition of themodel. In thischapter, theinputs are measurable ambient parameters
(temperatures) and the outputs are the estimated eigenfrequencies. Hence classical input-
output system identification can be used to estimate a model. In a second step the model
will be used for simulation. A whole chapter (Chapter 2) was devoted to justify the choice
of amodel structure that was assumed in the identification. The chosen models could all
represent avibrating structure. Here, such ajustification isnot given and a (ssmple) model
structure is proposed that is not necessarily able to represent the "true" system of
temperature-driven frequency changes. However, model validation tools are applied to
ensurethat themodel accurately describestheinput-output behaviour so that it can be used
with confidence for simulations. Except for the derivation of the simulation error and its
statistics, this chapter was inspired by [LJUN99].
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6.2 IDENTIFYING THE MODEL

6.2.1 ARX modes

A straightforward approach to obtain an environmental model isto apply (multiple) linear
regression: a relation between a frequency and some of the environmental parameters
measured at the same time instant is derived by applying linear least squares to the data
(see for instance [MONT91]). These "static" linear regression models, that only relate
simultaneously measured data, are not very flexible in the sense that they are not able to
model the dynamicsof the heating up/cooling down process of the structure. Thereforewe
are looking at "dynamic" models instead.

Probably the most simple dynamic model described in the system identification literature
(seeforinstance[LJUN99]) isthe ARX model that consists of an Auto-Regressive output
and an eX ogeneous input part:

Vet @Y1 8 Vi, = Pl vboU gt U gt 8 (6.2)

where y, isthe output — in this case an eigenfrequency — at timeinstant k; u, istheinput
—inthiscase atemperature— and e, isthe equation error term modelling the disturbances
that act on the input-output process. Typical sources for the disturbances are unmodelled
inputs and measurement noise. This term is not known, but it is assumed that it is white
noise, with zero mean E[e,] =0 and covariance

El&.i&] =29, (6.2)

For establishing confidence intervals on the model, we additionally assumethat e, hasa
Gaussiandistribution. The ARX model ischaracterized by 3 numbers. the auto-regressive
order n,, the exogeneous order n, and the pure time delay between input and output n,.
The orders n, and n, are determining the number of model parameters, gathered in the
column vector 6:

0" - [a (i-1..n,) b (j-1...ny)] (6.3)

By introducing the shift operator, g1y, =y, _,, and defining the operator polynomials:

a(q) =1+aqt+..+a,q s

b(g) = b,q M+b,g e b g Mt (6.4)
b
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the ARX model can also be written as:

aQ)y, = b(@u,+e (6.5)

The"static" regression model correspondsto the ARX model with aspecial choice of the
model orders and time delay. More specifically, it is an ARX010 model (with
[n,.n,,nJ=[0,1,0]):

Y = byu, re (6.6)

If more than 1 input variableisincluded, Equations (6.1) and (6.6) are till valid but u, is
a column vector and the b coefficients are row vectors. The advantage of general ARX
models over static regression modelsis that they are dynamic models: the current output
and input are related to outputs and inputs at previous time instants.

In system identification the data is often normalized: the means are removed (otherwise
there would be an offset term in Equations (6.1) and (6.6)) and theresult isdivided by the
samplestandard deviation. The meanvalue x and sample standard deviation 6, of variable
x are defined as:

[}

1 1 67)
X==Y x, = | — X, ~ X)2 N
N kz;l k X N-1 kzjl ( k _)
Where x, denotes a sample of variable x. The notation 6, is explained by the fact that it
isan unbiased estimate of the true standard deviation o, in case x isastochastic variable.
The normalized input and output data u,,y, are then computed from the measured data

uye" as:

U = —— Y% = — (6.8)

It can beinstrumental to transform an identified ARX model back to the engineering units
of the original data. Thisis achieved by introducing Equation (6.8) in the "normalized”
ARX modé (6.5):

o .
a(Q)y" = b(q)é—yukmmyewc (6.9)

u

where the offset ¢ is computed as:
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_ a7 b2
c = al)y b(l)a u (6.10)

u

6.2.2 ARX modelsand least squares(LS)

The popularity of ARX modelsisbased on thefact that an estimate of the parameter vector
0 is easily obtained by applying linear Least Squares (LS). To show this, the ARX
equation (6.1) is reformulated as:

Vi = 0 0+ &
with:
T _1_ _
O = [ ykfl ykfna ukfnk ukfnkfnb+1]

Assuming that the number of available input-output samplesis such that this equation can
be written down N times, following matrix equation is obtained:

Y=728+E

in which following definitions have been used:

y]_ (pI el
T X (N +
v = | V2| er® A Il I S = €| erM
yN T eN

On

This over-determined set of equationsis solved in aL S sense to yield an estimate of 6:

0=(z"2)1z7Y

In order to examine the statistical properties of the estimate, it is assumed that the "true"
system can be described by:

Y = 0k 0, + &, E[()7] =2 (6.11)
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We also assume, for the moment, that ¢, isadeterministic sequence. This correspondsto
the usual L Sassumption that the regressor variableisdeterministic (i.e. it can be measured
without an error) whereas the dependent variable is stochastic. Under these assumptions
it can be proven that [LJUN99]:

m  § isaconsistent estimate of 8,,i.e. 80, as N—co.

m ThelLSestimateisunbiased, i.e.

E[8] = (272)'ZT E[Y] = (272)27Z 6, = 6,

The derivation usesthefact that ¢, isadeterministic sequence and that the noise
has zero mean.

m  Thecovariance of the L S estimate is given by:

Py = E[(0-6,)(6-0,)"] = 2,(272)*

The true noise covariance 2, is of course unknown, but an unbiased estimate is
provided by (see [LJUN99], Page 554):

1 N

L 1 N 2/A TA\2 1 NV
R () —ord)2 = —=_ |Y-Z8
N—dkzjl (6) N-d kzl(yk 0,.9) N—dl |

in which the number of estimated parameters is denoted as d =dim(8) and the
residuals are defined as ¢, (8) =y, - (ple. By consequence, an estimate of the
covariance of the estimate can be computed as:

Py = A(Z27Z)t er%d (6.12)

Notice that it was necessary to assume that ¢, is adeterministic sequence. On the other
hand y, is a stochastic variable as indicated by Equation (6.11). Since ¢, contains past
outputs, both assumptions are contradictory and, strictly speaking, the derivations of the
statistical properties are not valid. In [LJUN99], two chapters are spent examining the
statistical properties of general input-output models. Evidently, the proves are more
involved, but when applying the results to the ARX case, the same expressions as above
are found. The difference is that the covariance matrix P; has to be considered as the
asymptotic (i.e. for N—oco) covariance matrix.
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6.2.3 Quality assessment

Having a lot of input candidates (e.g. the temperature has been measured at severa
locations) and the possible choicesfor the model ordersand thetimedelay n_,n, ,n, there
are many different ARX models that can be identified from the data. By conseguence,
criteriaare needed that assess and compare the quality of models. Wewill consider afew
of them. A more general discussion on the issue can be found in [LJUN99].

The L east Squares method minimizes the sum of squares of the equation errors g, . A first
quality criterion is thus the value of the loss function:

N A~
Y 50 (6.13)

ZI}—\

The problem of using the loss function as a quality criterion is that it continuously
decreases as the model order increases. Other criteria include penalties for model
complexity like Akaike' sFinal Prediction Error (FPE) criterion or Rissanen’s Minimum
Description Length (MDL) criterion [LJUN99].

The squarerootsof thediagonal elements of the estimated covariance matrixA 'Sé (6.12) are
estimates of the standard deviations Géi of the model parameter estimates 0, (i=1,...,d).
These standard deviations are a measure of the accuracy of the estimate. If some
parameters have a large relative standard deviation, too many parameters have been
included in the model and the model order should be reduced.

One of the basic assumptionsis that €2 is a white noise sequence. This means that the
noise covariance function equals, see Equation (6.2):

RJ() = E[62,60] = A8,

A quality check consistsof verifying whether the estimated model yieldsresidualsthat can
be considered as white. Hereto the covariance function is estimated as:

1 ¢ N
R.() = N Z: g, (0)e, (6)

This function should be "close to zero" for timelags i # 0. Confidence intervals on being
"close to zero" are in this case provided by the statistical F-distribution. If the residuals
cannot be considered as white noise, they still contain information about the system that
it is not picked up by the model.
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If enough datais available, it can be split in two data sets: estimation data that is used to
estimatethemodel and validation data that isnot yet used. Evidently, assessing the quality
of amodel using validation data is more challenging than using estimation data.

6.3 USING THE MODEL FOR SIMULATIONS

Once agood model is obtained, it can be used for simulations'. New input measurements
are fed to the model generating the outputs. If the simulated output values are "deviating
too much" from the measured ones, the model isnot valid anymore. If we were sure about
theinitial quality of the model, we can conclude that the system has changed. To make it
more practical: new temperature measurements are fed to the environmental model of a
bridge. If the simulated model frequencies are deviating too much from the measured
system frequencies something happened to the bridge that cannot be explained by
temperature effects. Especialy, if the measured frequencies are lower, the bridge is
probably damaged.

The statement "deviating too much" in last paragraph is a rather subjective criterion to
judge of the state of a structure. More objective statistical criteria are needed. These will
be developed in the following. Subsection 6.3.1 discusses the genera case, whereas
Subsection 6.3.2 speciaizesto the ARX case.

6.3.1 Thesmulation error and itsstatistical properties

A general parametrized linear input-output model structureis given by:

Yo = G(q,e) u.+ H(q,e) € (6.14)

where G isthetransfer function and H isthe noise model. Asbefore, qisthe shift operator
and 6 isthe parameter vector. Based on the input-output data, the model parameters can
be estimated by so-called prediction error methods [LJUN99]. The estimate is denoted as
0. In case of an ARX model, the prediction error method corresponds to the linear least
squares method (see Subsection 6.2.2).

"Notice that in system identification one speaks of simulation if only input information is used to estimate
the outputs. If next to the inputs, aso the outputs up to some previoustimeinstant are used to estimate the current
output, one speaks of prediction.
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Assume that new inputs u,” are available?. The corresponding new outputs y,” from the
true system are assumed to be generated by:

Yo = G(a.8p)u, +H(q,8,)€? (6.15)
where 6, is the true model parameter vector and e are the actual disturbances with

covariance . All these true model quantities are of course unknown. The noise-free
simulated outputs from the estimated model can be computed as:

Y = G@b)uy (6.16)

It isinteresting to examine the statistical properties of the simulation error c]k, defined as
the difference between the true (measured) outputs and the simulated ones:

ak =¥ Yk
- G(qieo)uk*+H(qieo)el? - G(qae) uk*
= (G(a.8y) U ~G(a,0)u) + H(a.0,)e? (6.17)

= J(a.8,) U (8,-8) + H(a.6,) €l

The last step is obtained as the first order approximation of an expanded Taylor series,
where the transfer operator row vector J(q,0,) is defined as:

Ja,) = 86;2’9) (6.18)

00,

Since 0 is a consistent and unbiased estimate of 6, and &? is a zero-mean Gaussian
distributed noise sequence, it follows from Equation (6.17) that d, is asymptotically (i.e.
for N— oo) Gaussian distributed with zero mean E[&k] =0 and asymptotic covariance
E[d,] =Pg . Thisis denoted as

d, ~ N(0,Py) (6.19)

An expression for P; remains to be determined. For convenience of notation, we
. k
introduce:

The asterix is used as a superindex to make the difference with the "old" quantities that were used to
estimate the model.
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Inserting Equation (6.17) into the definition of the covariance P& yields:

P, = E[d{] = E[(Juy (8,-8)+Hye?) ((0,-8)T(Jpu, )" +Hoe)]
Becausetheinput u,” isadeterministic sequence and the expected val ue of the actual noise
seguence is zero, this expression can be simplified as:

Pg, = JoU EL(8,-8)(8,-8)"] (Jpu)" + E[(v)]

where the noise contribution is written in shorthand notation as:

0 _ 0
Vi = Hog

By defining the covariance function of the stochastic sequence v as:

RY() = E[vVSv] (6.20)

and introducing the asymptotic covariance matrix of the model parameters P;, the
asymptotic covariance of the simulation error equals:

Ps. = Jous Py (Jou)" + RO(0) (6:21)

In next section we will see how this covariance can be estimated in the case of an ARX
model.

The covariance matrix can be used to establish confidence intervals. Hereto
Equation (6.19) is normalized:

e N

dy

Thetrue Py isnot known. If itisreplaced by itsestimate Pd , the Student’ st-distribution
should be used instead of the normal distribution. The 100(1 a) % confidenceinterval on
the true value y, istherefore given by:
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[ Ve ~ta Pa o Vi t%,v Pak] (6.22)

where t, o isfound from astatistical table of Student’ st-distribution. Thesymbol v isthe
number of degrees of freedom of the data after modelling, which equals in this case
v=N-d, with d=dim(6). In order to compute the 95% confidence interval, for instance,
wehave ¢.=0.05 and t, o™ 1.96 (for alarge number of data points N). The significance
of the 95% confidenceinterval isthat 95% of theseintervalswill containthetruevalue y, .

In the introduction of this section, it was stated that damage could be detected if the
measured frequencies are lower than the simulated ones. The confidence interval (6.22)
gives astatistical guidance in judging how much lower a measured frequency should be.

6.3.2 TheARX case

The asymptotic covariance of the simulation error (6.21) remainsto be estimated. Wewill
speciaize to the ARX case to derive the estimate. Equation (6.21) constitutes of 3
quantities: Py, Jyu, and Rf(O). They are estimated in the following.

Asymptotic model parameter covariance matrix estimate P,

As explained in Subsection 6.2.2, the asymptotic model parameter covariance matrix
estimate P; follows from the statistical properties of the L S method that was used to find
0, see Equation (6.12).

Transfer operator estimate J(q,é)
The row vector J,u,” was defined in Equation (6.18) as:

3G(q,0)

Jus =
0k 50

0=0,

The parameter vector of an ARX model isgiven by Equation (6.3). The partial derivatives
of the transfer function to these model parameters are:

S
a0

aG . oG .
=|— (i=1,...,n)) — (j=1,....n
=[5 e Gt
0 ]

By comparing the ARX model (6.1) with the general model structure (6.14), the transfer
function G can be written as:



158 CHAPTER6 ENVIRONMENTAL MODELSOF VIBRATING STRUCTURES

QW)E%

and by introducing the definitions of the operator polynomials a(g) and b(qg), see
Equation (6.4), the partial derivatives can finally be written as:

b
G LMD ey
%, 0-0, ag ()
dG 1 Si-netl s
% - 2 gt (j=1,..n,)
b [, @ "

These expressions are time domain filtering operations on the input sequence u,”. An
estimate of J(q,8,)u, is obtained by replacing the true, but unknown, parameters 6, by
their estimate to yield J(g,0)u,’.

Filtered white noise covariance estimate R?(O)

Finally, the covariance of the noise contribution hasto be estimated, see Equation (6.20):

RY(0) = E[(v0)?]

By comparing the ARX model (6.1) with the general model structure (6.14), the noise
model H can be written as:
1
H(Qae) = —=
a(g)
By consequence, the noise sequence v isthe sequencethat, when filtered through an auto-
regressive filter, yields the white noise sequence e°:

@ v = & (6.23)

The computation of RVO(O) goes as follows. With the definitions:
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vo, -a) -a) .. -ap, -ap) CY

Vil 0 0 o0 0
Sl I I A = 1 0 ol W=1]0

-

Vicn, 0 o 10 0

where x, cR"™ isthe state vector; AcR"™ @ isthe state transition matrix and w, cR™ isthe
process noise vector, Equation (6.23) can be written as:

Xeop = AXt W

The state covariance matrix is defined as X = E[x,x,] and the process noise covariance
matrix as Q = E[w, w,]] . Assuming stationarity and because e isindependent of any of the
previous outputs v ..., , we have:

E[Xk+1xk-|-+1] = AE[XkaT]AT+E[WkWJ]

$

T = AZAT+Q

ThisisaLyapunov equation that can be solved for . Any of the diagonal elementsof
equals RVO(O). By conseguence an estimate R\?(O) of R\?(O) is obtained by replacing A,
by A asthe single non-zero element in Q and a,(q) by a(q) inA.

6.4 SYNTHESIS

Thissection synthesi zesthe method that wasdevel opedin previoussectionsto discriminate
damage eventsfrom temperature effects. The method issplit intwo parts. Part A discusses
the preliminary steps to undertake with data from the healthy structure. Part B is the
monitoring part that indicates how datafrom a possibly damages structure should be used
to detect damage. The overview isgivenin Figure 6.2.
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A. Thehealthy structure

1. Normalize the input-output data:

ul-u . - Y-y
= ' Kk — ~

O, Gy

Ug =

2. Usethe L S method to estimate ARX models and their statistical properties:

0=(272)1z"Y

= L |v-zdp
N-d

P, = h(Z72)*

3. Select "the best" ARX model by comparing quality criteria:
V, FPE, MDL, &; , R.(i)

B. The (possibly) damaged structure

4. Normalizethenew input-output datawith the samevaluesasinstep 1toyield:

* *
Uy Yk

5. Simulate the output from the model of step 3:
a(a)y, = ba)uy

6. Compute the simulation error and its statistics:

de = ¥ Yk

Pg. = J@du. By (A@du) + R(O)

7. Establish confidence intervals and detect outliers:

[ % - te, fPo, S+ o, P,

Figure 6.2: Environmental model of avibrating structure: estimation and simulation.
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6.5 CONCLUSIONS

In this chapter, a method was developed to detect damage in the presence of varying
environmental parameterssuch astemperature. A literature survey and our own experience
reveal ed the undeniableinfluence of temperature on the eigenfrequenciesof aconstruction
and provided the motivation to develop a method that distinguishes temperature effects
from damage events. We relied upon a system identification approach to estimate an
environmental model. This model can be used for simulation by feeding it with new
temperature data. The idea is that, if the construction has changed, the simulated
frequencies will significantly deviate from the measured frequencies. This chapter
discussed the theoretical development of the method and provided astatistical framework.
The practical use (and success) of the method will be demonstrated in next chapter.
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THE Z224-BRIDGE

In this chapter, a final application is presented. The Z24-Bridge was extensively
instrumented and tested with the aim of providing a “feasibility proof” for vibration-
based health monitoring in civil engineering. We have chosen to discuss this final
case at the end of this thesis since almost all theoretical developments of previous
chapters can be applied to it. The chapter is organized as follows. An introduction
to the bridge and the tests is given in Section 7.1. In Section 7.2 different excitation
sources that have been applied to the bridge are compared. Section 7.3 discusses
the evolution of the modal parameters with progressive artificial (but realistic)
damage. The practical use of the environmental model of Chapter 6 for damage
detection is demonstrated in Section 7.4. Section 7.5, finally, concludes the
chapter.
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7.1 INTRODUCTION

The data of this final application originate from the European Brite-EuRam project
SIMCES". Theproject wasrunning from January 1997 to April 1999. Seven partnersfrom
6 European countrieswereinvolved. The Structural Mechanicsdivision of theK.U.Leuven
coordinated the project. Thework programme consisted of 4 tasks: (1) data collection, (2)
adaptation, application and assessment of stochastic systemidentification methods, (3) FE
modelling of reinforced concrete structures and (4) model-based damage identification
methods. The main efforts were concentrated on 1 test object: the Z24-Bridge. The Swiss
Federal Laboratories for Materia Testing and Research EMPA were responsible for al
bridge tests.

The Z24-Bridge overpassed the national highway A1l between Bern and Zdirich,
Switzerland. It was a classical post-tensioned concrete box girder bridge with amain span
of 30 m and 2 side-spans of 14 m (Figure 7.1). Both abutments consisted of 3 concrete
columns connected with concrete hinges to the girder. Both intermediate supports were
concrete piersclamped into thegirder. Although there were no known structural problems,
the bridge dating from 1963 was demolished at the end of 1998. A new railway adjacent
to the highway required a new bridge with one larger side-span.

4~ Utzenstorf Koppigen —»
270 [ T 14.00 I 30.00 [ 14.00 I ]2.70
/ '7// To Bern 4.50 To Zurich //// /
// . e
fvw Highway A1
_VRSSON- Y
T === oy=—====se======s= s======= ]

S, " Ta T T
I (JSoum /Bem//f/ //
Figure7.1: The Z24-Bridge: longitudinal section and top view [KRAE99b]. The
bridgeis slightly skew: the supports are not perpendicular to the longitudinal axis.

YThe acronym SIMCES stands for System Identification to Monitor Civil Engineering Structures
[http://www.bwk.kuleuven.ac.be/lbwm/SIMCES.htm]. It was a Brite-EuRam |11 project [http://www.cordis.lu].
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Before complete demolition the bridge sacrificed its last months for the sake of science.
It was subjected to three types of testing:

m A long-term continuous monitoring test. This test took place during the year
before demoalition. The aim was to quantify the environmental variability of the
bridge dynamics. Results will be presented in Section 7.4 (see also [PEETQOb,
PEETO0Oc, PEET00f, PEETOO€]).

®m  Short-termintermittent monitoring tests. Theaimwasto comparetheresultsfrom
different excitation types and system identification methods. Results will be
presented in Section 7.2 (see also [PEET98b, PEET99d, PEET00a, PEET00d]).

®  Progressive damage tests. These tests took place in a one-month time period
shortly before the demolition of the bridge and alternated with the intermittent
monitoring tests. The aim was to prove that realistic damage has a measurable
influence on the dynamics. Results will be presented in Section 7.3 (see also
[PEET98d, DEROOQQ]). Additionally the continuous monitoring system was still
running during the progressive damage tests, see Section 7.4.

The bridge test and data acquisition procedures are described in [KRAE99c, KRAE99Db,
KRAE994]. The tests were unique in that they combined long-term monitoring with the
application of realistic damage scenarios. Other bridge-test examples are available in
literature but either of thetwo aspectsismissing. A well-known exampleisthe 140-Bridge
inAlbuquergue, NM, USA [FARR98, FARROOQ]. Theapplied damage scenariosweretorch
cutsin theweb and flange of the steel girder. No long-term monitoring was performed. In
Section 6.1, aliterature survey of long-term monitoring projects was given, but in these
cases no damage could be applied to the bridges.

Similar to the beam data (Chapter 5, Page 118), the Z24-Bridge data were selected as
"benchmark" data by working group 2 of COST 1 action F3 on Structural Dynamics.
Furthermore, the Z24-Bridge isadopted as a case study by the Civil Engineering Group of
IMAC, thelnternational Modal AnalysisConference. Participating researcherswill present
their system identification results at the next conference, IMAC 19, to be held in February
2001 in Kissimmee, FL, USA.
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7.2 EXCITATION SOURCES

7.2.1 Introduction

Since a few decades, people are performing vibration tests on large civil engineering
structures. An important issue is how to excite such structures in order to obtain
measurabl e acceleration levels. We will give a short overview of some typical excitation
sources without claiming exhaustiveness. More references can be found in [GREE95,
FARR994].

The extrapolation to civil engineering of traditional input devices used in mechanical
engineering leads to huge reaction mass shakers or impact testing based on a falling
weight. In literature also other, sometimes creative solutions are proposed to excite large
structures. Gentile et al. [GENT98] are describing vibration tests on a cable-stayed bridge
that was excited in the vertical direction by a heavy truck that drove over aplank and in
horizontal direction by sudden braking of the truck. Another way of vertically exciting a
bridge is a sudden release of a heavy mass that was suspended from the bridge. This
technique was applied to the Vasco Da Gama Bridge in Lisbon, Portugal as reported by
Cunha et al. [CUNH99]. Delaunay et al. [DELA99] are describing tests where the
Normandie Bridge, France, was horizontally excited by asudden release of atension cable
that connected the bridge with a tug-boat. Finally, Deger et al. [DEGE94] used rocket
engines to excite a composite steel/concrete bridge both horizontally and verticaly. All
these excitation methods are also referred to as free vibration testing. The input is not
necessarily measured but it isimpact-like and the responses are free vibrations.

The last ten years or so, more attention was paid to so-called ambient excitation. The
structural response to freely available "natural™ sources such as traffic, wind, waves and
micro-earthquakes is measured. Obviously the exact forces from these sources that are
transmitted into the bridge cannot be measured. The advantage of using ambient sources
isthat they are cheap (for freel). Ambient excitation that causes sometimes unacceptable
noiseduring forced or free vibration testing, turned out to be beneficial in vibration testing
of large structures.

7.2.2 Excitation sources applied to the Z24-Bridge

During the night after the application of a certain damage scenario (see next section for
details about the damage scenarios), an ambient and a shaker test were performed by
EMPA [KRAE99c]. After scenario 8, additionally a drop weight was used to excite the
bridge. That is why this comparison study uses the data originating from the vibration



7.2  Excitation Sources 167

measurements after that scenario. Figure 7.2 illustrates the excitation sources that have
been applied to the Z24-Bridge.

In order to capture the mode shapes in some detail, the accelerations of the bridge were
measured in 9 setups of 28 roving and 5 reference sensors. A roving sensor changes
position from one setup to another, whereas a reference sensor is common to all setups.
The datawere sampled at arate of 100 Hz; the cut-off frequency of the anti-aliasing filter
was 30 Hz.

The ambient sources acting on the bridge were highway traffic, wind and walking of the
test crew in case of low traffic density. Typical bridge response data are shown in
Figure 7.3. The measurement time was 10 min 55.36 s for each setup, corresponding to
65536 samples. Two shakers have been used in the shaker tests: onewaslocated at aside-
span, the other at the mid-span. The input signals were uncorrelated band-limited noise
between 3-30 Hz. Typical output dataareshownin Figure7.4. Finally, also adrop weight,
located at mid-span, served asexcitation source. Four impactswere generated per setup as
apparent from the response data (Figure 7.5). The measurement time was in this case
81.92 s, corresponding to 8192 samples. The maximum level of the drop weight response
corresponds to the shaker response level. The ambient response level is 40 times lower.
The response spectra of the three excitation types are compared in Figure 7.6.

Figure 7.2: Photographs illustrating the applied excitation sources. Left: traffic on the highway as ambient
excitation. Middle: the installation of areaction mass shaker of EMPA. Right: the drop weight system developed
by the Structural Mechanics division of the K.U.Leuven.
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Figure 7.3: Ambient response data. Vertical acceleration at 1% reference location.
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Figure 7.4: Shaker response data. Vertical acceleration at 1% reference location.
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Figure 7.5: Drop weight response data. Vertical acceleration at 1% reference
location.
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Figure 7.6: Comparison of response spectra: ambient response (full line), shaker
response (dashed line), drop-weight response (dash-dotted line). The accelerations
were all measured at the 1% reference location.

7.2.3 System identification results

From the numerical simulations of Chapter 3, welearnt that subspace identification isthe
most accurate stochastic system identification method. In [PEET98b], the peak-picking
(PP), theinstrumental-variable (1) and the data-driven stochasti c subspaceidentification
(SSI-DATA) method were compared using data from a preliminary vibration test on the
Z24-Bridge. It was confirmed that subspace identification is the preferred method.

The large amount of data (33 channels x 65536 samples) makes the direct use of
SSI-DATA difficult, since it requires the QR factorization of a data Hankel matrix with
65536 columns, see Equation (3.44). Thisisnot feasiblein practice due to the memory and
speed limitations of astandard computer anno 2000. A first solution isusing recursive QR
updating, i.e. recomputing the R factor as new data becomes available [GOLU89]. This
relaxes the memory requirement but, unfortunately, increases the computation time. A
more practical solutionissimply using only apart of the data. The high number of samples
wasinspired by frequency resol ution and spectrum averaging considerations of frequency
domain methods. Time domain methods typically need less samples. It suffices that the
data contain a "reasonable" number of cycles of the slowest mode. Additionally time
domain methods have no averaging mechanism.

If for instance the (ambient) excitation does not excite all modes continuoudly, it can be
advantageous to use all 65536 samples. In this case the covariance-driven stochastic
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subspace identification method (SSI-COV) can be used. Asdiscussed in Section 3.6, the
SSI-COV method has the advantage that the data can efficiently be compressed to
covariances by applying the FFT. In this section the SSI-COV method was applied to
three data sets: ambient, shaker and drop weight data. The identification parameterswere;

thenumber of samples: N =65536 (ambient and shaker), N =8192 (dropweight);
the number of channels: | =33;

the number of reference sensors: r = 5(thereference sensorsfor theidentification
of one setup were chosen to coincide with the reference sensors for gluing the
mode shape parts of the different setups together);

the number of time lags: i =40;

the system orders for constructing the stabilisation diagrams. n=2,3,...,80.

A typical stabilization diagram for the ambient datais shown in Figure 7.7. Seven modes
could be identified from all three data sets. The eigenfrequencies and damping ratios are
represented in Tables 7.1 and 7.2. The frequency differences between the excitation types
are generally small. The variances of the modal parameters and the differences between
the excitation types are partly explained by changing temperature. Measuring 9 setupsfor
al 3 excitation types took almost one day and, as shown in Section 7.4, changing
temperature has a significant influence on the frequencies of this bridge. The standard

-
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Figure 7.7: Stabilization diagram obtained by applying the SSI-COV method to ambient
datafrom the Z24-Bridge. The criteriaare 1% for frequencies, 5% for damping ratios and
2% for the mode shape correlations. The used symbols are: ‘@’ for astable pole; *.v' for a
pole with stable frequency and vector; ‘.d’ for a pole with stable frequency and damping;
*.f* for apole with stable frequency and ‘.’ for anew pole (3.23).



deviations of the ambient results are somewhat larger. Taking into account their higher
uncertainty, the damping ratios seem to be consistently identified from all three data sets.

The identified mode shapes are shown in Figure 7.8. The 1% mode is a vertical bending
mode. The 2 mode is a transverse bending mode, combined with torsion of the girder.
The 3 and 4" mode are combining vertical bending with torsion, which istypical for skew
bridges. The 5" modeisavertical symmetric bending mode. The 6" modeisavertical anti-
symmetric bending mode with an important vertical movement of the piers. Finally, the 7"
modeisatorsion mode. The correlations between the corresponding modal vectors from
different excitation typesarerepresentedin Table 7.3. Mode 5 wasnot well identified from
the drop weight data, the shaker datayielded a6™ mode shape of lower quality and also the

7.2

7" ambient mode was not well identified.

Excitation Sources

Table7.1: Comparison of eigenfrequenciesidentifi edfromthree datasetswith respectively ambient,
shaker and drop weight excitation. Themean values f and estimated standard deviations 6; are based
on 9 samples originating from the 9 independent setups.

Mode 1 2 3 4 5 6 7
Ambient f_[Hz] 3.859 4903 9.75 10.29 1243 13.37 18.99
6;[Hz] O 0.02 0.02 005 015 014 03

Shaker f_[Hz] 3.846 4.816 9.739 10.42 1241 13.16 19.14
6;[Hz] O 0 0 0.03 005 005 0.05

Drop f_[Hz] 3.844 4817 9.743 1038 12.19 132 19.18
weight 6; [Hz] O 0 0 0.04 011 0.05 0.02

Table 7.2: Comparison of damping ratios identified from three data sets with respectively ambient,
shaker and drop weight excitation. Themean values & and estimated standard deviations 65 arebased
on 9 samples originating from the 9 independent setups.

Mode 1 2 3 4 5 6 7
Ambient  £[%] 11 12 14 15 31 43 23
6.[%] 03 01 02 04 04 12 03

Shaker E[% 11 17 17 26 35 33 24
6.[%] 01 01 01 04 04 03 02

Drop E[%] 083 16 17 19 41 43 25
weight &, [% 002 01 01 01 08 02 02
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Figure 7.8: Seven mode shapes of the Z24-Bridge, ordered from |€&ft to right, from top to bottom. Except for the
7" mode all represented shapes were identified from ambient data.
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Table 7.3: MAC values (3.24) between the corresponding mode shapes from the three excitation
types. The MAC isavaue between O (i.e. no correlation) and 1 (i.e. perfect correlation).

Mode 1 2 3 4 5 6 7

Ambient vs. shaker 1 099 094 088 094 073 081
Ambient vs. drop weight 1 0.97 094 0.87 079 09 038
Shaker vs. dropweight 099 0.98 098 092 085 0.77 09

7.2.4 Conclusions

Except for the higher standard deviations of the ambient results, al three excitation types
yielded comparable modal parameters. But next to the accuracy of theresults, other criteria
guide the choice of an excitation source:

m  |f mass-normalized mode shapesare reguired, one cannot use ambient excitation.
To obtain the correct scaling of the mode shapes, the applied force has to be
known.

m  |f the cost of testing isamajor concern, the use of shakers can be excluded. The
price of ashaker and the additional man power needed to install it on astructure,
makes it not very cost-effective, see also [KRAE9C].

m  |f astructure haslow-frequency (below 1 Hz) modes, it may be difficult to excite
them with a shaker, whereas this is generally no problem for a drop weight or
ambient sources. The high-frequency modes on the other hand, are not always
well excited by ambient sources.

®m By adjusting the settings of the damper on which the mass of the drop weight
system falls, the frequency content of the excitation can be controlled in some
sense. Thelevel of excitation can be determined by theinitial height of the mass.
Above a certain frequency, the frequency content and the level of excitation of
the shaker can also be controlled. Thisis evidently not the case for the ambient
SOUrces.

m  The use of artificial excitation only makes sense when the generated response
surpassesthe ambient responsewhichisawayspresent. For very largestructures,
e.g. long span cable-stayed bridges, this becomes almost impossible.
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m  |f the purpose of the testsis continuous monitoring, only ambient excitation can
be used. For intermittent monitoring, also the use of a drop weight can be
considered: it is cheap, fast and easy to install.

Previous discussion is synthesized in Table 7.4.

The accelerations of a structure as aresult of ambient excitation are typically very small
and can vary considerably during acquisition, for instance depending on whether atruck,
a car or no traffic is passing (Figure 7.3). This causes challenges to the sensors, the
acquisition system and the identification algorithms that, in the limit, need to extract
weakly excited modes from noisy data. The developments of the last years both on the
acquisition side as on the identification side (i.e. the development of subspace
identification methods) greatly enhanced the use of ambient vibration testing to estimate
the modal parameters of a structure.

Table 7.4: Strong points (+) and weak points (-) of the three excitation sources.

Criterion Ambient Shaker Drop

Weight
Mass-normalized mode shapes - + +
Price + - +
Low frequency excitation + - +
High frequency excitation + +
Controlled amplitude - + +
Continuous monitoring + - -
Intermittent monitoring + + +
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7.3 PROGRESSIVE DAMAGE TESTS

7.3.1 Thescenarios

The aim of the progressive damage tests was to study the influence of damage on the
dynamics of a bridge. A detailed description of the design and implementation of the
damage scenarios that have been applied to the Z24-Bridge can be found in [KRAE99b,
KRAE99q]. The discussion in this thesis is limited to the elements that are essential for
understanding the proposed damage detection method.

The choice and extent of the scenarios were guided by following criteria:

®m  |Inordertobeconvincingasa"feasibility proof”, the scenariosshould beredlistic.
Hereto, the Swiss database of bridge damage cases was consulted?”.

m  Thetraffic onthe most important highway of Switzerland must not be disturbed,
nor the people endangered when applying the scenarios. Therefore special safety
measures were taken (see [KRAE99b, KRAE994) for details) and the scenarios
were never pursued to the safety limits. A consequence was that the induced
damages remained small.

m  Therewasonly alimited time period availablefor applying the damage scenarios.
This period was situated between the opening of the new bridge adjacent to the
Z24-Bridge and the complete demalition of the Z24-Bridge.

The retained damage scenarios are listed in Table 7.5. Some photographs of the damage
scenarios are collected in Figure 7.9.

“Bundesministerium fir Verkehr, Abteilung Strassenbau. Schéden an Briicken und anderen Ingenieur-
bauwerken, 1982 & 1994.
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Table 7.5: Progressive damage test scenarios. The dates are referring to the start of the vibration
measurements.

# Date Scenario Comments

1 04.08.98 1% Reference measurement "Healthy" structure

2 09.08.98 2" Reference measurement After installation of the
settlement system

10.08.98 Settlement of pier: 2cm Natural causes. erosion,
12.08.98 Settlement of pier: 4 cm flooding, soil settling
17.08.98 Settlement of pier: 8 cm

18.08.98 Settlement of pier: 9.5 cm

19.08.98 Tilt of foundation

[00] ~ o0k W

20.08.98 3" Reference measurement Cracks are closing after
removal of settlement

9 25.08.98 Spalling of concrete: 12 m? Natural causes: vehicle impact,
10 26.08.98 Spalling of concrete: 24 m?  carbonisation, corrosion

11 27.08.98 Landslide at abutment Natural causes: erosion,
flooding

12 31.08.98 Failure of aconcretehinge Natural causes: corrosion,
overload

13 02.09.98 Failure of anchor heads| Natural causes: corrosion

14 03.09.98 Failure of anchor heads |

15 07.09.98 Rupture of tendons | Natural causes: bad injection of

16 08.09.98 Rupture of tendons 1| tendon tubes + corrosion

17 09.09.98 Rupture of tendons|l|
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Figure 7.9: Photographs illustrating the applied damage scenarios. From left to right, from top
tobottom: (1) cutting of apier toinstall the settlement system, (2) settlement system, (3) spalling
of concrete, (4) failure of a concrete hinge, (5) failure of anchor heads, (6) failure of tendon
wires. Thefirst two photographs are provided by EMPA.

177



178 CHAPTER7 THE Z24-BRIDGE

7.3.2 Evolution of the modal parameters

The SSI-DATA method was applied to the ambient data acquired after each damage
scenario. The acquisition strategy was aready explained in Section 7.2. Here, the
preprocessing consisted of the selection of ahigh-quality segment of 8192 data pointsand
sending the data through a digital low-pass filter with a cut-off frequency of 20 Hz.
Afterwards the data was resampled at a 2 times slower rate (i.e. 50 Hz) than the original
one. The SSI-DATA identification parameters were:

the number of samples: N =4096;

the number of channels: | =33;

the number of reference sensors: r =5(thereference sensorsfor theidentification
of one setup were chosen to coincide with the reference sensors for gluing the
mode shape parts of the different setups together);

the number of timelags: i =20;

the system orders for constructing the stabilisation diagrams. n=2,3,...,80.

These parameters led to a reasonable computation time to digest 17 data sets, each
consisting of 9 setups. The results after scenario 8 were discussed in detail in previous
section.

The evolution of eigenfrequencies throughout the progressive damage tests is somewhat
obscured by temperature effects. Therefore the frequency results will only be treated in
next section, after correcting for temperature. In this section, we will concentrate on the
evolution of the damping ratios and mode shapes.

The estimated damping ratios of the first 5 modes of all damage scenarios are represented
in Appendix C.1. The main conclusions are;

The damping ratios of the Z24-Bridge are in the range 1-3%, which isnormal.
The uncertainties on the damping ratio estimates is quite high.

Thereisno clear trend in the evolution of the damping with damage.

It will be difficult to incorporate damping ratios in a damage detection method.

It is more interesting to observe how the mode shapes are changing with damage. To
compare mode shapes, the modal amplitudes are divided by the norm of the modal vector.
The evolution of thefirst 5 mode shapes between some damage scenarios are represented
in Figures 7.10-7.15. Mode shape changes between scenarios are clearly visible. They
containuseful information for model updating and damageidentification methods. Theuse
of the first mode shape to locate damage on the Z24-Bridge is shown in [MAEC98b,
MAECO00b].
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Figure 7.10: Vertical components of mode shape 1. The sign of the modal
displacements at one side of the bridge is switched to alow visualization of both
sidesin one graph. The full line corresponds to scenario 2, the dashed lineisfrom
scenario 6 and the dotted line with crosses is from scenario 8. Thereis a (small)
change of the mode shape at the side of the settled pier. After removal of the
settlement, the mode shape coincides with the original one.
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Figure7.11: Evolution of modeshape5. Thefull lineisthereal part; thedotted lineistheimaginary part. Scenario
4, 6, 11 and 12 are represented. Settling the pier makes the mode shape losing its symmetry (top figures). Cutting

aconcrete hinge at the abutment on the right introduced atorsion component (bottom figures).
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Figure 7.12: Transverse components of mode shape 2. The full line corresponds
to scenario 1, the dashed lineisfrom scenario 2 and the dotted line with crossesis
from scenario 6. Only cutting the pier already affects this mode. Imposing the
settlement further changed the mode.
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Figure 7.13: Transverse components of mode shape 2. The full line corresponds
to scenario 2, the dashed lineisfrom scenario 7 and the dotted line with crossesis
from scenario 8. After removal of the settlement and tilt, the mode shape coincides
with the mode from scenario 2 (after cutting the pier).
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Figure7.14: Vertical components of mode shape 3. Scenarios 2, 3, 4, 5and 6 are

respectively represented by afull line, a dotted line, a dashed line, a dash-dotted

line and a full line with crosses. Gradually increasing the settlement uniformly

changes this mode (disregarding some anomaliesin scenario 3).
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Figure 7.15: Vertical components of mode shape 4. Scenarios 2, 3, 4, 5and 6 are

respectively represented by afull line, a dotted line, a dashed line, a dash-dotted

line and a full line with crosses. Gradually increasing the settlement uniformly

changes this mode (disregarding some anomaliesin scenario 3).
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7.4 CONTINUOUS MONITORING AND DAMAGE DETECTION

In this section, the damage detection capabilities of the continuous monitoring system
installed on the Z24-Bridge will be demonstrated. The method outlined in Chapter 6 and
synthesized in Figure 6.2 will be applied. The input data are measured environmental
parameters; the output data are eigenfrequencies, identified with the SSI-DATA method.
In [RUSH99] an alternative approach was pursued, based on eigenfrequencies identified
with the PP method and a"static" linear regression model.

7.4.1 Themonitoring system

From 11 November 1997 till 11 September 1998, the bridge has continuously been
monitored. The aim of the monitoring system was to provide both environmental and
vibration data. A detailed description of the system is given in [KRAE99b, KRAE994q)].
Every hour, 49 environmental parameters were measured: air temperature, wind
characteristics, humidity, bridge expansion and severa soil, concrete and asphalt
temperatures. The locations of the thermocouples are shown in Figure 7.17. Figure 7.16
showsthe air temperature and the soil temperature at one of the piers. Additionaly, every
hour during 11 minutes, 8 accel erometersare capturing the vibrations of the bridge. Notice
that the number of accelerometers and measurement locations used in the continuous
monitoring system ismuch lessthan the number of accelerometers used in theintermittent
monitoring system (Section 7.2).
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Figure 7.16: Typical environmental data. Top: air temperature. Bottom: soil
temperature at one of the piers. The represented measurement period is from 11
November 1997 till 20 April 1998. The sampling timeis 1 h. The soil temperature
variations are much smoother.
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As indices for the dynamic behaviour of the structure, it is natura to take the modal
parameters. A problem isthat they cannot be measured directly and have to be estimated
from acceleration data. A key issuein our approach to continuous monitoring istherefore
the automatic extraction of the modal parameters. The automatic modal analysis
procedure, proposed in Section 4.2 was applied to the 5652 data sets from the continuous
monitoring system. The results are summarized in Table 7.6. Due to the sometimes low
excitation (especially at night when there is not much traffic) the automatic procedure
could not identify all 4 modes at every time instant. However, especially for the first 3
modes, the automatic procedure performs very well. The two close modes around
10-11 Hz caused problems for the automated PP method described in [RUSH99].
Figure 7.18 provides a graphical representation of the results.

Figure 7.17: Cross-section of the Z24-Bridge and location of the thermocouples
in any of the three spans [KRAE99b].

Table 7.6: Automatic modal analysis results for the first 4 modes of the healthy structure. The
"successrate" expressesthe percentage of successful identifications of acertainmode. The minimum
(min.), average (avg.) and maximum (max.) frequencies are specified, together with the relative
maximal differences (max. diff.). The frequency differences (14-18%) occurred before any known
damagetook place and haveto be explained by normal environmental changes. See also Figure7.18.

Mode Success Eigenfrequency
rate [%] . ]
Min.[Hz]  Avg.[HZ] Max.[Hz] Max.diff. [%]
1 98 3.81 4 4.38 14
2 93 4.98 521 5.89 18
3 96 9.6 10.16 11.2 16
4 77 10.24 10.84 12.09 17
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Figure7.18: Automatic modal analysisresultsfor thefirst 4 modes of the healthy structure. A clearly
visible quite long cold period starts at day 75 (i.e. beginning of February 1998). Besides shorter
periods, the monitoring system was not operating from day 166 till day 200. See also Table 7.6.

7.4.2 System identification

Plotting the data

Thefirst stepin system identification isplotting the datain variousways. Thisstep reveals
already quite useful information about the behaviour of the Z24-Bridge under a changing
environment. In Figure 7.19, the 1% eigenfrequency is plotted vs. the temperature of the
asphalt layer TP1. In Figure 7.20, the 2™ eigenfrequency is plotted vs. the temperature of
the deck soffit TDS2. In both cases, the relation between temperature and frequency can
roughly be described by two straight lines, with the knee situated around 0°C. Thisbilinear
behaviour is observed for aimost al combinations of frequency vs. temperature. With
increasing temperature, the bridge stiffness normally decreases. Mode 2 is somewhat an
exception in the sense that its frequency increases with increasing temperatures (for
positive temperatures).
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Figure7.19: 1% Eigenfrequency vs. asphalt layer temperature TP1. The datacomes
from the healthy structure.
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Figure7.20: 2™ Eigenfrequency vs. deck soffit temperature TDS2. Thedatacomes
from the healthy structure.
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Someeffort was spent in trying to find out the cause of the bilinear behaviour. Whereasthe
temperature vs. time functionsare very smooth; the frequency vs. timefunctionsarerather
irregular. Thiscan be observed in Figure 7.21, where three different temperatures and the
sign-reversed first eigenfrequency -f areplotted asafunction of time. All quantities have
been normalized. At first sight there seems to be no relation between frequency and
temperature, although on alarger time scale it would be clear that the frequency follows
themaintrendsof thetemperaturedata. However, by plotting the same quantitiesmeasured
during a cold period (Figure 7.22), it appears that the normalized opposite frequency is
amost perfectly in line with the normalized temperature of the asphalt layer TP1. The
central web temperature TWC1 and the soffit temperature TS1 are lagging behind and can
by consequence not be the driving forces of the eigenfrequency variation. Also freezing
of the soil around the boundaries of the bridge cannot explain the variations. The soil
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temperature hasamuch lower frequency content (Figure 7.16) than the eigenfrequencies’.
We conclude that during warm periods the asphalt does not play any role, but during cold
periods it contributes significantly to the stiffness of the structure. This explains the
observed non-linearity in Figures 7.19 and 7.20.

This conclusion is confirmed by the results of a recent paper [WATS00] in which the
seasonal variations of asphalt road pavements are experimentally studied with falling
weight deflectometer tests. Figure 7.23 is an extract from that paper, representing the
change of Y oung’ s modulus of asphalt with changing temperature. The role of the asphalt
layer in the overall stiffness of the Z24-Bridge is also apparent from geo-radar
measurements [KRAE994]. It was found that the asphalt layer of the bridge deck had an
average thickness of 16 cm instead of 8 cm as indicated on the construction drawings of
the bridge.

Normalized T and —f [-]

222 223 224 225 226 227 228 229 230
t [day], t= 11-Nov-1997 00:00:00

Figure 7.21: Normalized temperatures and sign-reversed 1% eigenfrequency during awarm period:
TPL (full line), TWC1 (dashed line), TSL1 (dash-dotted line) and - 1 (full line with crosses).

3Inthis section, the eigenfrequencies are considered as a time series of measurement values, so it makes
sense to speak about the frequency content of the eigenfrequencies.
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Figure 7.22: Normalized temperatures and sign-reversed 1% eigenfrequency during a cold period:
TP1 (full line), TWCL1 (dashed line), TS1 (dash-dotted line) and - f1 (full line with crosses).
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Figure7.23: Y oung’ smodulusof asphalt asafunction of temperature. Below 0°C
the stiffness of asphalt increases dramatically [WATS00].
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Environmental model of the Z24-Bridge

For ssimplicity linear models are considered. Therefore only data from periods where the
asphalt does not play any role is taken into account. If desired, a separate linear
environmental model for the negative temperature range could be identified or more
involved nonlinear models could be derived for the whol e temperature range. In any case,
in the following only positive temperature data are considered.

The high number of input candidates ( = 49) makesit necessary to apply variable selection
procedures. Many inputs offer redundant information and not al of them should be
included in the model. The high number of measured quantities is fine in a research
proj ect, but an economic monitoring system should operate with only afew environmental
parameters.

Next to several temperaturesal so thewind characteristics, rainfall and humidity have been
monitored. Since no relation was found between these last three quantities and the
eigenfrequencies, only temperature variables are retained as input candidates. Next
reduction is forced by circumstances. Due to collateral damage from the construction of
anew bridge adjacent to the Z24-Bridge al the soil temperature sensorsfailed at the end
of the monitoring period. Also other sensorsfailed. The number of input candidates could
already be reduced from 49 to 22: the air temperature and 21 concrete and asphalt
temperatures are retained.

In a next step the correlations between al inputs and outputs are determined. The
correlation f, between two variablesx and y is defined as:

R N
f - R - ﬁ 3 )

with x, asample, x themean valueand 6, the sample standard deviation of variable x; see
Equation (6.7). ny is the sample covariance. An absolute value of the correlation close
to 1, indicates a high linear association between the two variables. Input variables for
whichthe (absolute) correl ation exceeds 0.99 are grouped together, sincethey offer almost
the same information. Six groups are obtained. The input variable that has the largest
correlation with most of the 4 eigenfrequenciesis sel ected as representative for the group.
The retained variables are TWN2, TP2, TDT2, TS2, TSWNS3 and the air temperature.
Almost all representative variables are originating from the main span (span 2) of the
bridge. Animportant remark isthat alow correlation can also mean that thereisjust atime
delay betweentwo signals, soitispossiblethat the six retained variablesstill contain some
redundancy.



7.4  Continuous Monitoring and Damage Detection 189

Table7.7: Comparison between ARX and static regression SISO models: TDT2 vs. eigenfrequency.
The model parameters are given in Appendix C.2.

ARX model Static regression model
Mode
n,n,n, \% FPE n, Ny, N, \ FPE
1 214 0.145 0.145 010 0.212 0.213
2 320 0.533 0.536 010 0.896 0.897
3 210 0.507 0.509 010 0.548 0.549
4 220 0.569 0.572 010 0.612 0.613

Having reduced the number of possible input candidates to 6, input-output model are
identified according to the theory of Section 6.2. Our strategy to find a good model isthe
following. For all 4 eigenfrequenciesand remaining 6 input candidates, single-input single-
output (SISO) ARX models are estimated. A good and simple (i.e. with only a few
parameters) model is selected for each of the 24 input-output combinations, according to
the quality criteria of Subsection 6.2.3. Next, the input is selected that yields "on the
average" the best modelsfor al 4 frequencies. The best models have the lowest valuesfor
thelossfunction V (6.13) and Akaike' s FPE. It turned out that the model based on TDT2
performed best; but it must be added that not much quality loss was observed when using
any of the temperaturesTWNZ2, TP2 or TS2. Theresultsarerepresentedin Table 7.7. The
input and output datawere normalized (6.8) before the modelswereidentified. The model
for the first mode seems to be much better than the models for the other 3 modes. The
static regression results are also represented. Especially for the first 2 modes, the
improvements of an ARX model over a static model are evident. The estimated model
parameters and their standard deviations are given in Appendix C.2.

Afterwardsinput variables were added to the SISO models. It was observed that the ARX
models hardly improved. For instance, the quality measures of a multiple-input single-
output (MISO) ARX214 model, that includes all 6 input variables and has the first
eigenfrequency asoutput, are: V =0.142, FPE =0.143. Thesevalueshaveto be compared
with the values on the first line of Table 7.7. The static models on the other hand could be
improved. Thequality criteriafor aM1SO ARX010 model that includesall input variables
are: V=0.187, FPE =0.188. It isnot only more expensive to measure many temperatures,
but also redundant. Multiple static linear regression does not perform better that single-
input ARX modelling (0.187 > 0.145).

Another indication that ARX models perform better than static modelsis provided by the
whiteness test of the residuals; see Subsection 6.2.3. In Figure 7.24 the auto-correlation
function Ry(i) /A of the SISO ARX214 and static models are plotted, together with the
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Figure7.24: Auto-correlation function of theresiduals of the TDT2 vs. f, models.
The ARX?214 residual auto-correlation functionisrepresented by adashed line; the
static residual auto-correlation is represented by a full line. The 99% confidence
intervals are shown as adotted line. A white noise sequence would have its auto-
correlation function in thisinterval for lags different from zero.

99% confidence intervals. The residual sequence of the static model is not white noise at
al.

7.4.3 Damage detection

Once a good model is obtained, it can be used for simulation. New temperature
measurements are fed to the models and they simulate the eigenfrequencies of the Z24-
Bridge. In Section 6.3 an objective statistical criterion was established that determines
whether a simulated frequency, determined by the temperature history and the
environmental model, is deviating too much from the measured one. The datawhich were
aready used to identify the ARX models, and also new data, arefed to the modelstoyield
the simulated frequencies and the 95% confidence intervals (6.22).

The simulation errors and the confidence intervals for mode 1 are plotted in Figure 7.25.
An outlier is defined as a point that exceeds the confidence interval. A random outlier is
probably due to a bad identification of the eigenfrequency whereas repeated outliers are
indicating that something happened with the bridge. The vertical dash-dotted line is
splitting the simulation errorsin two parts: the left part isrelated to data that was already
used to identify the model, the right part is related to new data. Figure 7.26 is a zoom of
Figure 7.25 that concentrates on the period of the progressive damage tests. The
comparison between the simulated and measured first eigenfrequency is made in
Figure 7.27; see also Equations (6.9) and (6.10). Thisfigure is basically giving the same
information but in terms of the eigenfrequencies themselves, rather than the simulation
errors of the normalized eigenfrequencies. The simulation errors and the confidence
intervals for mode 2, 3 and 4 are plotted in Figures 7.28-7.30.
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It isimmediately clear that damage is detected at the end of the monitoring period for al
frequencies. By taking a closer ook at the figures, following observations can be made:

m  Concerning mode 1, damage is detected from day 277 on (15 Augustus 1998).
This corresponds to the period between the pier settlement of 4 cm and the
settlement of 8 cm (see Table 7.5). The preceding scenarios seemto haveno large
influence on the first eigenfrequency.

m  Thereversiblecharacter of the settlement damage scenariosisevident around day
282 (20 Augustus 1998). It appears aso that the bridge did not completely
recovered after removal of the settlement as the simulation errors are still
exceeding the confidence intervals; see Figures 7.25-7.27.

®  Asapparent from Figures 7.28-7.30, the environmental models for modes 2, 3
and 4 detect damage from day 269-270 on (7-8 Augustus 1998). Around these
dates, the settlement system wasinstalled. Although the bridge wasnot yet settled
and there were no cracks in the bridge girders, the installation of the settlement
system required that one of the piers needed to be cut; see also Figure 7.9 and
Table 7.5. Damaging the pier clearly affects the frequencies of modes 2 to 4.

®  The decrease of the second eigenfrequency with damageisvery spectacular, see
Figure 7.28.

m  There are some anomalies in the ssimulation errors of the first and second
eigenfrequency; see Figures 7.25 and 7.28. They are clearly exceeding the
confidence limits at days 248-249 (17-18 July 1998). We are not sure what the
cause of that frequency drop could be. Maybeit wasatemporarily increase of the
mass of the bridge due to some heavy trucksthat were standing on the bridge for
the installation of the two shakers, see Figure 7.2.

®  From Figure 7.26, aso astrange increase of thefirst eigenfrequency around day
270 (8 Augustus1998) isobserved. Thisdate coincideswith theinstallation of the
settlement system. Maybe one of the safety measures caused this apparent
stiffness increase.
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Figure 7.25: Mode 1 results. Simulation errors (crosses) and 95% confidence intervals (dashed lines) of the
ARX214 model for TDT2 vs. f,.
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Figure 7.26: Zoom of Figure 7.25. Mainly the period of the progressive damage tests is represented.
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Figure7.27: Mode 1 results. Themeasured eigenfrequenciesarerepresented by crosses, the simulated frequencies
and the 95% confidence intervals are represented by full lines.
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Figure 7.28: Mode 2 results. Simulation errors (crosses) and 95% confidence intervals (dashed lines) of the
ARX320 model for TDT2 vs. f,.
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Figure 7.29: Mode 3 results. Simulation errors (crosses) and 95% confidence intervals (dashed lines) of the

ARX210 model for TDT2 vs. f,.
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Figure 7.30: Mode 4 results. Simulation errors (crosses) and 95% confidence intervals (dashed lines) of the

ARX220 model for TDT2 vs. f,.
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7.4.4 Conclusionsand recommendations

In this section, the damage detection capabilities of the continuous monitoring system
installed on the Z24-Bridge was demonstrated. The method outlined in Chapter 6 and
synthesized in Figure 6.2 was applied. ARX models were fitted to data from the healthy
structure. An ARX model that includes the thermal dynamics of the bridge is superior to
a dtatic regression model. Also, it turned out that a temperature measurement at one
location was sufficient to find an accurate model. The ARX modelsare used for simulating
the eigenfrequencies. If a new measured eigenfrequency lies outside the estimated
confidenceintervals, it islikely that the bridge is damaged. In case of the Z24-Bridge and
the applied damage scenarios, we could successfully detect damage.

A first and important problem is the choice and the number of quantities that have to be
included in the monitoring system. The vibration sensors (accelerometers) should not be
put on nodal points of the mode shapes of interest. For the studied Z24-Bridge, a good
placeto put atemperature sensor was the top of the concrete deck, under the asphalt layer,
in a central location of the main span of the bridge. It was also important to catch the
temperature course of the asphalt. Below 0°C, the asphalt layer seemed to be responsible
for the frequency variations.

Not only the temperatures at different locations have been monitored, but also the wind
characteristics, rainfall and humidity. However no relation was found between these last
threequantitiesand the eigenfrequencies. Thereforeonly temperaturevariablesareretained
asinputs.

The added dynamics of the traffic on the bridge has not been studied. We have no
measurements of thisinput variable; so it hasto be considered as a disturbance sourcein
the identified ARX models.

Sometimes "moisture absorption” is mentioned as another source of environmental
variability. However we do not believe that this significantly changes the mass of the
bridge. It is well known that concrete hardly absorbs any water and furthermore every
bridge has a draining system so that the actual amount of water on the bridge will always
be limited.

Since the ARX models are "dynamic" models, they need some time to start up. If
temperature information is fed into the models, it takes some time before the simulated
frequencies converge to the steady state frequencies. It was observed that 24 h was a safe
margin for all 4 modesto obtain reliable simulations.
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The Young's modulus of fresh concrete increases significantly during the first months.
Therefore it is better to wait until convergence before starting to identify environmental
models for a new bridge.

In[FARR97, SOHN99] it issuggested that temperature differentialsacrossthe deck of the
Alamosa Canyon Bridge are the driving forces for the frequency variations, whereas for
the Z24-Bridge temperature measurements at a single location seem to be sufficient. The
differenceisthat in [SOHN99] a static regression model was used*, whereaswe are using
dynamic ARX models. Probably the use of temperature differentials is an attempt to
overcomethelack of dynamicsinthe model. That isalso what we observed: in contrast to
the dynamic models, our static models could beimproved by adding moreinput variables.

7.5 CONCLUSIONS

In this chapter, a fina application was presented. The Z24-Bridge was extensively
instrumented and tested with theaim of providing a"feasibility proof” for vibration-based
health monitoring in civil engineering.

From the comparison of different excitation types it can be concluded that ambient
vibration testing is a valuable approach to estimate the modal parameters of large
structures, especialy with the improvements of acquisition systems and identification
algorithms of the last years.

The progressive damage tests prove that realistic damage scenarios have a measurable
influence on the dynamics of the bridge.

Thelong-term continuous monitoring test madeit possibleto deriveenvironmental models
for the bridge. These models are essential to detect damage in the presence of varying
temperatures.

“Due to the limited amount of data from the studied bri dge it was not feasible to identify dynamic models.
Identifying a static regression model was the best strategy in that case.



CONCLUSIONS AND FUTURE
RESEARCH

8.1 CONCLUSIONS

Thisthesisdiscussed system identification and damage detection in civil engineering. The
work did not only consist of the application of available theory to civil engineering
structures, but al so contai ned theoreti cal devel opments. Themain conclusionsof thisthesis
are the following.

m  The relation between FE models of vibrating structures, stochastic state-space
models and modal modelsjustifies the use of stochastic system identification to
estimate the modal parameters of a structure excited by white noise (see
Chapter 2).

m  Almost al state-of-the-art stochastic system identification methods — peak-
picking, complex mode indication function, instrumental variables, covariance-
driven and data-driven stochastic subspace identification — are theoretically and
experimentally compared (see Chapter 3). From the comparison of the estimated
modal parameters, it is concluded that the subspace methods are the preferred
methods (see Section 3.9). The prediction error method applied to an ARMA
model isonly briefly discussed, because until present thisnonlinear time-domain
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method did not reach an acceptable level of robustness and speed for civil
engineering modal analysis applications.

m  Thedata-driven stochastic subspace identification method could be adapted and
extended to make it suitable for modal analysis applications. The adaptation
consists of reducing the dimensions of the matrices (and the computation time)
by removing some of the redundancy that istypically present inamodal analysis
experiment because usually many sensors are used. The extension consists of
efficiently combining the stabilization diagram with subspace methods.
Additionally, atechniquewasdevel oped to split the total measured time response
in modal responses.

m  Thetheoretical development of subspace methods combined with developments
on the acquisition side greatly enhanced the use of ambient vibration testing in
which case weakly excited modes and noisy data are no exception (see
Section 7.2)

®  The development of a GUI for output-only modal analysis makes the subspace
identification method accessible to non-experienced users (see Section 4.1). The
development of an automatic modal analysis procedure is a key issue of a
continuous monitoring system that relies upon the evolution of the modal
parameters (see Section 4.2).

m  Many simulated (Chapters 2 and 3), laboratory (Chapter 5) and rea-life
applications (Chapters 5 and 7) are presented in this thesis to illustrate the
modelling concepts and the use of the system identification methods.

m A method was developed to distinguish normal environmental from damage
influences on the eigenfrequencies of a structure (Chapter 6). This method
combined with subspace identification was validated on real dataand showed to
be a successful real-life damage detection method.

8.2 FUTURE RESEARCH

We believe that this thesis contains useful contributions to the solution of the vibration-
based structural health monitoring problem. Nevertheless future research is certainly
needed to obtain arobust, automatic, generally applicable monitoring system.



8.2 Future Research 199

By the introduction of subspace methods in civil engineering, the output-only
modal analysis problem seems to be largely solved and it is expected that not
much can be improved on the quality of the estimated modal parameters. A
related topic that can be improved, however, is the automatic modal analysis
procedure. The (simple) approach that we proposed in Section 4.2 turned out to
work quite well, but not in 100% of the cases (see Table 7.6). It is still possible
to build some more intelligence in the method.

Concerning theidentification and use of the environmental model (see Chapter 6
and Section 7.4) some further improvements are possible. As visible on
Figures 7.19 and 7.20, the frequency-temperature relation of the Z24-Bridge
exhibitsanonlinear behaviour. It may beworthwhileto try toidentify anonlinear
environmental model to include the datafrom temperatures below 0°C. It would
be interesting to validate the use of the environmental model to detect damage
(Section 7.4) on other structures too. Of course, structures like the Z24-Bridge
that were monitored during almost ayear and artificially damaged afterwards, are
not daily available. In thisthesisthe problem of structural damage detection was
reduced to aproblem of detecting outliers(see Figures7.25, 7.28, 7.29 and 7.30).
In this case methods from the statistical process control literature can be useful
(seefor instance [MONT96]).

Thisthesis addressed level 1 damage detection (see Sections 1.1 and 1.2) based
on eigenfrequencies of the structure. A predictive condition-based maintenance
strategy can rely upon the continuous application of level 1 methods. It would
however beinteresting to extend the monitoring capabilities by using mode shape
informationand/or an analytical structural model in someautomatic manner. This
would allow for alocalization and quantification of the damage.

A last open problem has a more theoretical nature. In Chapter 2 the route was
followed from a physical model of a vibrating structure to models that can be
identified from data. It isan interesting exercise to explore thisroutein the other
directioninorder to find out which conditions need to apply to theidentified first-
order state-space model so that it can be converted to a physically redizable
equivalent second-order system consisting of masses, dampers and springs (see
for instance [ALV193]). Notions as stability and positive realness are likely to
play an important role in this matter.
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FREQUENCY-DOMAIN
MODAL MODELS

A.1TRANSFER FUNCTIONS

In Section 2.7, following expression for the transfer function in the Laplace domain was
found, see Equation (2.71):

H(9 = V (s -A) L, + D,

This expression can be rewritten by introducing the expressionsof V_, LCT, D, interms of

the modal parameters of the original FE model. Thiswill be developed in the following
two subsections.

A.1.1 From forcesto displacements
In case of displacement measurements, the matrix D, equals zero; see Equation (2.24).
After substituting the participation matrix LCT by Equation (2.31) and the observed mode

shapes V, by Equation (2.33), the transfer function from forces to displacements can be
written as:
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where {6, }cC™, thei™ column of @, isan eigenvector of the original FE model (2.1). The
modal decomposition (A.1) explicitly showsthat the modes occur in complex conjugated
pairs. The expression between brackets is the full n,xn, transfer function matrix that
containsthetransfer functionsbetween all DOFsof thediscretized system. Pre-multiplying
by C, and post-multiplying by B, selects the rows and columns of the transfer function
matrix at the output and input locations respectively.

A.1.2 From forcesto accelerations

As stated before, in most practical cases accelerations are measured. By consequence
matrix D_ can be written in terms of the modal parameters D =V A 'L, see
Equation (2.36). The transfer function from forces to accel erations can now bewritten as:

H(9) = V, sA (s - AL, (A.2)

Accelerationsare the second derivatives of displacements. ThiscorrespondsintheLaplace
domain to amultiplication by s2. However, at first sight this seems not to be the case: a
multiplication by sA(;1 isobserved by comparing Equation (A.2) with (2.71). In order to
convert this expression to a different form, the orthogonality conditions for the P matrix
(2.17) are rewritten as:

\1

ai\

P*l - \I]T

0 Mt ]
=¥
M1 -M ’1C2M 1
The upper left block of this equation isisolated:

@T
®H
Both sides are multiplied by s, pre-multiplied by C, and post-multiplied by B,; also two
identity matrices are inserted into the right hand side to yield:

\1
a,

0=(0 0)
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@T
By adding this"zero" to (A.2), substituting the participation matrix LcT by Equation (2.31)
and the observed mode shapes V_ by Equation (2.34), the transfer function from forcesto
accelerations can be written as:

\1
0-=C,(® @) AZASs(sl-A) (sl-A)™? B,

H(9 = V, A2 s2(8-A) L, (A.3)
or:
_ 21 52 T 1 N H
H(s) = Z - {ei}<9i >+ - {07}<6;7>| B,
18 SN a” s-A\

By comparing this expression with the displacement transfer function (A.1), it isindeed
observed that amultiplication by s2 wasneeded to go from displacementsto accelerations.

A.2SPECTRA
In Section 2.7, following expression for the spectrum was found, see Equation (2.75):
S(9 = (V(s-A) ™ML + D) R, (D + Ly(s*1-A)*V,)

Some identification methods of Chapter 3 need an expression for the spectrum that is
written as a sum of modal contributions instead of a product. This can be achieved by
applying the partial fraction expansion.

A.2.1 Thedisplacement spectrum

Incaseof displacement measurements, thematrix D equalszero; seeEquation (2.24). The
modal decomposition of the spectrum (2.75) reduces to:

S = (Vo(d -A) L) R, (Le(s71-A) V)

In the application of the partial fraction expansion, two residual matrices P,, P, need to be
found that satisfy:
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(8 -A) L R, L(s1-A) ™ = (8 -A) P, + P, (s71-A)™

Both sides are pre-multiplied by (sl - A_) and post-multiplied by (sl -A_) toyield:

L R, L, =8P, +sP, - PA_ - AP,

This expression should hold for all values of s. In practice, s is restricted to purely
imaginary values s=jm where o [rad/s] isan arbitrary frequency. Since then s* = -s, it
isfound that P, =P, by imposing that the term in sdisappears. If P, and P, arereplaced
by P, ., asto stressits continuous-time character and itsrelation to the modal parameters,
the residuals of the partial fraction expansion are found from:

-
I:’c,mAc + AcPc,m = 7Lc Ru Lc (A-4)

which isaso-called continuous-time Lyapunov equation that can be solved for P, . From
Equation (A.4) itisseenthat P, cC™" isasymmetric matrix that depends on the system
poles, the participation factors and the input covariance. After introducing the partial
fraction expansion, the displacement spectrum reads:
: -1 T . 1y T

S(im) = Vo(sl -A) P Ve + VP n(s™1-Ap) 7V, o
Notethat sissubstituted by jo asthe argument of % With the matrix chme(C”*' defined
as.

T e T

Gc,m - Pc,mvc = Pc,m ( ®H) Cd (A-5)
anditsi™ row denoted as: < gCiT>, the modal decomposition of the displacement spectrum
can be rewritten as:

(J ) S {Vci}<gc-ir> + {VCT}<gcli-|> + {gCi}<Vc-ir> + {gC:}<VC'i-|>
S @) = E
i-1 S\ s-% s ) ST =% (A.6)

S=jw

Thematrix G,  iscalled continuous-timestochastic modal participation matrix. However
there is an important difference with the classical participation matrix LCT. Every row of
thislast matrix only depends on 1 mode, whereasarow of G,  theoretically dependson
al modes. This fact becomes more clear if we would find a closed-form expression for
such arow <gciT>. From the definition of G_ ' (A.5), itisfound:
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Ts = T
<gci> = <pci> VC

In general, it is not possible to find a closed-form expression for the solution of a
Lyapunov equation (A.4). However, thanksto thediagonal structureof A, thei™ row of Pem
can be written as:

<pci> Ac * )‘i <pci> = <|ciT> Ru Lc
g

<p> = <I> R Lo (FA kDT

Inserting this closed-form expression and Equations (2.31) and (2.33) into the definition
of G, , (A.5),yields:

T * H
n, i{e]}(ej > . l {6 }<e] > CT
1 j=1 a *)\.i *)\.] a]* )\‘ )\‘J*

It turns out that a single output-only modal participation vector <g. T> depends on all
modal parameters of the system, on the input locationsand on theinput covariance matrix.

An alternative way of obtaining the modal decomposition of the spectrum first computes
al the productsin Equation (2.75) and then appliesthe partial fraction expansion to every
cross-product of two modal contributions. This approach is for instance followed in
[HERM97] and [BRINOO].

A.2.2 Theacceleration spectrum

If accelerations are measured, the modal decomposition of the spectrum is found by
inserting the modal decomposition of the transfer function (A.3) into Equation (2.74):

S, = VA SA (S -A) T, R, L(s*1-A) (s 2A2V,] (A.7)

Thesamepartial fraction expansion may be applied asbefore. Withthematrix G, incase
of accelerations, defined as:

c,m c,m”c c @H

2\, T o' T
G =P._A"V :Pc,m( )Ca
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whichissimilar to Equation (A.5), the modal decomposition of the acceleration spectrum
can be written as:

Sy(](,)) = §2: (SS—*)Z {Vc_}<gc'_l'> + (SS—*)Z ch}<gcl_-|> + ...
FL(s-r) T sy
(=) {g.}<vT> + . 9. v > (A.8)

)“iz(s*i}"i) Ci G (}"i*)z(s*f)“i*) G i

s=jo



STATE-SPACE MODEL OF THE
SIMULATION EXAMPLE

In this appendix the numerical values of the state-space model of the simulation example
of Chapters 2 and 3 are presented. The purpose of this appendix is to alow for
reproducibility of the identification results by interested researchers.

Example
The discrete-time state-space matrices, with a sample time At=0.04s, of the simulation
example are:
0.0756 -0.0048 0.0553 -0.0048 0.0655 0.0129
-0.0048 0.0701 0.0070 0.0701 0.0011 0.0599
D - 0.0553 0.0070 0.0850 0.0070 0.0701 -0.0188

-0.0200 0.0024 -0.0105 0.0024 -0.0153 -0.0059
0.0024 -0.0173 -0.0031 -0.0173 -0.0004 -0.0125
-0.0106 -0.0031 -0.0231 -0.0031 -0.0168 0.0077

-0.0200 0.0024 -0.0106 0.0024 -0.0153 -0.0058
0.0024 -0.0173 -0.0031 -0.0173 -0.0004 -0.0126
-0.0105 -0.0031 -0.0231 -0.0031 -0.0168 0.0078
0.1301 -0.0100 0.0888 -0.0100 0.1095 0.0257
-0.0100 0.1185 0.0138 0.1185 0.0019 0.0979
0.0888 0.0138 0.1454 0.0138 0.1171 -0.0352

207
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-0.0766 0.9963 -0.1485 0.9874 -0.1502 0.9871

0.9648 0.2531 0.9026 0.4203 0.9005 0.4247
-0.2531 0.9648) '\ -0.4203 0.9026) '\ -0.4247 0.9005

A - diag{( 0.9963 0.0766) ( 0.9874 0.1485) ( 0.9871 0.1502)

0.3640 -0.1943 -0.3181 -0.1943 0.0229 0.3964
0.3304 -0.1763 -0.2887 -0.1763 0.0208 0.3598
-0.8032 -0.1299 -0.8715 -0.1299 -0.8373 -0.0708
-0.6776 -0.1096 -0.7352 -0.1096 -0.7064 -0.0597
-0.0946 0.8263 -0.1318 0.8263 -0.1132 0.8585
B - 10°3x -0.0797 0.6959 -0.1110 0.6959 -0.0953 0.7230

0.5558 -0.2914 -0.4595 -0.2914 0.0482 0.5879
04201 -0.2202 -0.3473 -0.2202 0.0364 0.4443
11588 0.2230 12835 02230 12212 0.1151
0.7228 0.1391 0.8005 0.1391 0.7617 0.0718
0.1573 -1.2013 0.2280 -1.2013 0.1926 -1.2625
0.0976 -0.7451 0.1414 -0.7451 0.1195 -0.7831

05165 -0.2755 -0.4512 -0.2755 0.0327 0.5625
04688 -0.2501 -0.4095 -0.2501 0.0297 0.5105
-1.1713 -0.1883 -1.2680 -0.1883 -1.2196 -0.1045
-0.9882 -0.1588 -1.0697 -0.1588 -1.0290 -0.0882
-0.1376 12032 -0.1925 1.2032 -0.1650 1.2507
-0.1159 1.0132 -0.1621 1.0132 -0.1390 1.0533
-0.7626 0.4068 0.6476 0.4068 -0.0575 -0.8144
-0.5763 0.3075 04894 0.3075 -0.0434 -0.6155
-1.3754 -0.2693 -1.5327 -0.2693 -1.4541 -0.1331
-0.8579 -0.1680 -0.9560 -0.1680 -0.9069 -0.0830
-0.1855 14308 -0.2713 14308 -0.2284 1.5051
-0.1151 0.8875 -0.1683 0.8875 -0.1417 0.9336

-0.5304 05199 22337 -21894 0.2661 -0.2608
0.2831 -0.2775 03613 -0.3541 -23239 22778
0.4636 -0.4544 24236 -2.3756 0.3707 -0.3633

-0.7527 0.7378 3.2574 -3.1929 0.3869 -0.3792
0.4015 -0.3936 0.5235 -0.5132 -3.3837 3.3167
0.6575 -0.6444 35262 -3.4564 0.5412 -0.5305

-2.5501 25084 -85827 84127 -1.1765 1.1532
13415 -1.3149 -16519 16192 89861 -8.8082
21154 -2.0735 -9.5059 93176 -1.7055 1.6718
35109 -3.4414 10.1867 -9.9850 1.3876 -1.3601
-1.8731 1.8360 1.9945 -1.9550 -10.7027 10.4908
-2.9816 29225 113517 -11.1269 2.0297 -1.9895

C =



DEFERRED Z224-BRIDGE RESULTS

C.1EVOLUTION OF THE DAMPING RATIOS

The estimated damping ratios of thefirst 5 modes of al damage scenarios are represented
in Table C.1. Thistableisteaching usthat therelatively high uncertainties on the damping
ratios makes it difficult to use them to detect damage.

C.2ENVIRONMENTAL MODEL OF THE Z24-BRIDGE

The properties of the input-output data are given in Table C.2. These are required to
convert the ARX models that are identified from normalized data back to engineering
units, see Equations (6.8)-(6.10). The parameters of theidentified ARX modelsaregiven
in Table C.3, whereas the parameters of the static regression models can be found in
Table C4.
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TableC.1: Evolution of the damping ratios with damage. The mean values E and estimated standard
deviations éé are based on 9 samples originating from the 9 independent setups. The results were
obtained by applying SSI-DATA to the ambient vibration data.

mode 1 mode 2 mode 3 mode 4 mode 5
o
IS = = = = =
o) & c“sé & c“sé & c“sé & c“sé & c“sé
B [ D6 D% 1% 1% [9%] [%] (%] [%)
1 09 02 14 03 14 03 2 05 24 0.7
2 1 08 14 04 14 04 16 06 26 04
3 09 04 11 0.2 11 03 15 04 28 11
4 11 03 13 0.2 14 04 16 03 25 07
5 1 07 14 05 15 05 2 12 33 12
6 13 05 18 09 14 05 1.3 03 25 07
7 1 05 13 04 15 03 14 04 23 0.6
8 11 04 13 04 14 06 14 03 27 1
9 13 06 15 05 13 05 15 03 26 07
10 12 07 11 04 14 03 18 0.7 26 07
11 1 04 16 05 11 04 21 08 25 07
12 12 11 16 06 13 04 18 04 25 1
13 1 02 18 04 13 04 18 1.8 22 05
14 12 05 17 05 23 18 18 0.6 24 04
15 14 06 19 05 17 03 19 04 27 0.6
16 11 03 19 06 14 04 16 04 23 0.9
17 1 07 16 05 16 0.2 16 04 23 05

TableC.2: Mean values and sample standard deviations of the input-output data, based on samples
from the positive temperatures only. Therefore the mean values of the frequency outputs y are
different from the values of Table 7.6 that considered all samples.

Input Output
Mode _ . _ A
u[°C] 6, [°C] y [HZ] 6, [H7]
1 15.299 9.009 3.943 0.039
2 " " 5.189 0.049
3 " " 10.016 0.109
4 " " 10.686 0.145




Table C.3: ARX model parameters. The estimated values éi and their standard deviations 6; are

C2

Environmental Model of the Z24-bridge

specified.

Mode Model a, &, a, a, b, b,

1 214 § 10 -0320 -0282 -  -0.357 -
&5 0022 0022 - 0022 -

2 320 6 10 -0292 -0266 -0.176 3.074 -2.996
&5 0023 0023 0023 0242 0.243

3 210 6 10 -0204 -0144 -  -0435 -
&; 0023 0023 - 0026 -

4 220 6§ 10 -0166 -0143 -  -1476 1052
&; 0023 0023 - 0.251 0.248

TableC.4: Staticregressonmodel parameters. Theestimated vaues éi andtheir standard deviations 6;

are specified.
Mode Model 61
1 010 0, -0.887
& 0.011
2 010 6, 0.321
& 0.022
3 010 0, -0.672
& 0.017
4 010 0, -0.623
5 0.018
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SYSTEEMIDENTIFICATIE EN
SCHADEDETECTIE IN DE
BOUWKUNDE

Situering van het onderwerp

Gezondheidscontrole van structuren is een bloeiend onderzoeksdomein gedreven door de
noodzaak om subjectieve visuele inspectiemethodes aan te vullen met objectieve niet-
destructieve methodes die gebaseerd zijn op metingen van fysische grootheden en
computeranalyses. Men onderscheidt global e en |okale methodes. L okale methodes gaan
de toestand na van een beperkt deel van de structuur en maken gebruik van: akoestiek,
wervelstromen, hardhei dstesten, magnetische velden, radiografie, ... Een van de weinige
globalecontrolemethodes maakt gebruikt vantrillingsmetingen. Het global e schadedetectie
mechanisme van de methode bestaat hierin dat een lokale stijfheidsverandering de globale
dynamische eigenschappen van de structuur verandert. In de "0 Hz variante” van de
methode worden de verplaatsingen van de structuur gemeten onder een statische bel asting.

Het grote voordeel van een globale methode is dat de metingen op slechts één plaats
volstaan om een beeld te krijgen van de toestand van de hele structuur. Methodes
gebaseerd op trillingsmetingen kunnen met regel mati ge tussenpozen toegepast worden —
wat dan en tijdelijke meetopstelling zou vergen — ofwel permanent — wat verondersteld
dat de sensoren permanent geinstalleerd blijven op de structuur. Dankzij de permanente
opstelling is een verschuiving mogelijk van een preventieve tijdsgebonden naar een
voor spellendetoestandsgebonden onderhoudstrategie. Zo' nverschuiving vermindert zowel
het risico op een ernstig falen van de structuur als de totale onderhoudskost door het
vermijden van overbodige inspecties.

Het veelbel ovende perspectief dat gezondhei dscontrole met behulp van trillingsmetingen
biedt, heeft vele onderzoekers wereldwijd geinspireerd. Doebling et al. maakten een
overzicht en een klasseverdeling van de literatuur [DOEB96]. Er is enige consensus om
vier niveaus van schade-identificatie te onderkennen (zie bijvoorbeeld [RY TT93]):

®  niveau 1 - ontdekking: Is de structuur a dan niet beschadigd?

B niveau 2 - plaatsbepaling: Waar bevindt zich de schade?
®  niveau 3 - begroting: Hoe erngtig is de schade?
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van rechts naar links.

®m  niveau 4 - voorspelling: Hoelang gaat de structuur nog standhouden en wat isde
overgebleven dienstbelasting?

De ontdekking van schade (niveau 1) komt neer op het vaststellen van veranderingen van
de dynamische eigenschappen zoals eigenfrequenties. Twee benaderingen zijn denkbaar
omtrillingsonderzoek boven niveau 1 uit tetillen. In een eerste benadering wordt een groot
aantal sensoren ingezet om lokale veranderingen van modevormen vast te stellen. De
plaatsbepaling van de schade is dan typisch nauwkeurig tot op de afstand tussen twee
sensoren na. Een tweede benadering heeft niet zoveel sensoren nodig, maar wel een
analytisch model van de structuur. Model parameters die met de schade verband houden
worden zodanig bijgestel d dat de dynamische eigenschappen van het model overeenkomen
met die op de structuur gemeten zijn. Eindige-elementenmodel updating (bijstelling)
methodes zijn hier een voorbeeld van [FRIS95].

Alhoewel trillingsonderzoek toepasbaar is op alerlel structuren worden bruggen
beschouwd a sbelangrijke kandidaten. Zoal sblijkt uit Figuur N.1 bel eefde het bouwen van
bruggen in de VS een hoogconjunctuur in de jaren 60 toen het autowegennet dat de
deel staten verbindt vorm kreeg. De Europese situatie is vergelijkbaar waar de aanleg van
demeesteautowegenin de zelfde periode geschiedde. V eel van detoen gebouwde bruggen
bereiken hun kritische leeftijd en aan de hand van voorspellingen kan men aantonen dat
de onderhoudsvraag tegen 2010 een ongekende hoogte zal bereiken. Trillingsonderzoek
is een nuttige methode om de toestand van deze bruggen in te schatten en
onderhoudsprogramma’s op te stellen.

Recentetuikabel en hangbruggen met een grote overspanning worden standaard uitgerust
met een ingebouwd controlesysteem dat bestaat uit alerlei soorten sensoren:
versnellingsopnemers, windmeters, verplaatsingsopnemers, hellingmeters, rekstrookjes,
thermometers, ... Over de helewereld vindt men dergelijke goed uitgeruste bruggen, maar
een van de best uitgeruste isde Tsing MaBrug in Hong-Kong (zie Figuur N.2). Gebouwd
in 1997 en met een hoofdoverspanning van 1377 m, wordt deze brug gecontroleerd met
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Figuur N.2: De Tsing Ma Brug in Hong-
Kongisuitgerust met ongeveer 600 sensoren.

behulp van ongeveer 600 sensoren.

Control esystemen worden voor meer gebruikt dan enkel voor schadedetectie. Beschreven
toepassingen en doel stellingen van werkzame systemen zijn: kwaliteitscontroletijdensde
constructie van de brug; het controleren van ontwerpparameters van een pas voltooide
brug; bij uitzonderlijke windsnel heden dienst doen al swaarschuwingssysteem om de brug
voor alle verkeer te dluiten; in de loop van zijn bestaan de gebruiksgrens en uiterste
grenstoestand van de brug opvolgen. Er bestaat echter enige vaagheid omtrent de concrete
vertaling van meetgegevens naar de gezondheidstoestand van een brug toe. Hierbij speelt
een "ingenieursbeoordeling” blijkbaar een niet te onderschatten rol.

Bij het gebruik van trillingen voor gezondheidscontrole worden nogal wat meetgegevens
gegenereerd. Daarom is het nodig om de essentie van deze hoeveel heid gegevenste vatten
in een experimenteel model van de structuur. Dit proces wordt systeemidentificatie
genoemd. Algemene systeemidentificatieiseen onderzoeksdomein uit de elektronica. Een
gezaghebbende referentie is het boek van Ljung [LJUN99]. Actuele ontwikkelingen
situeren zich op het domein van deelruimte methodes [VANO96] en maximale
waar schijnlijkheid frequentie-domein methodes' [SCHO91].

Het toepassen van systeemidentificatie op trillende structuren leverde een nieuw
onderzoeksdomein op in de mechanica. de experimentele modale analyse. Het

"Het enkel meegeven van de Nederlandse term zou tot verwarring kunnen leiden. Deelruimteisbeter bekend
als subspace, en maximum likelihood klinkt wellicht wat bekender dan maximale waar schijnlijkheid.



228 NEDERLANDSE SAMENVATTING

geidentificeerde model isin dit geval een modaal model?, bestaande uit eigenfrequenties,
dempingsverhoudingen, modevormen en modal e participatiefactoren. Het eerste modale
analyse boek was geschreven door Ewins [EWIN84]. Een meer recente stand-van-zaken
vindt men in [HEYL95, MAIA97, ALLE99].

Gewoonlijk is schade-identificatie gebaseerd op het volgen van veranderingen in het
modale model. Een alternatief bestaat erin om slechts een model van de gezonde structuur
teidentificeren. Nadien worden statistische hypothese tests aangewend om te beoordelen
of nieuwe meetgegevens nog steeds kunnen verklaard worden door het oorspronkelijke
"gezonde" model. Deze methodes werden ontwikkeld in INRIA, Frankrijk [MOUS86a,
MOUS86b, MOUS88, BASS93a, BASS93b, MEVEQOQ]. Het voordeel van dergelijke
methodesisdat geen nieuw experimenteel model hoeft geidentificeerd te worden wanneer
nieuwe gegevens beschikbaar komen. Dit isimmers een procedure die soms moeilijk te
automatiseren is.

Focusvan dethesis

Uit vorige afdeling blijkt dat er reeds heel wat gebeurd is op het vlak van
gezondheidscontrol e van structuren met behul p van trillingsmetingen. Desalniettemin zijn
vele van de voorgestelde methodes blijven steken in het stadium van de numerieke
simulaties of de traditionele "zaagsneden" aangebracht in stalen profielen in het
[aboratorium.

Dezethesi shehandelt twee onmisbare el ementen van eenreéel controlesysteem. Het eerste
element is de bepaling van een experimenteel model van een trillende structuur louter op
basis van uitgangsmetingen (versnellingen). De kosten verbonden aan trillingstesten
kunnen in belangrijke mate gedrukt worden door het gebruik van vrij beschikbare — maar
onmeetbare — trillingsbronnen uit de omgeving. Hierdoor hoeft men geen dure
kunstmatige — maar meetbare — bronnen zoals shakers te gebruiken, wat trouwens
ondenkbaar zou zijn in een permanent control esysteem. Reeds enkel e decenniabestaan er
basi smethodes om de modal e parameters|outer op basisvan uitgangsmetingen te bepalen.
De basisoplossing bestaat uit het selecteren van pieken in de spectra van de
uitgangssignal en. Zoal saangetoond in Hoof dstuk 3 bestaan er meer gevorderdetechnieken
die de kwaliteit van het experimentele model in belangrijke mate verhogen.

Het tweede element dat behandeld wordt in deze thesis is de detectie van schade onder
veranderende omgevingsparameters. Het probleem isdat zowel schade alstemperatuur de
eigenfreguenties van een structuur beinvioeden. Er wordt een oplossing aangedragen die
het mogelijk maakt om beideinvl oeden te scheiden. V oor de goede orde vermelden wenog
dat enkel niveau 1 schade-identificatie behandeld wordt. Devoorgestel de methode ontdekt
schade zonder er evenwel de plaats van te bepalen of ze te begroten. Echter, de

Modaal heeft hier (uiteraard) niet de betekenis van middelmatig, maar wel van bestaande uit modes.
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ontwikkeling van een permanente en automatische detectiemethode wordt beschouwd a's
een zeer belangrijke stap. Het betekent immers dat een snel waarschuwingssysteem
beschikbaar komt dat slechts een handvol sensoren nodig heeft en geen analytisch model
van de structuur behoeft.

De meer gedetailleerde originele bijdragen van dit werk zijn de volgende.

Eindige-elementenmodellen van trillende structuren geéxciteerd door witte ruis
worden in wiskundig verband gebracht met stochastische toestandsruimte en
modale modellen. De analyse van de modellen en hun onderlinge verbanden
maken duidelijk hoe ze geidentificeerd kunnen worden uitgaande van
uitgangsmetingen en vervol gensgebruikt in modal e en spectrum analyse. Modale
parameters worden beschouwd als bel angrijke kenmerken om structurel e schade
te bepalen.

Bijna ale beschikbare stochastische systeemidentificatie methodes worden
kritisch ontleed. Ze worden geklasseerd naar de vorm waarin de meetgegevens
gegoten moeten worden: spectra, covarianties of de oorspronkelijke tijdreeksen.
Demethodesworden niet all een theoretisch vergel eken maar ook aan dehand van
een Monte-Carlo simulatiestudie. De theoretische vergelijking maakt onder
andere duidelijk dat — omwille van historische redenen — essentieel dezelfde
methodes verschillende namen hebben gekregenin deliteratuur. Bijvoorbeeld de
bekende poly-referentie tijdsdomein methode toegepast op covarianties (in de
plaats van impulsresponsies) kan beschouwd worden als een instrumentaal
variabele methode. Evenzo ishet eigensysteemrealisatie algoritmetoegepast op
covariantiesgelijkwaardig aan de covariantie-gedr even deel ruimte methode®. De
vergelijkende simulatiestudie licht het praktisch gebruik van de methodestoe en
maakt het mogelijk om de kwaliteit van de identificatieresultaten relatief te
beoordelen.

De tijdreeks-gedreven stochastische deelruimte® methode wordt aangepast en
uitgebreid om ze meer geschikt te maken as modale-analysemethode. De
aanpassing bestaat uit het beperken van de dimensies van de matrices (en de
rekentijd) door een deel van de overtolligheid weg te werken die typisch
aanwezig is bij modale-analyse-experimenten waar gewoonlijk vele sensoren
gebruikt worden. De uitbreiding bestaat uit een efficiénte combinatie van het
(klassieke) stabilisatiediagram met deel ruimte methodes. Het stabilisatiediagram

*Hetenkel meegeven van deNederlandseterm zou tot verwarring kunnenleiden. Poly-referentietijdsdomein
is beter bekend als polyreference time domain, instrumentaal variabele staat voor instrumental variable, en
eigensysteemrealisatiealgoritmeklinkt al seigensystemrealization algorithmin het Engels. Covariantie-gedreven
deelruimte staat voor covariance-driven subspace.

4Tij dreeks-gedreven stochastische deelruimte wordt vertaald als data-driven stochastic subspace.
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wordt gebruikt om de modale parameters te bepalen uit de geidentificeerde
deelruimtemodellen. Een andere originele bijdrage is het splitsen van het totale
uitgangssignaal in modale responsies. De eerste toepassingen van de tijdreeks-
gedreven stochastische deelruimte methode op louter op uitgangssignalen
gebaseerde modal e analyse dateert van 1995 [PEET95].

Er wordt een methode ontwikkeld om normale omgevingseffectente scheidenvan
schade. Beide beinvloeden de gemeten eigenfrequenties van de structuur. In het
kort bestaat de methode uit het i dentifi ceren van een dynami sch omgevingsmodel
van de "gezonde" structuur, uitgaande van temperatuur-eigenfrequentie
tijdreeksen. Een statistische test maakt het vervolgens mogelijk om te beslissen
of nieuwemetingen overeenkomen met het oorspronkelijkeomgevingsmodel. De
originaliteit van de methode ligt hierin dat deelruimte-identificatie op een
automati sche wijze aangewend wordt om de eigenfrequenties van de structuur te
bepalen uitgaande van een immense hoeveelheid versnellingsmetingen en dat
dynamische ARX omgevingsmodellen geidentificeerd worden in plaats van de
gebruikelijke statische lineaire regressiemodel len.

Wat de software-implementatie van de methodes betreft, werd de ontwikkeling
van een grafische gebruikersinterface in goede banen geleid. Daarenboven werd
een automatische modale-analyseprocedure ontwikkeld, gebaseerd op de
automatischeinterpretatie van stabilisatiediagrammen. Het iswellicht overbodig
te vermelden dat dergelijke procedure beslissend is voor het succes van een
permanent controlesysteem dat de evolutie van de modal e parameters volgt

Wat de praktische toepassingen betreft, werd nogal wat experimenteel werk
verzet. Vier gewapend betonnen balken werden onderworpen aan een
toenemende stati sche bel asting en ondergingen voortschrijdende schade. Bij elke
bel astingsstap vond een trillingsexperiment plaats. De bedoeling van de balktests
was niet enkel het opstellen van een gegevensbestand waaruit geput kan worden
om systeem identificatie methodes te valideren, maar ook om nate gaan of het
fundamenteel mogelijk is om veranderingen van dynamische eigenschappen
onder invloed van schade te meten. Buiten het laboratorium werden ook
trillingsmetingen uitgevoerd: op een stalen zendmast en op enkele Belgische
bruggen over de E19-autoweg. Deze metingen laten toeom gevoel tekrijgen voor
realistische testomstandigheden en dito meetgegevens.

Tenslotte werd een diepgaande analyse van de meetgegevens van de Zwitserse
Z24-Brug uitgevoerd. De meetgegevenszijn uniek door de combinatievan lange-
duur controlemetingen en de toepassing van readlistische schadescenario’s. Er
wordt aangetoond dat de schade inderdaad ontdekt kan worden, ondanks de
veranderende omgevingsparameters.
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Organisatie van de tekst

In onze bijdrage tot gezondheidscontrole met behulp van trillingsmetingen komen twee
systeemidentificatie benaderingen naar voren. Het eerste (en grootste) deel handelt over
systeemidentificatie die louter gebaseerd is op uitgangssignalen. Er wordt beschreven hoe
belangrijke kenmerken van de structuur — de modale parameters — bepaald kunnen
worden uit trillingsmetingen. Hierbij hoeft men niet te beschikken over een exacte kennis
van de excitatie (de ingangen) die de oorzaak is van de trillingen van de structuur (de
uitgangen). Demodal e parametersbevatten nuttigeinformatie over degezondheidstoestand
van de structuur.

Het tweede deel handelt over een toepassing van ingang-uitgang systeemidentificatie. Een
blijvend probleem na het eerste deel is dat de modale parameters niet enkel veranderen
onder invlioed van schade, maar ook door variérende omgevingsparameters. Een
omgevingsmodel van de gezonde structuur maakt het mogelijk om beide invloeden te
scheiden. Het omgevingsmodel wordt geidentificeerd op basis van gemeten
omgevingsparameters zoal s temperaturen (de ingangen) en de in het eerste deel bepaalde
kenmerken, de eigenfregquenties (de uitgangen).

Een meer gedetailleerd hoofdstuk-per-hoofdstuk overzicht wordt nu gegeven (zie ook
Figuur N.3).

Hoofdstuk 1
isdealgemeneinleiding. Het onderwerp wordt gesitueerd, de e gen bijdragen worden
duidelijk gemaakt en de organisatie van de tekst wordt besproken

Hoofdstuk 2
behandelt modellen van trillende structuren. Stapsgewijsworden modellen die dicht
staan bij de fysische realiteit omgevormd tot algemene dynamische modellen die
nuttiger zijn voor systeemidentificatie. Dit hoofdstuk verbindt Eindige-
elementenmodellen van bouwkundige constructies, toestandsruimtemodellen
afkomstig uit de elektronica, en modale modellen oorspronkelijk ontwikkeld in de
mechanica. Een simulatiestudie verduidelijkt de modelleringsconcepten.

Hoofdstuk 3
gaat over stochastische systeemidentificatie methodes. Louter op basis van
uitgangsmetingen identificeren deze methodes de modellen van Hoofdstuk 2.
Spectrum-gedreven, covariantie-gedreven en tijdreeks-gedreven methodes worden
achtereenvolgensbesproken. Om detheorieteverduidelijken en het praktisch gebruik
toe te lichten, worden de besproken methodes toegepast op een gesimuleerd
voorbeeld.
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Hoofdstuk 4
beschrijft de implementatie van een grafische gebruikersinterface naar stochastische
systeemidentificatie methodes. Naast identificatie agoritmes werden ook
voorbehandelings- en visualisatiefuncties in het programma opgenomen.
Daarenboven werd een automatische modal e-analyseprocedure ontwikkeld die het
mogelijk maakt om een groot aantal gegevensbestanden te doorworstelen zonder
tussenkomst van de gebruiker.

Hoofdstuk 5

behandelt twee voorbeelden. Trillingstests op betonnen balken die onderworpen zijn
aan voortschrijdende schade halen de schadedetectie mogelijkheden van de modale
parameters naar boven. De tests werden uitgevoerd in optimale
|aboratoriumomstandigheden. In het tweedevoorbeel d worden demodal e parameters
van een door de wind geéxciteerde stalen mast bepaald. Dit is een test in reéle
omstandigheden waarin de mogelijkheden van stochastische systeemidentificatie
kunnen verkend worden.

Hoofdstuk 6
is opnieuw een theoretisch hoofdstuk. Het gebruik van ingang-uitgang
systeemidentificatieter bepaling van een omgevingsmodel dat het verband beschrijft
tussen temperaturen en eigenfrequentieswordt aangetoond. Er wordt ook aangegeven
hoe het model kan gebruikt worden om temperatuurseffecten uit de
trillingsmeetgegevens te filteren.

Hoofdstuk 7

stelt systeemidentificatie en schadedetectie resultaten voor die bekomen zijn uit de
meetgegevens van de Z24-Brug. Het interessante van dit voorbeeld is dat ale
ontwikkelingen van deze thesis erop kunnen toegepast worden. Verschillende
kunstmatige en natuurlijke trillingsbronnen worden vergeleken; de evolutie van de
modal e parameters van de brug onder toenemende schade wordt beschreven en een
omgevingsmodel voor de Z24-Brug wordt geidentificeerd dat met succes aangewend
kan worden om schade te ontdekken.

Hoofdstuk 8
bevat de gevolgtrekkingen van dit werk. Ook worden de onopgeloste problemen
overlopen en suggesties aan de hand gedaan voor verder onderzoek in het domeinvan
de gezondheidscontrole van structuren met behulp van trillingsmetingen.
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Hoofdstuk 2

Modellen van Trillende
Structuren

Hoofdstuk 3

Stochastische
Systeemidentificatie

Hoofdstuk 4 Hoofdstuk 6
Implementatie Omgevingsmode! van een
Trillende Structuur

Hoofdstuk 5
Toepassingen

Hoofdstuk 7
De Z24-Brug

Figuur N.3: Organisatie van de tekst. De linkerkant van de grafiek gaat over de identificatie van een model van
eentrillendestructuur. Derechterkant geeft aan hoe omgevingsparametersdit model beinvlioeden. Alletheoretische
ontwikkelingen komen samen in de Z24-Brug toepassing van hoofdstuk 7.
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