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This thesis addresses two key issues of a real-life vibration-based structural health
monitoring system. The first issue is the determination of an experimental model of a
vibrating structure from output-only data. The use of freely available ambient excitation
sources reduces significantly the cost of testing. Besides, there is no alternative in a
continuous monitoring system. By applying advanced subspace methods to acceleration
measurements, a high-quality experimental model can be identified. This is verified by
many simulation, laboratory and real-life experiments.

The second issue is the detection of damage under varying environmental conditions. The
problem is that both damage and temperature are affecting the experimental model of a
structure. A statistical system identification solution is developed to separate these
influences. A thorough analysis of bridge vibration test data is presented. The tests were
unique in that they combined long-term monitoring with the application of realistic damage
scenarios. The conclusion is that damage can successfully be detected under varying
environmental conditions.
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This first chapter contains the general introduction and motivation of the this thesis.
The subject of this work — structural health monitoring with emphasis on vibration-
based methods — is discussed in Section 1.1. In Section 1.2, our own contributions
to the solution of the structural health monitoring problem are highlighted. In
Section 1.3, finally, the organization of the text is outlined.
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1.1 VIBRATION-BASED HEALTH MONITORING

Structural health monitoring is an active field of research, driven by the need to
complement subjective visual inspection methods by objective nondestructive evaluation
tools based on physical measurements and computer analyses. Health monitoring
techniques may be classified as global or local. Local methods concentrate on a part of the
structure and are based on acoustics, eddy currents, hardness testing, magnetic fields,
radiography, X-rays, ... [HOUS97]. One of the few global monitoring methods is based on
vibration measurements. Vibration-based damage detection relies upon the fact that a local
stiffness change affects the global dynamic characteristics of the structure. In the "0 Hz
variant", displacements are measured while a static load is applied to the structure.

The main advantage of a global method is that measurements at one location are sufficient
to assess the condition of the whole structure. The measurement location may differ from
the location of the damage. Vibration-based methods can be applied intermittently &
implying a temporarily deployment of the sensors and the acquisition system & or
continuously & implying the embedment of the sensors in the structure. In the continuous
setting, a shift from a preventive time-based to a predictive condition-based maintenance
strategy is achieved. This shift reduces both the risk of a serious failure of the structure and
the overall maintenance costs by excluding unnecessary inspection activities.

The promising perspective of vibration-based health monitoring inspired many researchers
all over the world. Doebling et al. surveyed and classified the literature [DOEB96].
Usually four levels of damage identification are discriminated (see for instance
[RYTT93]):

� level 1 % detection: Is the structure damaged or not?
� level 2 % localization: Where is the damaged area located?
� level 3 % quantification: What is the extent of damage?
� level 4 % prediction: What is the remaining service life of the structure?

The damage detection problem (level 1) is basically equivalent to detecting a change in the
dynamic characteristics, such as eigenfrequencies, of the structure. There are two
approaches to extend vibration-based methods beyond level 1. In a first approach, a large
number of sensors is used to allow the location of damage based on detecting a local mode
shape change. The localization accuracy is typically limited to the spatial resolution of the
measurement mesh. A second approach requires less sensors, but needs an analytical model
of the structure. Parameters of the model that are related to damage are updated so that the
dynamic characteristics of the model corresponds to the measurements. Finite Element
Model updating methods fall into this category [FRIS95].
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Figure 1.1:  Age distribution of bridges in the USA [CHAS97]. The time axis is
running from right to left.

Although vibration-based structural health monitoring is applicable to a large range of
structures, bridges are considered as important applications. As indicated on Figure 1.1,
the main bridge-building boom in the USA was situated in the sixties when the interstate
system was constructed. The situation in Europe is similar with the construction of the
highways in the same era. Most of these bridges are reaching their critical age and it is
expected that the budget demands for maintenance will peak in 2010. Vibration-based
monitoring is certainly a helpful tool in assessing the condition of these bridges and in
making maintenance schedules.

More recent long-span cable-stayed and suspension bridges are equipped with an
embedded monitoring system consisting of sensors such as: accelerometers, anemometers,
displacement transducers, inclinometers, strain gauges, temperature sensors, ... Examples
of instrumented bridges exist all over the world. As reported in [FARR99b], one of the
best-equipped bridges is probably the Tsing Ma Bridge in Hong Kong (see Figure 1.2). The
bridge was built in 1997, has a main span of 1377 m and is monitored by nearly 600
sensors.

Bridge monitoring systems are not only used to detect damage. Reported applications and
objectives of existing monitoring systems include: quality control during the construction
of the bridge; verifying design parameters of a newly constructed bridge; serving as a
warning system for traffic closure when the bridge is subjected to excessive wind loading;
and condition assessment about its serviceability and ultimate limit state. However,
generally speaking, there is some vagueness in how the measurement data are currently
interpreted in terms of condition assessment and apparently a lot of "engineering
judgement" comes into play [HOUS97].
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1These notions will be introduced in Chapter 2.

Figure 1.2: The Tsing Ma Bridge in Hong
Kong is equipped with nearly 600 sensors.

In vibration-based health monitoring, lots of measurement data are generated. There is the
need to compress the amount of data by estimating an experimental model of the structure
that essentially contains the same information as the original vibration data. The process
of finding a model from data is called system identification. General system identification
is a research branch of electrical engineering. An authoritative reference is the book of
Ljung [LJUN99]. Recent advances in the field are the development of subspace methods
[VANO96] and maximum likelihood frequency-domain methods [SCHO91].

The application of system identification to vibrating structures yielded a new research
domain in mechanical engineering, known as experimental modal analysis. The identified
model is in this case a modal model consisting of eigenfrequencies, damping ratios, mode
shapes and modal participation factors1. The first book on the subject was written by Ewins
[EWIN84]. More recent overviews can be found in [HEYL95, MAIA97, ALLE99].

Usually, the identification of damage is based on changes in the modal model. An
alternative approach to damage detection consists of identifying a model of the healthy
structure only. Afterwards, statistical hypothesis tests are carried out to judge whether new
data can still be explained by the initial model. This approach was developed at INRIA,
France [MOUS86a, MOUS86b, MOUS88, BASS93a, BASS93b, MEVE00]. The main



1.2 Focus of the Thesis 5

advantage of the method is that no new model needs to be estimated as new data become
available, a procedure which is sometimes difficult to automate.

1.2 FOCUS OF THE THESIS

It might be clear from previous section that a lot of work on vibration-based structural
health monitoring has already been carried out. Nevertheless many of the proposed damage
identification methods are still in the stage of numerical simulations or the traditional
laboratory "saw-cuts".

This thesis addresses two key issues of a real-life monitoring system. The first issue is the
determination of an experimental model of a vibrating structure from output-only data. By
the use of freely available ambient excitation sources the cost of testing is significantly
reduced, because no expensive input devices such as shakers are needed. Moreover in a
continuous monitoring system it is unthinkable that the structure would be excited by a
measurable artificial source. Of course, the problem of obtaining modal parameters from
output-only data is basically solved since a few decades. This basic solution consists of
selecting the peaks of the spectra of the output signals. However, as will be shown in
Chapter 3, more advanced methods were recently developed that considerably increase the
quality of the experimental model (i.e. the modal parameters).

The second issue that is treated in this thesis is the detection of damage under varying
environmental conditions. The problem is that both damage and temperature affect the
eigenfrequencies of a structure. A solution is proposed to separate these influences. It
should be noted that only level 1 damage identification (see Subsection 1.1) is addressed
in this thesis. The proposed method detects damage without locating or quantifying it.
However, the development of a damage detection method that can be applied in a
continuous and automatic way is considered as a critical step. It would mean that an early-
warning system becomes available that is only based on a few sensors and does not need
a numerical model of the structure.

More specifically, the original contributions of this work are the following:

� Finite Element models of vibrating structures excited by white noise are related
to stochastic state-space models and modal models. The analysis of these models
and the relations between them are indicating how they can be estimated from
measurement data and subsequently used in modal and spectrum analysis. The
modal parameters are considered as important features for identifying structural
damage.
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� Almost all state-of-the-art stochastic system identification methods are critically
reviewed and synthesized. They are classified by the primary data type they
require: spectra, covariances or the original time data. The methods are not only
theoretically compared but also by means of a Monte-Carlo simulation study.
Among other things, the theoretical comparison reveals that & due to historical
reasons & essentially the same methods have received different names in
literature. For instance, the well-known polyreference time domain method
applied to covariances (instead of impulse responses) can be considered as an
instrumental variable method and the eigensystem realization algorithm applied
to covariances is equivalent to the covariance-driven subspace method. The
comparative simulation study illustrates the practical use of the methods and
allows to assess the quality of the identification results.

� The data-driven stochastic subspace method was adapted and extended to make
it more suitable for modal analysis. The adaptation consists of reducing the
dimensions of the matrices (and the computation time) by removing some of the
redundancy that is typically present in a modal analysis experiment because
usually many sensors are used. The extension consists of efficiently combining
the (classical) stabilization diagram with subspace methods. The stabilization
diagram is used to extract the modal parameters from the identified state-space
models. Also the technique to split the total measured time response in modal
responses is an original contribution. The first applications of the data-driven
stochastic subspace method to output-only modal analysis are dating from 1995
[PEET95].

� A method is proposed to distinguish environmental effects from damage events.
Both are influencing the measured eigenfrequencies of a structure. The method
consists of identifying a dynamic environmental model from temperature-
eigenfrequency data of the healthy structure. A statistical test is developed to
decide whether new data still follows the original environmental model or that the
structure is damaged. The originality of the method lies in the facts that subspace
identification is used in an automatic way to obtain the eigenfrequencies from
acceleration data and that dynamic ARX environmental models are used instead
of static linear regression models.

� On the level of implementation, the development of a Graphical User Interface
for output-only modal analysis was managed. Also an automatic modal analysis
procedure is developed that is based on the automatic interpretation of
stabilization diagrams. Such a procedure is crucial in a continuous monitoring
system that relies upon the evolution of the modal parameters.
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� On the level of applications, a fair amount of experimental work was carried out.
Four reinforced concrete beams were progressively damaged and vibration
experiments were performed at each intermediate damage stage. The aim of the
beam tests was not only to provide experimental data to validate system
identification methods but also to verify whether it is fundamentally possible to
measure the damage-induced changes in the dynamics of a structure. Also
vibration experiments were performed on a steel transmitter mast and some
Belgian highway bridges in order to get a "feeling" for real-life testing and data.

� Finally a thorough analysis of data from the Swiss Z24-Bridge is presented. The
data are unique in that they combine long-term monitoring with the application
of realistic damage scenarios. It is demonstrated that damage could successfully
be detected under varying environmental conditions.

1.3 ORGANIZATION OF THE TEXT

In our contribution to vibration-based health monitoring, two system identification
approaches emerge. The first (and largest) part deals with output-only system identification
and describes how important features of a structure can be extracted from vibration
measurements. Hereby it is not necessary to have an exact knowledge of the excitation (the
input) that causes the structural vibrations (the output). The modal parameters & which are
in fact the mentioned features & contain useful information about the condition of the
structure.

The second part is an application of input-output system identification. A remaining
problem after the first part is that the modal parameters do not only change with the
structural condition but also with environmental parameters. The separation of both
influences is achieved by identifying an environmental model of the healthy structure from
measured ambient information such as temperatures (the input) and extracted features such
as eigenfrequencies (the output).

A more detailed chapter-by-chapter overview is given in the following (see also
Figure 1.3).

Chapter 1
introduces the thesis by situating the subject, highlighting the own contributions and
clarifying the organization of the text.
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Chapter 2
discusses several models of vibrating structures. Step-by-step, models that are close
to physical reality are transformed to general dynamic models that are useful in
system identification. This chapter connects Finite Element Models of civil
engineering structures, state-space models originating from electrical engineering and
modal models initially developed in mechanical engineering. A simulation example
is introduced that illustrates the modelling concepts.

Chapter 3
deals with stochastic system identification methods. These methods identify some of
the models of Chapter 2 from output-only data. Spectrum-driven, covariance-driven
and data-driven methods are consecutively discussed. To clarify the theory and
illustrate the practical use, all methods are applied to a simulation example.

Chapter 4
describes the implementation of a Graphical User Interface to stochastic system
identification methods. Next to identification, also preprocessing and 3D mode shape
visualization tools are incorporated in the program. Additionally, an automatic modal
analysis procedure is proposed making it possible to digest a large number of data
sets.

Chapter 5
treats two applications. Vibration tests on progressively damaged concrete beams
revealed the damage-detection potential of the modal parameters. The tests were
carried out in controlled laboratory conditions. In the second example, the modal
parameters of a steel mast excited by wind are determined. This is a true real life test
in which the possibilities of stochastic system identification can be explored.

Chapter 6
is again a more theoretical chapter. It presents the use of system identification to
obtain an environmental model that relates temperatures to eigenfrequencies. It is also
indicated how the model can be used to separate temperature effects from damage
events in measured vibration data.

Chapter 7
presents system identification and damage detection results from the Z24-Bridge. All
developments of this thesis can be applied to that example. Different excitation
sources are compared, the evolution of the modal parameters of the bridge with
increasing damage is described and an environmental model of the bridge is identified
and successfully applied to detect damage.
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Figure 1.3: Organization of the text. The left part of the chart is concerned with the identification of a model of
a vibrating structure. The right part describes how the environmental parameters are influencing this model. All
theoretical developments come together in the Z24-Bridge application of Chapter 7.

Chapter 8
summarizes the conclusions of this work. Additionally some unsolved problems and
suggestions for future research related to vibration-based health monitoring are
mentioned.



10 CHAPTER 1 INTRODUCTION



11

�
��������������	���

�	��
	���

This chapter discusses models of vibrating structures. Step-by-step, Finite Element
models (Section 2.2) that are close to physical reality are transformed to models
that are more useful in a system identification context. Sections 2.3–2.5 are
discussing different types of state-space models. Section 2.6 introduces ARMA
models. Frequency-domain models are treated in Sections 2.7–2.8. Section 2.9,
finally, concludes the chapter.
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Mq̈(t) � C2 �q(t) � Kq(t) 
 f(t) 
 B2 u(t) (2.1)

2.1 INTRODUCTION

In this chapter, several models of vibrating structures are presented. Finite Element models
of civil engineering structures, state-space models originating from electrical engineering
and modal models initially developed in mechanical engineering are interconnected. The
main purpose of studying the relation between these models is to provide a justification for
the choice of the model structures in the system identification methods of next chapter. To
make it more concrete, in this chapter it is, among other things, shown that a stochastic
state-space model and an ARMA model can truly represent a vibrating structure excited
by white noise. By consequence, the identification of such models has a physical basis.

The relation between the models are also indicating how the modal parameters can be
extracted once a model is identified from data. The frequency-domain models are
necessary to perform a spectrum analysis.

The discussed models differ in that they describe continuous-time relations (cf. analytical
models) or discrete-time relations (cf. experimental models). Some models are describing
input-output relations; others & if the deterministic input is unknown & are describing
output-only relations. Finally, all models are available both in time as in frequency domain.

2.2 FINITE ELEMENT MODELS

The dynamic behaviour of a discrete mechanical system consisting of  masses connectedn2

through springs and dampers is described by following matrix differential equation:

where  are the mass, damping and stiffness matrices;  is theM,C2,K�Ü
n2×n2 q(t)�Ü

n2

displacement vector at continuous time t. A dot over a time function denotes the derivative
with respect to time:  is the velocity vector and  the acceleration vector. The vector�q(t) q̈(t)

 is the excitation force. It is factorized into a matrix  that specifies thef(t)�Ü
n2 B2�Ü

n2×m

locations of the inputs and a vector  describing the m inputs in time. For systemsu(t)�Üm

with distributed parameters (e.g. civil engineering structures), Equation (2.1) is obtained
as the Finite Element (FE) approximation of the system with only  Degrees Of Freedomn2

(DOFs) left. The structure is divided in elements. From the geometry and material
properties of the elements, the global mass matrix M and stiffness matrix K are generated.
The presence of the damping term is partially based on physical observation and partially
on mathematical convenience: by adding viscous damping the observed decaying
vibrations are modelled. However due to the lack of identifiable or measurable material
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1The number of DOFs required for an accurate experimental model depends on the envisaged use of the
model. If one is interested in measuring the eigenfrequencies of the structure, one well-chosen DOF suffices. If
the experimental model will be used to locate damage based on mode shapes changes, more DOFs need to be
measured in order to obtain a mode shape with a fine spatial resolution.

Mq̈(t) � Kq(t) 
 0 (2.2)

constants that govern the global damping behaviour of a structure, it is generally
impossible to assemble the damping matrix  in the same way as M and K. Damping willC2

be introduced in Subsection 2.2.2.

It is assumed that the FE model (2.1) is a good representation of a vibrating structure,
although it is already an approximation of the true behaviour. Besides, the primary interest
of this work lies not in obtaining the FE model as such. It is used as a starting point to
derive other models that are more suited in an experimental modelling context. Firstly, it
is not possible (and also not necessary) to measure all DOFs of the FE model. The number
of DOFs needed for an accurate FE model is typically some orders of magnitude larger
than the number of DOFs required for an accurate experimental model1. Secondly, this
equation is in continuous-time, whereas measurements are mostly sampled at discrete time
instants. And finally, there is some noise modelling needed: there may be other unknown
excitation sources apart from  and measurement noise is always present in real life. Inf(t)
the following sections we will evolve to models that overcome these shortcomings of
model (2.1).

2.2.1 The undamped eigenvalue problem

The computation of the eigenvalues and eigenvectors from Equation (2.1) is studied. The
following material is standard and can be found in many modal analysis textbooks
[EWIN84, HEYL95, MAIA97]. One of the reasons why it is still repeated here is to
introduce the notation used in this thesis. The derivation starts with the most simple case
where damping is assumed to be zero. The solutions of the homogeneous FE model
differential equations without damping:

will have the following form: . By inserting this form into (2.2), a generalizedq(t)
3i e
�i t

eigenvalue problem is obtained [GOLU89]:

where  ( ) represents any of the  real eigenvectors and  is a real3i�Ü
n2 i
1, ...,n2 n2 	�

2
i

eigenvalue. In the undamped case, an eigenvalue is usually denoted as the square of an
eigenfrequency , therefore:&

2
i

K3i 
 M3i (	�
2
i ) (2.3)



14 CHAPTER 2 MODELS OF VIBRATING STRUCTURES

-T M- 
 \mi \
, -T K- 
 \ki \ (2.5)

&
2
i 


ki

mi

-T M- 
 In2
, -T K- 
 2

where j is the imaginary unit, defined as . All  eigenvalue problems (2.3) can bej 2

	1 n2

reformulated in one matrix expression:

where  contains the eigenvectors as columns and  is a diagonal-�Ü
n2×n2 
 \&i \

�Ü
n2×n2

matrix containing the eigenfrequencies  [rad/s]. It can be proven that the following&i

orthogonality conditions hold:

where  are the modal masses and  the modal stiffnesses. The superindex ‘T ’ denotesmi ki

transpose. Introducing Equation (2.5) in (2.4) yields:

Eigenvectors are determined up to a scaling factor. In many cases they are mass-
normalized and Equation (2.5) becomes:

where  denotes an identity matrix of dimension . In the following, we will dropIn2
n2 ×n2

the subindex of the identity matrix if its dimension is clear from the context. Eigenvectors
are also called modal vectors and in a structural vibration context also mode shapes,
because they have a nice visual interpretation as the deformation shape of a structure. Note
that in the undamped case the eigenvectors are real. One speaks also of normal modal
vectors.

2.2.2 Proportional damping

By pre-multiplying by  and introducing the coordinate transformation , the-T q(t)
-qm(t)
second order FE model Equation (2.1) is transformed into:

The vector  contains the so-called modal displacements. The orthogonalityqm(t)�Ü
n2

properties (2.5) can be introduced to simplify the first and third term of the left hand side.
Up to now the damping matrix  was undefined. Here the special case of proportionalC2
damping is imposed: the eigenvectors are also diagonalizing :C2

-T M- q̈ m(t) � -T C2- �qm(t) � -T K-qm(t) 
 -T B2 u(t) (2.6)

�i 
 j&i

K- 
 M-2 (2.4)
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-T C2- 
 \ci \

 \2�i&imi \


 + \mi \ (2.7)

�
2
i � 2�i&i�i � &

2
i 
 0

�i , �
�

i 
 	�i&i ± j 1	�2
i &i

C2 
 -	T \2�i&i mi \
-	1


 M-
\ 1

mi \

\2�i&i \
-TM (2.9)

The second equality follows by the definition of the modal damping ratios ;�i
ci 2mi&i
the third defines . By introducing Equations (2.5) and (2.7) into (2.6), this last+
 \2�i&i \equation is decoupled (all left hand side matrices are diagonal):

Again, the solutions of the homogeneous FE model differential equations with proportional
damping will have the form . It is straightforward to prove that the eigenvectorsq(t)
3i e

�i t

are the same as in the undamped case. From Equation (2.8) it is found that the eigenvalues �i
satisfy:

yielding the following solutions:

where superindex ‘*’ denotes complex conjugate. If a damping description is required in
a FE analysis, one often specifies a number of modal damping ratios  corresponding to�i
the number of modes of interest. These ratios are, for instance, experimentally determined
by applying system identification techniques to vibration data (see Chapter 3). Eventually
a full damping matrix can be synthesized from Equation (2.7):

The second equality follows by introducing Equation (2.5).

A special case of proportional damping is the so-called Rayleigh damping: the damping
matrix is a linear combination of the mass and stiffness matrix:

where  and  are two scalar constants. At first sight this seems to be a strange constraint. �

on the damping behaviour of a structure. However, Equation (2.10) only means that the
damping is distributed over the structure in the same way as the mass and the stiffness are;
which is a quite natural assumption. As already said, it is very difficult to quantify the true
structural damping mechanisms. Therefore one is often satisfied with the mathematically
simple proportional damping assumption in a FE analysis.

I q̈ m(t) � + �qm(t) � 2 qm(t) 

\ 1

mi \
-T B2 u(t) (2.8)

C2 
 .M � �K (2.10)
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x(t) 

q(t)
�q(t) , P 


C2 M
M 0

, Q 


K 0
0 	M (2.11)

P �x(t) � Qx(t) 

B2

0
u(t) (2.12)

P��c � Q� 
 0 (2.13)

�c 

� 0
0 ��

, � 


, ,�

,� ,���
(2.14)

M,�2
� C2,� � K, 
 0 (2.15)

�i , �
�

i 
 	�i&i ± j 1	�2
i &i

(2.16)

2.2.3 General viscous damping

If the assumption of proportional damping is not valid, e.g. in the case of a localized
damper, another approach has to be followed to find the eigenvalues. Also the
experimental determination of damping most often relies upon general viscous damping
models. In case of non proportional damping, the eigenvectors  of the undamped system-

(2.2) are not the same as the eigenvectors of the damped system. In order to find the
eigenvalues of a structure with general viscous damping the second order equation of
motion (2.1) has to be reformulated as a first order equation. By adding the identity

 and defining:M �q(t)
M �q(t)

following first order equation is derived from (2.1):

where  is called the state vector (see also Section 2.3). The related eigenvaluex(t)�Ün

problem is:

where  contains the  complex eigenvectors as columns and��Ùn×n n
2n2
is a diagonal matrix containing the n complex eigenvalues  [rad/s]. It can�c


\�i \
�Ù

n×n �i
be shown that  and  have the following structure:�c �

where  are the eigenvalues and eigenvectors of the original second order�,,�Ù
n2×n2

system. It is easy to show from Equation (2.13) that they satisfy:

Note that the symbol  is used here instead of the symbol  as in the case of proportional, -

damping (2.6) because they are indeed different vectors. Unlike , the matrix  is- ,

generally not diagonalizing any of the matrices . Analogous to the proportionalM,C2,K
damping case, the complex eigenvalues  are written as:�i

It can be proven that following orthogonality conditions hold:
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�T P� 
 \ai \
, �T Q� 
 \bi \ (2.17)
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Figure 2.1: FE model of a
mast structure.

where  are called the modal a matrix and modal b matrix respectively.\ai \
, \bi \Introducing Equation (2.17) in (2.13) yields:

Example

At this stage, an example is introduced to illustrate the concepts of this chapter. An FE
model of a structure is built that will be converted to the other models to be presented in this
chapter. Afterwards a vibration experiment is simulated. The simulated data are then used
to illustrate and compare the system identification methods of next chapter. We have chosen
to discuss the different aspects of the simulation study in close connection to the theory,
instead of the whole example after the theory. Therefore the example is spread over two
chapters.

The considered structure is a mast structure consisting of two segments and with an
equilateral triangular section. The structure is represented in Figure 2.1. Nodes 1, 2 and 3 are
clamped; the others have 3 DOFs: two translations in the xy-plane and one rotation around
the z-axis. The other DOFs are put equal to zero. So, the FE model has  DOFs. Then2
18
geometry and material properties of the columns differ from each other to break the
symmetry. However, the differences are small, resulting in 2 pairs of closely-spaced bending
modes (see further). Tower-like structures often have closely-spaced modes. The Structural
Dynamics Toolbox [BALM97] for use with MATLAB [MATL96] is used to build the FE
model.

�c 

\�i \


 	

\ 1
ai \

\bi \ (2.18)
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Figure 2.2: First six mode shapes: 1st torsion mode (T1), 1st bending mode in x-direction (BX1), 1st

bending mode in y-direction (BY1), 2nd torsion mode (T2), 2nd bending mode in x-direction (BX2), 2nd

bending mode in y-direction (BY2).

# Mode type Eigenfrequency  [Hz] Damping ratio  [%]fi �i

1 T1 1.221 1
2 BX1 2.375 1
3 BY1 2.403 1
4 T2 4.083 1
5 BX2 6.936 1
6 BY2 7.015 1

Table 2.1: First six modal parameters of the FE model of the mast structure. A torsion mode
is denoted by ‘T’, a bending mode by ‘BX’ or ‘BY’, where ‘X’ or ‘Y’ specify the bending
direction. The frequencies of mode 2 and 3 and also mode 5 and 6 are close to each other.
Damping is modelled as proportional damping. The modal damping ratios are equal for all
modes.

The eigenfrequencies  [Hz] and the mode shapes are obtained from the mass andfi
&i 2�
stiffness matrices, M and K, by solving the generalized eigenvalue problem (2.4). The first
six eigenfrequencies of the structure are represented in Table 2.1. The first six mode shapes
are shown in Figure 2.2. Damping, finally, is modelled as the special case of proportional
damping (Subsection 2.2.2). Therefore the mode shapes remain the same as in the undamped
case. Moreover, for ease of verification of the system identification results, all modal
damping ratios are put equal to 1% (which is a realistic number for a vibrating structure).
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P 	1



0 M 	1

M 	1
	M 	1C2 M 	1

�x(t) 
 Ac x(t) � Bc u(t) (2.19)

Ac 
 	P 	1Q 


0 I
	M 	1K 	M 	1C2

, Bc 
 P 	1 B2

0



0
M 	1B2

(2.20)

2.3 CONTINUOUS-TIME STATE-SPACE MODELS

2.3.1 A state-space model of a vibrating structure

The state equation

By casting the second order equation of motion (2.1) in first order form (2.12), an equation
similar to the state equation from control theory is obtained. This equation usually has a
normalized term in . The normalization is obtained by pre-multiplying (2.12) by :�x(t) P 	1

to yield the state equation:

where  and  are defined as:Ac�Ü
n×n Bc�Ü

n×m

The subindex ‘c’ denotes continuous time. In Section 2.4, the discrete-time equivalents of
these matrices will be introduced. Using the modal decomposition of P and Q (2.17) and
property (2.18),  is rewritten as:Ac

which is in fact a standard eigenvalue problem ( ). This shows that  containsAc�
��c �c

the eigenvalues and  the eigenvectors of . The difference of using P and Q (2.12)� Ac

instead of  (2.19) is that P and Q can be reduced to diagonal forms by using theAc

eigenvector matrix and its transpose whereas  requires the inverse of  to make itAc �

diagonal.

The observation equation

In a practical vibration experiment, not all  DOFs of the structure are measured, but onlyn2

a subset. If it is assumed that measurements are taken at l locations and that the sensors can
be either accelerometers, velocity or displacements transducers (to keep it general) the
observation equation is:

Ac 
 	P 	1 Q 
 	�
\ 1

ai \
�T �	T \bi \

�	1


 � �c �
	1

(2.21)
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y(t) 
 Ca q̈(t) � Cv �q(t) � Cd q(t) (2.22)

y(t) 
 Cc x(t) � Dc u(t) (2.23)

Cc 
 (Cd	Ca M 	1 K Cv	Ca M 	1 C2 ) , Dc 
 Ca M 	1 B2 (2.24)

�x(t) 
 Ac x(t) � Bc u(t)
y(t) 
 Cc x(t) � Dc u(t) (2.25)

x(t) 
 Tz(t) (2.26)

where  are the outputs;  are the output location matrices fory(t)�Ül Ca,Cv,Cd�Ü
l×n2

acceleration, velocity and displacement respectively. These matrices consist of a lot of
zeros and a few ones and are in fact just selecting the measured DOFs out of the FE model
DOFs to store them as the elements of the output vector . In reality it can happen that,y(t)
for instance, both accelerations and velocities are simultaneously measured. Using
Equation (2.1) to eliminate  and with the definition of the state vector (2.11), Equationq̈(t)
(2.22) can be transformed into:

where  is the output matrix and  is the direct transmission matrix. TheyCc�Ü
l×n Dc�Ü

l×m

are related to the FE model matrices as:

In many publications this direct transmission matrix  is omitted for some reason.Dc

However the modelling of a vibration experiment where accelerometers are used (and these
are the most widely used sensors) requires a direct transmission term. If  (i.e.Ca
0
displacements and/or velocities are measured), there is no direct transmission.

The state-space model

The classical continuous-time state-space model is found by combining Equations (2.19)
and (2.23):

The order of the state-space model n is defined as the dimension of the state vector. The
equations of motion are now written in state-space form and can be used to compute the
response  of the structure to a given input . The state vector  contains they(t) u(t) x(t)
displacements and the velocities of all DOFs; see Equation (2.11).

A new state vector can be defined such that:

where  is a non-singular complex square matrix. This is called a similarityT�Ùn×n

transformation. Substitution of this coordinate transformation into Equation (2.25) yields:
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�z(t) 
 T 	1 Ac Tz(t) � T 	1Bc u(t)
y(t) 
 Cc Tz(t) � Dc u(t)

(2.27)

x(t) 
 �xm(t)

�xm(t) 
 �c xm(t) � L T
c u(t)

y(t) 
 Vc xm(t) � Dc u(t)
(2.28)

L T
c 
 �	1 Bc

Vc 
 Cc�
(2.29)

�c 

� 0
0 ��

, � 


\
	�i&i � j 1	�2

i &i \

� 


, ,�

,� ,���
(2.30)

It is important to see that the transformed matrices  describe(T 	1 Ac T , T 	1Bc , Cc T , Dc )
the same input-output relationship as the original matrices. However, unlike  the newx(t)
state vector  has not the meaning of physical displacements and velocities.z(t)

2.3.2 Modal parameters and model reduction

Relation to classical modal analysis

A special similarity transformation is the transformation to (complex) modal states
:xm(t)�Ùn

The modal state-space model is obtained by substituting T by  in Equation (2.27) and�

inserting the modal decomposition of  (2.21):Ac

where the following definitions have been introduced:

As stated before, the eigenvalue matrix has the following structure (2.14), (2.16):

and the eigenvector matrix can be written as (2.14):

The relations to notions from classical modal analysis are clear by taking a closer look at
the modal input and output matrices . By introducing the orthogonality conditionL T

c , Vc
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Vc 
 Cc� 
 (Cd	Ca M 	1 K Cv	Ca M 	1 C2 )
, ,�

,� ,���
(2.32)

Vc 
 Cd (, ,� ) (2.33)

Vc 
 Cv (,� ,��� )

Vc 
 Ca (,�2 ,���2 ) (2.34)

for P (2.17) and the definitions of P,  and  (2.11), (2.20), (2.30), the modal inputBc �

matrix can be written as:

By its definition (2.1), matrix  selects the components of the mode shapes correspondingB2

to an input location. Classically, the last expression of Equation (2.31) is called modal
participation matrix and its rows are the modal participation factors. The superindex ‘H’
denotes complex conjugate transpose.

Similarly, by introducing the definition of  (2.24) and  (2.30), the modal output matrixCc �

can be rewritten:

This expression can be simplified by considering only one quantity at a time.
Displacements-only measurements yield:

If velocities are measured, the modal output matrix becomes:

Specializing the expression to accelerations only yields, after introducing Equation (2.15)
into (2.32):

By their definition (2.22), the matrices ,  and  are selecting the components of theCd Cv Ca

mode shapes corresponding to an output location. The post-multiplication by  or ,� ��

being diagonal matrices, scales the mode shapes by their eigenvalues. So whatever quantity
is measured,  denotes the part of the mode shapes that can be observed from the data.Vc

L T
c 
 �	1 Bc 


\ 1
ai \

�T PBc 

\ 1

ai \
�T B2

0



\ 1
ai \

,T

,H
B2 (2.31)
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2More often, instead of the complex eigenvalues  (the elements of ), the eigenfrequencies  or  and�i �c &i fi

the modal damping ratios  are specified. Their equivalence is clear from Equation (2.16).�i

Cc A 	1
c Bc 
 Ca M 	1 B2 
 Dc (2.35)

Dc 
 Vc�
	1
c L T

c 
 M
n

i
1

1
�i

vc i
< lc

T

i
> (2.36)

y(t) 
 M
n

i
1
yi (t)

The triplet  are the modal parameters2 of the structure. It is easy to verify that(�c,L
T

c ,Vc )
the modal parameters are insensitive to a change of basis of the state-space model.
Applying a similarity transformation (2.26) will not affect the modal parameters.

Modal decomposition in continuous time

Interesting about the modal state-space model (2.28) is that, owing to the diagonal structure
of , the contributions of the different modes to the total response  of the structure�c y(t)
can be decoupled. The contributions of mode i are described by , the ith diagonal element�i

of ; the ith row of , denoted as ; and the ith column of , denoted as . It�c L T
c < lc

T

i
> Vc vc i

is less obvious to distinguish the different modes in matrix . The modal decompositionDc

of the direct transmission term is developed in the following. In case of displacement or
velocity measurements, there is no direct transmission term. Therefore the derivation is
restricted to the acceleration-only case. It is straightforward to show that, if ,  canCd
0 Dc

be written in terms of the state matrices:

The first equality is found by inserting the definitions of the state-space matrices, see
Equations (2.20) and (2.24); the second equality is simply the definition of  (2.24). TheDc

modal decomposition is achieved by inserting the eigenvalue decomposition of  (2.21)Ac

and the definitions (2.29) into Equation (2.35):

Matrix  decomposes as a sum of n rank-one matrices. We will call this modalDc

decomposition.

The total output vector can be split in n modal contributions :yi (t)

where each vector  is the output of following order-one state-space model:yi (t)

lenovo
矩形

lenovo
线条
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�x(i)
m(t) 
 �i x (i)

m (t) � < lc
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i
> u(t)

yi (t) 
 vc i
x (i)

m (t) � 1
�i

vc i
< lc
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i
> u(t)

r Ü
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�xe(t)
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xr(t)
xe(t)

�

Lc
T

r

Lc
T

e

u(t)

y(t) 
 (Vc r
Vc e

)
xr(t)
xe(t)

� Dc u(t)

�xr(t) 
 �c r
xr(t) � Lc

T

r
u(t)

y(t) 
 Vc r
xr(t) � Dc r

u(t)
(2.37)

The complex scalar  denotes the ith component of the modal state vector.x (i)
m (t)

Model reduction in continuous time

The modal state-space model offers a nice interpretation of model reduction as the
elimination of certain modes. The following model reduction procedure is proposed. The
modal state-space model (2.28) is rearranged to have the r to-be-retained modes first:

where  is the state vector of the reduced system and  are the states thatxr(t)�Ù
r xe(t)�Ù

n	r

will be eliminated. Typically, model reduction is obtained by setting the derivative of xe(t)
to zero in the state equation. The resulting expression for  is introduced in thexe(t)
observation equation. Doing so, the reduced state-space model reads:

where the reduced matrix  equals:Dc r

The first equality follows from the elimination of  from the observation equation; thexe(t)
second equality is obtained by introducing the modal decomposition of  (2.36).Dc

The reduced model (2.37) is again a step closer to the experimental world. A vibration
experiment is always band-limited. This means that the data contains information over a
certain frequency bandwidth. Only modes that have frequencies in (or close to) this
bandwidth will show up in the data. This experimental fact corresponds very well to the

Dc r

 Dc 	 Vc e

�c
	1

e
Lc

T

e

 Vc r

�c
	1

r
Lc

T

r
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3In fact an FE model can on its turn be considered as a reduced model of a real structure. Indeed, a real
structure with distributed parameters has an infinite amount of modes, whereas the number of modes of the FE
model equals the number of DOFs.
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	� )

idea of the reduced model that only contains a limited number of modes, whereas the order
of the original state-space model is typically a very large number (a few thousands for a
complex structure) because it was derived from a FE model3.

2.3.3 The special case of proportional damping

Proportional damping was introduced to simplify the mathematics related to the modelling
of vibrating structures. Because viscous damping (which includes proportional damping
as a special case) is more general and realistic, this subsection will not take a step closer
to the experimental world. The interest of this subsection lies in performing simulations,
where often the proportional damping assumption is preferred. Also some system
identification methods explicitly assume a proportionally damped model.

Proportional damping is just a special case of viscous damping and the expressions derived
in previous subsections could still be used, eventually taking into account the special
structure of the eigenvector matrix (2.14):

where the general complex modes  have been replaced by the normal modes , see, -

Equation (2.4). These modes are real or have at least a constant phase angle and can always
be scaled to real ones. In case of proportional damping, the modal a matrix can be
rewritten, by combining Equations (2.17), (2.11), (2.5), (2.7) and (2.16), as:
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x(t) 
 Tn z(t) , Tn 

- 0
0 -

(2.40)

z(t) 

qm(t)
�qm(t)

�z(t) = An z(t) + Bn u(t)
y(t) = Cn z(t) + Dn u(t) (2.41)

An 
 T 	1
n Ac Tn 


0 I
	2

	+

Bn 
 T 	1
n Bc 


0
\1/mi \

-T B2

Cn 
 Cc Tn 
 (Cd-	Ca-
2 Cv-	Ca-+ )

Dn 
 Dc 
 Ca-
\1/mi \

-T B2

(2.42)

z(t) 
 Tc xm(t) , Tc 

I I
� ��

In case of normal modes the state-space model is often written in a different form. This
normal mode state-space model is obtained by applying following similarity
transformation to the original  state-space model that is expressed in terms of the FE model
matrices  (2.25):M,C2,K

where the subindex ‘n’ denotes the normal-mode case. Obviously, with Equations (2.40)
and (2.11), the new state vector  combines the modal displacements and velocitiesz(t)
(2.6):

The normal-mode state-space model is written as:

where the state-space matrices are obtained, by introducing (2.40), (2.20), (2.24), (2.5) and
(2.7), as:

It is straightforward to apply model reduction to this normal-mode state-space model. Only
the relevant modes can be selected from the modal parameter matrices . , + , \1/mi \

, -

Finally, the normal-mode state-space model (2.41) can also be related to the (complex)
modal state-space model (2.28). In case of proportional damping, following relation exist
between both state vectors:

and the inverse relation is:
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xm(t) 
 T 	1
c z(t) , T 	1
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	 (�	�� )	1�� (�	�� )	1

(�	�� )	1� 	 (�	�� )	1

xk�1 
 Axk � Buk

yk 
 Cxk � Duk
(2.43)
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 e
Acût
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ût

0

e
Ac2/2 Bc 
 (A	I )A 	1

c Bc

C 
 Cc , D 
 Dc

(2.44)

2.4 DISCRETE-TIME STATE-SPACE MODELS

2.4.1 About sampling

Up to now all equations were expressed in continuous time, whereas in reality
measurements are taken at discrete time instants. In order to fit models to measurements
(i.e. system identification), these models need to be converted to discrete time. Another
reason for looking at discrete models is that they are needed for performing simulations.
If it would be possible to find an analytical solution for the response of a structure to a
given input, this analytical expression could be evaluated at any time instant t, without the
need to convert the model to discrete time. However in most cases there is no analytical
solution and one has to rely upon a numerical solution method to simulate the response of
a structure. For instance, time integration schemes with a possible adaptive time step could
be used. The approach that is useful for this thesis starts by choosing a certain fixed
sampling period  [s]. The continuous-time equations are discretized and solved at allût
discrete time instants k [-], where . Typical for the sampling of a continuous-t
kût, k�Û
time equation is that a certain behaviour of the time-dependent variables between two
samples has to be assumed. A Zero-Order Hold (ZOH) assumption for instance, means
that the input is piecewise constant over the sampling period. Under this assumption, the
continuous-time state-space model (2.25) is converted to the discrete-time state-space
model:

where  is the discrete-time state vector containing the sampledxk
x(kût)
 (q T
k �qT

k )T

displacements and velocities;  are the sampled input and output; A is the discrete stateuk,yk

matrix; B is the discrete input matrix; C is the discrete output matrix; D is the direct
transmission matrix. They are related to their continuous-time counterparts (2.20) as:
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4The McLaurin series expansion of the exponential function is: .e M
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 � \µ i \

�	1
(2.45)

µ i 
 e
�iût

� �i 

ln(µ i )

ût

L T

 �	1 B

V 
 C�
(2.46)

These relations are classical and are, for instance, derived in [JUAN94]. The second
equality for B is only valid if  is invertible. The matrices  and  are not influencedAc Cc Dc

by ZOH-sampling.

If one assumes that the inputs are piecewise linear over the sampling period, one speaks
of First-Order Hold (FOH). In this case more complex relations exist between the
continuous-time and discrete-time state-space matrices (see for instance [FRAN97]). The
matrix D will differ from . Also the discrete state vector is not the sampledDc

displacement-velocity vector anymore.

2.4.2 Modal parameters and model reduction

The eigenvalue decomposition of the discrete state matrix A is found by inserting the
eigenvalue decomposition of the continuous state matrix  into Equation (2.44):Ac

The third equality can be proven by the series expansion of the exponential function4; the
two last equalities define the notation of the discrete eigenvalue matrix. So, the discrete
eigenvectors are equal to the continuous ones and the discrete eigenvalues, denoted as ,µ i

are related to the continuous eigenvalues as:

Similar to definition (2.29), the discrete modal participation matrix and the observed mode
shapes are written as:

The discrete modal participation factors are different from the continuous ones due to the
different B-matrix. The observed mode shapes, on the contrary, are the same in discrete as
in continuous time. In the acceleration-only case, the modal decomposition of D is found
as follows:
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 Vc�
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c L T
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 V (�d	 I )	1 L T
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n

i
1

1
µ i	1

vi < l T
i >

h0 
 D

hk 
 CA k	1 B (k>0)
(2.47)

h0 
 V (�d	 I )	1 L T

hk 
 V�k	1
d L T (k>0)

(2.48)

The derivation makes use of Equations (2.44), (2.36), (2.29), (2.46) and (2.45). The
notation for the columns and rows of a matrix has been introduced before.

The discrete-time model reduction is similar to the continuous one. This reduction can be
formally proven by putting the next states (that have to eliminated) equal to the current
states. This is the discrete-time equivalent of setting the derivative of the continuous states
to zero.

2.4.3 Impulse responses

Impulse responses play an important role in system identification. A discrete-time impulse
is defined as a unit input at  and otherwise zero. The impulse responses are the outputsk
0
of the system when excited by an impulse applied at any of the m input locations. These
m response vectors are usually combined in a  impulse response matrix. Under zerol×m
initial conditions , it is straightforward to prove from (2.43), that the impulsex0
0
response matrices  can be computed from the system matrices as:hk�Ü

l×m

The relation between impulse responses and state-space matrices (2.47) originates from the
famous paper by Ho and Kalman [HOKA66]. Many identification methods (the so-called
realization methods) are based on this property. The impulse responses can also be written
as a function of the modal parameters:

Example

The FE model of the mast structure (Figure 2.1) is converted to state-space form. It is
assumed that the structure is excited at all nodes in both x and y-direction independently.
Therefore, the input matrix  (2.1) is a  matrix consisting of zeros and onesB2�Ü

n2×m
18×12

at the appropriate positions. By assuming that the triangles at each floor are undeformable,
it suffices to measure 3 DOFs per floor to characterise the complete deformation of the
structure. The sensors and measurement directions are shown in Figure 2.3. As in reality, the
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Figure 2.3: Sensors and
measurement directions.

measurements are accelerations. The output matrix  (2.22) is a  matrixCa�Ü
l×n2 6×18

consisting of zeros and ones.

The approach of Subsection 2.3.3 is followed to obtain a state space model. The reduced
modal parameter matrices are used to build a normal-mode state-space model ( , , ,An Bn Cn

), see Equations (2.41) and (2.42). The reduction consists of selecting only the first sixDn
modes:

The dimensions of the state-space model are: the model order , the number ofn
2n2
12
inputs  and the number of outputs .m
12 l
6

Assuming a ZOH on the inputs, and a sampling period , a discrete-time state-ût
0.01s
space model (A, B, C, D) is obtained, see Equations (2.43) and (2.44). Note that the sampling
frequency  is chosen such that the Nyquist frequency  is well above thefs
1 ût fN
 fs 2
largest eigenfrequency:  (see also Table 2.1). As input , random numbersf6
7.015Hz uk
from a normal distribution are taken. The inputs are white, both in space and in time, and the
covariance matrix is the identity matrix:

where E is the expected value operator;  is the Kronecker delta (if  then ,/pq p
q /pq
1
otherwise ); p, q are two arbitrary time instants./pq
0

The first input signal is shown in Figure 2.4 and the first output signal is shown in
Figure 2.5. A typical impulse response function, computed from the discrete state-space
model according to Equation (2.47), is shown in Figure 2.6.
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Figure 2.4: Part of the first white noise input signal. This signal is applied to node
4 in the x-direction. There are 12 independent input signals.
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Figure 2.5: Part of the first output signal. This signal is the simulation of the
accelerations of node 4 in the x-direction. There are 6 output signals.
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Figure 2.6: Part of element (1,1) of the impulse response function matrix . Onlyhk

the time lags  are shown. The represented impulse response function is thek>0
acceleration response of the structure at node 4 in the x-direction of an impulse
applied at the same DOF.
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xk�1 
 Axk � Buk � wk

yk 
 Cxk � Duk � vk
(2.49)

E[
wp

vp
(w T

q v T
q ) ] 


Q S
S T R

/pq (2.50)

xk�1 
 Axk � wk

yk 
 Cxk � vk
(2.51)

2.5 STOCHASTIC STATE-SPACE MODELS

2.5.1 The stochastic components

This section describes the final step towards the experimental world: noise is added. Up
to now it was assumed that the system was only driven by a deterministic input .uk
However, the deterministic models are not able to exactly describe real measurement data.
Stochastic components have to be included in the models and following discrete-time
combined deterministic-stochastic state-space model is obtained:

where  is the process noise due to disturbances and modelling inaccuracies; wk�Ü
n vk�Ü

l

is the measurement noise due to sensor inaccuracy. They are both unmeasurable vector
signals assumed to be zero mean, white and with covariance matrices:

where E is the expected value operator;  is the Kronecker delta (if  then ,/pq p
q /pq
1
otherwise ); p, q are two arbitrary time instants./pq
0

However, as explained in Section 1.2 the primary case of interest for this thesis is a purely
stochastic system. In a civil engineering context, the only vibration information that is
available are the responses of a structure excited by some unmeasurable inputs. Due to the
lack of input information it is not possible (from a system identification point of view) to
distinguish between the terms in  and the noise terms  in Equation (2.49). Theuk wk , vk
discrete-time stochastic state-space model reads:

The input is now implicitly modelled by the noise terms. However the white noise
assumptions of these terms cannot be omitted: it is necessary for the proofs of the system
identification methods of next chapter. The consequence is that if this white noise
assumption is violated, for instance if the input contains additional to white noise also some
dominant frequency components, these frequency components cannot be separated from
the eigenfrequencies of the system and they will appear as (spurious) poles of the state
matrix A.
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E[xk x T
k ] 
 � , E[xk] 
 0 (2.52)

E[xk w T
k ] 
 0 , E[xk v T

k ] 
 0

Ri 
 E[yk�i y
T
k ] (2.53)

G 
 E[xk�1 y T
k ] (2.54)

� 
 A�A T
� Q

R0 
 C�C T
� R

G 
 A�C T
� S

(2.55)

Ri 
 CA i	1 G

R
	i 
 G T (A i	1 )T C T (2.56)

2.5.2 Properties of stochastic systems

Some important properties of stochastic systems are briefly resumed. They are well-known
and can, for instance, be found in [VANO96]. As already stated, the noise terms have zero
mean and their covariance matrices are given by Equation (2.50). There are some further
assumptions. The stochastic process is assumed to be stationary with zero mean:

where the state covariance matrix  is independent of the time k. Since  have zero� wk , vk
mean and are independent of the actual state, we have:

The output covariance matrices are defined as:Ri�Ü
l×l

where i is an arbitrary time lag. The "next state - output" covariance matrix  isG�Ün×l

defined as:

From stationarity, the noise properties and previous definitions following properties are
easily deduced:

And for :i
1,2, ...

This last property is very important. This equation alone nearly constitutes the solution to
the identification problem: the output covariance sequence can be estimated from the
measurement data; so if we would be able to decompose the estimated output covariance
sequence according to (2.56), the state-space matrices are found. This idea will be
elaborated in Chapter 3. The factorization of output covariance matrices into state-space
matrices is similar to the factorization property of impulse responses (2.47). For stochastic
systems, the matrices ( ) play the role of the deterministic system matricesA,G,C,R0
( ). Thanks to this equivalence, input-output impulse-response-drivenA,B,C,D
identification methods are easily translated into output-only covariance-driven methods.
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5The Kalman filter is standard in control theory. Some more information is provided in Subsection 3.5.1.
The reason to introduce forward innovation models at this occasion is that the ARMA models of next section can
be obtained from these innovation models.

6An implementation to find the solution of this equation can, for instance, be found in [CONT97].

Ri 
 C A i	1 G


 C��i	1
d �	1 G (i>0)


 V �
i	1
d Gm

(2.57)

zk�1 
 Azk � Kek

yk 
 Czk � ek
(2.58)

E[ep e T
q ] 
 Re/pq

This stochastic realization problem (see also Chapter 3) was first solved by Akaike
[AKAI74b].

By introducing the modal parameters, Equation (2.56) can be written as:

where  is the "next modal state - output" covariance matrix or stochastic modalGm�Ù
n×l

participation matrix. Apparently, this matrix  plays the role in output-only modalGm
analysis of the modal participation matrix  in input-output modal analysis: compareL T

Equation (2.57) with (2.48). In modal analysis, this observation is also used to feed
classical modal parameter estimation methods that normally work with impulse responses,
with output covariances instead. A paper that is often referred to in this context was written
by James et al. [JAME95]. This paper contributed to the introduction in the mechanical
engineering community of the idea that it is possible to extract modal parameters of
systems that are excited by natural, unmeasurable excitation.

2.5.3 The forward innovation model

An alternative model for stochastic systems that is more suitable for some applications is
the so-called forward innovation model. It is obtained by applying the steady-state Kalman
filter5 to the stochastic state-space model (2.51):

The elements of the sequence  are called innovations, hence the name of the model. Itek
is a white noise vector sequence, with covariance matrix:

The computation of the forward innovation model  from the stochastic state-(A,K,C,Re )
space model  starts by finding the positive definite solution P of the discrete(A,G,C,R0 )
Riccati equation6:
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Figure 2.7: Part of element (1,1) of the output covariance sequence . Only theRk

time lags  are shown. The represented covariance is the auto-covariance of thek�0
acceleration response of the structure at node 4 in the x-direction.

The matrix  is the forward state covariance matrix . The Kalman gainP�Ün×n P
E[zk z T
k ]

is then computed as:

And the covariance matrix of the innovations equals:

Example

The mast structure of Figure 2.1 is excited by white noise inputs. If these input
"measurements" are not passed to the system identification methods of next chapter, the
input terms of the state-space model can be considered as the stochastic components:

Since , their covariances can be written as:Ru
 I

From these covariances, the matrices G and  can be computed according toR0
Equation (2.55). A typical output covariance sequence, computed from the stochastic state-
space matrices  according to Equation (2.56), is shown in Figure 2.7.(A,G,C,R0 )
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yk � .1 yk	1 � . . . � .n
.

yk	n
.


 ek � �1 ek	1 � . . . � �n
�

ek	n
�

(2.59)
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Op 


C
CA
. . .

CA p	1

(2.61)

2.6 ARMA MODELS

The more classical system identification methods [LJUN99] identify models that do not
contain the state. In this section the state vector is eliminated from the forward innovation
state-space model (2.58) to yield the so-called ARMA model.

2.6.1 Obtaining the ARMA model

An ARMA model is written as:

where, as before,  is the output vector and  a white noise vector sequence The left-yk ek
hand side is called the Auto-Regressive (AR) part and the right-hand side the Moving
Average (MA) part, hence the name of the model. The matrices  are the AR matrix.i�Ü

l×l

parameters; matrices  are the MA matrix parameters. Sometimes, in case of multiple�i�Ü
l×l

outputs, one speaks of ARMAV models as to stress their multi-Variable character. It will
become clear that an ARMA model that is deduced from a state-space model has the same
AR order  as MA order . This is denoted as:n

.
n
�

The ARmatrix parameters are obtained by solving the following linear system of equations
for  [AKAI74a]:.i

or in matrix form:

where  is the so-called observability matrix defined as:Op�Ü
pl×n

There are  unknowns and  equations in (2.60). It is assumed for a moment that thepl 2 nl
original model order n is an integer multiple of the number of output channels l. In this
case, the ARMA model order can be computed as:
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(2.62)

Yk	p 
 Op�1 xk	p � HEk	p (2.63)

(.p .p	1 . . . .1 I ) Yk	p 
 (.p .p	1 . . . .1 I ) HEk	p (2.64)

(�p �p	1 . . . �1 I ) 
 (.p .p	1 . . . .1 I ) H

yk
vi µ
k
i (2.65)

Moreover, if the system is observable, i.e. , the system of Equations (2.60)rank(Op )
n
is a determined system. On the contrary, if  or the system is not observable, thep>n l
system of Equations (2.60) is under-determined and the AR matrix parameters are obtained
by applying least-squares.

The determination of the MA parameters starts by following set of equations that is built
from the forward innovation state-space model (2.58):

This is denoted in short as:

where the notation is explained by comparing Equation (2.63) with (2.62). This equation
is pre-multiplied by  to yield:(.p .p	1 . . . .1 I )

The term in  disappeared because of Equation (2.60). The left-hand side of (2.64) isxk	p
just another way of writing the AR part of (2.59). Therefore, the right-hand side of (2.64)
equals the MA part:

2.6.2 Modal parameters of an ARMA model

This subsection discusses the determination of eigenvalues and eigenvectors of an ARMA
model. They are obtained as the homogeneous solutions of the ARMA equations. In
continuous time, such solutions have the form: . The discrete-time equivalenty(t)
vi e

�i t

is:
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vi µ
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 0 (2.66)
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where  ( ) represents any of the pl eigenvectors and  is a discretevi�Ù
l i
1, ...,pl µ i
e

�iût

eigenvalue. By inserting (2.65) into the homogeneous ARMA equations, following
expression is obtained:

By using the symbols  and  it is already suggested that the ARMA eigenvectors andvi �i
eigenvalues will be the same as the state-space eigenvectors and poles. This is formally
demonstrated in the following.

Remember that the eigenvalue decomposition of the state matrix A can be written as (2.45):

Introducing this decomposition into Equation (2.60) and post-multiplying by  yields:�

where the following property of the eigenvalue decomposition has been used:

Since  (2.46) and  (2.45), it is easy to see from Equation (2.67) that theV
C� �d 

\µ i \observed eigenvectors of the state-space model and their associated eigenvalues satisfy the

modal ARMA Equation (2.66). So in case of observability of the system and , thep
n l
ARMA modes are equivalent to the state-space modes. On the contrary, if  or thep>n l
system is not observable, the ARMA model will contain, next to the state-space modes,
some additional numerical modes.

The question remains how to compute the poles and eigenvectors from an ARMA model
directly without having the initial state-space model. This is important for identification
methods that identify an ARMA model from the data. Equation (2.66) is written in matrix
form:

This pth order eigenvalue problem can be reduced to a standard first order problem through
the companion matrix of the matrix polynomial (2.68):
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p Op,m 
 Op,m�d

Op,m 
 Op�

V 
 Op,m (1:l , : )

In a more compact form, the last equation is written as:

where  is the companion matrix containing the p AR parameters ; the matrixù
comp
p �Ü

pl×pl
.i

 is the modal observability matrix, defined as:Op,m�Ù
pl×pl

From the definition of the observability matrix (2.61) and the modal decomposition of A,
it is found that the modal observability matrix indeed corresponds to the matrices in
Equation (2.69).

To conclude, the discrete eigenvalues are obtained by computing the eigenvalue
decomposition of the companion matrix of the AR matrix parameters. The observed
eigenvectors are the first l rows of the eigenvectors of the companion matrix, in MATLAB

notation:

In this section it was shown that a pth order ARMA model is a good representation of a
vibrating structure with pl modes. Note that a pth order AR model is not an equivalent
representation of  such a structure. The MA part should be taken into account too. It can
however be shown that an AR model with infinite order is theoretically equivalent to a
finite-order ARMA model. This motivated the use of AR models in system identification
of vibrating structures. Unfortunately the theoretical assumption of infinite order,
practically means that many numerical poles need to be introduced to obtain a reasonable
data fit in the identification. The difficulty is to separate these numerical poles from the
true system poles. This matter will also be discussed in the system identification chapter.
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X (s) 
 L [x (t) ] 

P

�

0

x (t)e 	st dt

L [ �x (t) ] 
 sX (s) 	 x (0)

2.7 CONTINUOUS-TIME FREQUENCY-DOMAIN MODELS

Although measurement data are usually available as samples of the input and output time
signals, it is very useful to look at the frequency-domain representation of these signals.
Many interesting signal’s features are revealed in frequency domain. For instance, the
eigenfrequencies of a lightly damped structure emerge immediately as the peaks in a
frequency-domain plot of a measurement signal. The mathematical tool to convert a time
signal to the frequency domain is the Fourier transform. Next to the fact that it provides
useful insights, another reason for the popularity of frequency-domain representations is
that, since a few decades, a very efficient algorithm exists that implements the Fourier
transform, known as the Fast Fourier Transform (FFT) algorithm [COOL65].

As the paradoxical title of this section indicates, models are going to be studied that are the
frequency-domain equivalents of the continuous-time models of Section 2.3. The main
reason to look at these models is that many identification methods exist that identify a
continuous-time frequency-domain model from samples of the Fourier transforms of the
signals. A special class of these methods assumes a model that is parametrized in terms of
the modal parameters of the structure instead of the rather abstract state-space matrices.

We will first introduce the Laplace transform. When applied to time-domain models, the
Laplace transform leads to the concept of transfer function. Finally the spectrum is
introduced which is more relevant in case of output-only data (and where the input data is
assumed to be white noise).

2.7.1 The Laplace transform

The Laplace transform converts linear time-variant differential equations to algebraic
equations. The one-sided Laplace transform of a time function  is defined as:x (t)

where  is a scalar complex variable. It is assumed that  prior to . Ans�Ù x (t)
0 t
0
important property of the Laplace transform is:

If the initial condition is zero , a derivative in time domain is equivalent to ax (0)
0
multiplication by s in the Laplace domain. For obvious reasons the Laplace transform is
also called the s-transform
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sX(s) 
 Ac X(s) � Bc U(s)
Y(s) 
 Cc X(s) � Dc U(s)

Y(s) 
 Hc (s)U(s) (2.70)

Hc(s) 
 Cc (sI	Ac )	1 Bc � Dc

Hc(s) 
 Vc (sI	�c )	1 L T
c � Dc (2.71)

Hc( j&) 
 Cc (sI	Ac )	1 Bc � Dc s
 j& (2.72)

2.7.2 The transfer function

Under zero initial conditions, the application of the s-transform to the continuous-time
state-space model (2.25) yields:

By eliminating the states , following input-output relation is obtained:X(s)

The matrix  is called transfer function and equals:Hc(s)

Similar as in time domain, modal decomposition can be applied to this expression. By
inserting the eigenvalue decomposition of  (2.21) and the definitions of the participationAc
factors  and the observed mode shapes  (2.29), we obtain:L T

c Vc

This modal state-space transfer function can be written in more familiar forms known from
classical modal analysis. The transfer function is then expressed in terms of the modal
parameters of the original FE model. This is elaborated in Appendix A.1.

The Frequency Response Function

From a practical point of view, the Frequency Response Function (FRF) is more
important. It is defined as the transfer function in which the complex Laplace variable is
restricted to purely imaginary values  where  [rad/s] can be any frequency ofs
 j& &

interest. The FRF is denoted as:

or equivalently as one of its modally decomposed forms (see Apendix A.1). The practical
relevance of the FRF lies in the fact that it is easily identified from the measured time data
by applying so-called non-parametric methods. These methods are mainly based on the
application of the FFT. The second identification step consist then of identifying
parametric models like (2.72) from the estimated FRF (see Chapter 3).
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Figure 2.8: Part of element (1,1) of the FRF matrix . It represents the FRFHc( j&)
from the input at node 4 (x-direction) to the output at the same DOF. The top
figure is the absolute value of the FRF; the bottom figure shows the phase angle.
The full line is the full FRF. The bending modes in the y-direction are not visible.
The dashed line represents the contribution of the second mode to the FRF.

Example

The FRF matrix of the mast structure (Figure 2.1) is computed by evaluating expression
(2.72) at frequencies f, ranging from 0 to 12.5 Hz ( ). A typical element of thes
 j&, &
2�f
FRF is shown in Figure 2.8.

2.7.3 The spectrum

In this section we will examine the case where the input signal  is not a deterministicu(t)
signal. Stochastic signals are characterized by their statistical properties. The discussion
is restricted to the case of a zero mean , white noise input sequence. TheE[u(t)]
0
covariance function of such a sequence can be written as:Ru (2)

where  is a constant matrix and  is the Dirac delta function (  at Ru�Ü
m×m

/(2) /(2)
� 2
0
and  elsewhere). The Dirac delta function has the following property:/(2)
0
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7For purely imaginary values of s, the double-sided s-transform equals the Fourier transform:
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 Hc(s)Su (s)H T
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 Hc(s)Ru H T
c (s �) (2.74)

Sy (s) 
 (Vc (sI	�c )	1 L T
c � Dc ) Ru (D T

c � Lc (s �I	�c )	1 V T
c ) (2.75)

for any function  which is continuous at time a. These definitions of white noise are thef(t)
continuous-time counterparts of the discrete white noise definitions given in Section 2.5.1.

The spectrum  of a stationary stochastic process is defined as the double-sided s-Sx(s) x(t)
transform7 of its covariance function :Rx(t)

So in case of white noise, the spectrum is a constant matrix because of property (2.73):

This is also called a "flat" spectrum. The diagonal elements of the spectrum matrix are
called power spectra and the other elements cross spectra.

If two processes  are related by the transfer function  as in Equation (2.70),u(t),y(t) Hc(s)
it can be proven [LJUN99] that their spectra are related by:

or, more specifically in case of a white noise input:

By inserting the modal decomposition of the transfer function (2.71), following expression
is obtained for the spectrum:

Some identification methods of Chapter 3 need an expression for the spectrum that is
written as a sum of modal contributions instead of a product. The application of the partial
fraction expansion to Equation (2.75) require the solution of a continuous-time Lyapunov
equation. This is elaborated in detail in Appendix A.2.
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Figure 2.9: Part of element (1,1) of the spectrum matrix . It represents theSy ( j&)
power spectrum of the acceleration response of the structure at node 4 (x-
direction). The full line is the full FRF. The bending modes in the y-direction are
not visible. The dashed line represents the contribution of the second mode to the
spectrum.

Example

The spectrum matrix of the mast structure (Figure 2.1) is computed by evaluating expression
(2.74) at frequencies f, ranging from 0 to 12.5 Hz ( ). A typical element of thes
 j&, &
2�f
spectrum matrix is shown in Figure 2.9.

2.8 DISCRETE-TIME FREQUENCY-DOMAIN MODELS

Unlike in time domain, frequency-domain identification does not require discrete-time
models. It is, for instance, possible to identify a continuous-time frequency-domain model
from samples of the Fourier transforms of the signals. The reason why this section on
frequency-domain equivalents to the discrete-time models is added is that there do exist
identification methods that assume such models. Another reason is that these models
provide a tool to assess the quality of a time-domain identification method. The identified
time-domain model can be analytically converted to frequency domain and can be
compared to a non-parametric estimate of the frequency data (obtained by applying the
FFT to the data).

2.8.1 The z-transform

The z-transform is the discrete-time analogy of the s-transform. It is defined as:
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where  is a scalar complex variable. An important property of the z-transform is:z�Ù

If the initial condition is zero , a forward time shift in time domain corresponds to ax0
0
multiplication by z in the z-domain.

By taking the s-transform of a continuous-time signal that equals a given discrete-time
signal at the discrete samples and is zero elsewhere, it can be shown that the z-transform
coincides with the s-transform by setting  [JUAN94]. Therefore, a restriction toz
e sût

purely imaginary values of the s-variable in continuous-time corresponds to a restriction
to values on the unit circle in discrete-time:

2.8.2 The spectrum of a stochastic state-space model

In discrete-time, the spectrum of a stationary stochastic process is defined as the double-
sided z-transform of its covariance sequence. Therefore the discrete-time output spectrum
equals:

where  is the output covariance at time lag k, defined in Equation (2.53). By substitutingRk
z according to Equation (2.76), the Fourier transform in discrete-time is obtained:

In case of a stationary process, the following property holds:

and the spectrum (2.77) can be written as:

where  is defined as:S
�

y (z)
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The important factorization property of the output covariances was given in Equation
(2.56):

If A is a stable matrix, we have the following series expansion:

This series is found after inserting the factorization property (2.56) into (2.79).
Consequently, following closed-form expression is found for the spectrum (2.77):

2.8.3 The spectrum of a forward innovation model

An alternative expression for the spectrum of a stochastic system is found from the forward
innovation model that was defined as (2.58):

where the innovation sequence is a zero mean white noise sequence with covariance .Re
The forward state covariance matrix is denoted as .P
E[zk z T

k ]

By introducing the forward shift operator q ( ), the state vector can be eliminatedqzk
zk�1
from the model to yield:

where  is the transfer operator that can be computed as:H (q)

Since a forward time shift in time domain corresponds to a multiplication by z in the z-
domain, we can simply substitute q by z to yield the transfer function. If z is restricted to
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values on the unit circle  (2.76), the discrete-time Frequency Response Functionz
e j&ût

is obtained.

The interpretation of Equation (2.81) is that  is a stationary stochastic process obtainedyk
by filtering white noise through the filter . By consequence the spectrum of  canH (q) yk
be written as [LJUN99]:

or, after introducing the expression for the transfer function:

Of course, this forward-innovation spectrum is equivalent to the covariance spectrum
(2.80). The latter can be considered as the partial fraction expansion of the forward-
innovation spectrum (2.82). Similar to the continuous-time case (see Appendix A.2), the
matrices of the partial fraction expansion are obtained by solving a Lyapunov equation.
The forward state covariance matrix P is found as the solution of:

which is a so-called discrete-time Lyapunov equation. The matrices G and  areR0
recovered as:

Example

The discrete-time spectrum matrix of the mast structure (Figure 2.1) is computed by
evaluating expression (2.80) at frequencies f, ranging from 0 to 12.5 Hz ( ).z
e j&ût, &
2�f
A typical cross spectrum is shown in Figure 2.10. The discrete-time spectrum is compared
to the continuous-time spectrum. Due to the high sampling rate ( ), there is notfs
100Hz
much difference.
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Figure 2.10: Part of element (5,4) of the spectrum matrix . It represents theSy( j&)
cross spectrum between the acceleration in the y-direction at node 8 and the
acceleration in the x-direction at node 7. The top figure is the absolute value of the
spectrum; the bottom figure shows the phase angle. The full line is the continuous-
time spectrum and the dashed line represents the discrete-time spectrum. The two
pairs of closely-spaced modes are visible on this cross spectrum plot.

2.9 CONCLUSIONS

This chapter presented several models of vibrating structures. They differed in that they
are in continuous-time or discrete-time; that they are input-output or output-only models
and that they are in time domain or in frequency domain. The chapter started by FE
models. The evolution from the analytical to the experimental world consisted of following
steps: the FE model is reduced, sampled and a noise model is added. A simulation example
illustrated the modelling concepts.

Next chapter relies heavily upon the results obtained in this chapter. It will be shown how
the stochastic state-space model, the ARMA model and the continuous-time frequency-
domain models can be identified from measurements.
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In this chapter stochastic system identification methods are discussed and
compared. Section 3.2 introduces the primary data types that are required by the
identification methods: time data, covariance sequences or spectra. In Section 3.3,
spectrum-driven methods are discussed. Section 3.4 deals with covariance-driven
methods and Section 3.5 treats data-driven methods. Covariance- and data-driven
subspace methods are compared in Section 3.6. Useful postprocessing tools are
presented in Section 3.7. In Section 3.8, all methods are experimentally compared.
Section 3.9, finally, concludes the chapter.
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3.1 INTRODUCTION

This chapter deals with stochastic system identification methods. In a civil engineering
context, structures such as bridges and towers are the systems; the estimation of the modal
parameters is the particular type of identification and stochastic means that the structure
is excited by an unmeasurable input force and that only output measurements (e.g.
accelerations) are available. In these methods the deterministic knowledge of the input is
replaced by the assumption that the input is a realization of a stochastic process (white
noise).

System identification starts by adopting a certain model that is believed to represent the
system. Next, values are assigned to the parameters of the model as to match the
measurements. In previous chapter, several equivalent models for a vibrating structure
were studied. From that chapter, the type of models to work with are clear, only the model
order remains to be chosen. In this chapter an overview is given of system identification
methods that estimate the parameters of the stochastic models of previous chapter. These
methods can be divided according to the type of data that they require: raw time data,
covariances or spectra. The overview of the methods is given in the reverse order as
compared to the overview of the models of chapter 2: we start with frequency-domain
spectrum-driven methods to end with time-domain data-driven methods. This presentation
order corresponds to the historical application of stochastic system identification methods:
from picking the peaks of spectral densities to subspace methods that make extensively use
of concepts from numerical linear algebra.

3.2 DATA TYPES

In principle (output) data  is available as discrete samples of the time signal. This sectionyk
deals with the transformation of time data to covariances or spectra. Also some notations
are introduced.

3.2.1 Time data

Measurements for modal analysis applications typically contain some redundancy. Since
the spatial resolution of the experimental mode shapes is determined by the position and
the number of the sensors, usually many sensors (mostly accelerometers) are used in a
modal analysis experiment. Theoretically, if none of the sensors is placed at a node of a
mode, all signals carry the same information on eigenfrequencies and damping ratios. To
decrease this redundancy, some signals are partially omitted in the identification process,
leading to algorithms that are faster and require less computer memory without losing a lot
of accuracy. In the end, the omitted sensors are again included to yield the "full" mode
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1This rather abstract explanation will become more clear when the identification methods are developed.

2A Hankel matrix is a matrix that is constant along its anti-diagonal.
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shapes1. Assume that the l outputs are split in a subset of r well-chosen reference sensors
and a subset of  other sensors, and that they are arranged so as to have the referencesl	r
first:

where  are the reference outputs and  are the others;  is they ref
k �Ü

r y ~ref
k �Ü

l	r L�Ür×l

selection matrix that selects the references. The choice of the reference sensors in output-
only modal analysis corresponds to the choice of the input locations in traditional input-
output modal analysis [EWIN84, HEYL95].

It is useful in the development of some of the identification methods to gather the output
measurements in a block Hankel2 matrix with 2i block rows and N columns. The first i
blocks have r rows, the last i have l rows. For the statistical proves of the methods, it is
assumed that . The Hankel matrix  can be divided into a past referenceNÚ� H ref

�Ü
(r�l)i×N

and a future part:

Note that the output data is scaled by a factor . The subscripts of  are1 N Yi2i	1�Ü
li×N

the subscripts of the first and last element in the first column of the block Hankel matrix.
The subscripts p and f stand for past and future. The matrices  and  are defined byY ref

p Yf
splitting  in two parts of i block rows. Another division is obtained by adding oneH ref

block row to the past references and omitting the first block row of the future outputs.
Because the references are only a subset of the outputs,  rows are left over in this newl	r
division. These rows are denoted by :Y ~ref

ii �Ü
(l	r)×N
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3Ergodicity means that the expected value of a time sample of a stationary stochastic process (i.e. the average
over an infinite number of processes) can be replaced by the average over one infinitely long record of the process.

4A Toeplitz matrix is a matrix that is constant along its diagonal.
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3.2.2 Covariance estimates

Output covariances are defined in Equation (2.53) as:

The second equality follows from the ergodicity3 assumption. The reduced covariances
between all outputs and the references are defined as the first r columns of the full
covariance matrices:

Similarly, the reduced "next state - output" covariance matrix  is defined as:G ref

And for :i
1,2, ...

These equations are equivalent to the factorization properties of the full covariance
matrices (2.56).

The output covariances are gathered in a block Toeplitz4 matrix  that can beT ref
1i �Ü

li×ri

computed from the data block Hankel matrix. Indeed, for  and assuming ergodicity,NÚ�
we have:
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Of course, in reality a finite number N of data is available and a covariance estimate  isR̂ i
simply obtained by dropping the limit:

Instead of computing the covariance estimate by multiplication and summation of time
samples, a high-speed implementation of the convolution in Equation (3.8) is possible by
applying the FFT to the time signals, cross-multiplying the Fourier transforms and
applying the inverse FFT to the cross-products. The inverse FFT results in a periodic
covariance function estimate. The bias error due to this circular convolution is avoided by
zero-padding the original signals [BEND93]. A disadvantage of using covariances as
primary data in identification is that it squares up the data. This may affect the numerical
accuracy [GOLU89].

3.2.3 Spectrum estimates

Another useful data format is the spectrum , defined in Equation (2.78) as theSy�Ù
l×l

discrete-time Fourier transform of the covariance sequence:

Introducing the reference sensors (3.1) yields a  complex spectrum matrix l×r S ref
y 
Sy L T

that consists of the first r columns of the full spectrum matrix.

Again, only a finite number of data is available: the covariances are estimated as in (3.8)
and cannot be computed up to infinite time lag. There is a whole literature on estimating
spectra from data [MARP87, BEND93, STOI97]. Two popular non-parametric spectrum
estimates are the weighted averaged periodogram (also known as modified Welch’s
periodogram) and the weighted correlogram. Weighting means that the signal is weighted
by one of the classical windows (Bartlett, Hamming, Hanning, ...) to reduce leakage.

lenovo
矩形
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Welch’s method starts with computing the Discrete Fourier Transform (DFT) of the
weighted output signal:

where  denotes the window function in this context. If N is a power of 2, the DFT canwk
be efficiently computed at the discrete frequencies

by using the FFT. An unbiased estimate of the spectrum is the weighted periodogram, i.e.
the DFT of (3.9) times its complex conjugate transpose and scaled by the squared norm
of the window:

The variance of the estimate is reduced by splitting the signal in segments, computing the
weighted periodograms of all segments and taking the average. The spectrum estimate in
(3.10) yields a rank-one matrix (a column vector multiplied by a row vector). Segment
averaging increases the rank of the estimate because several rank-one estimates are added.

The weighted correlogram method starts by computing the covariance estimates as in (3.8).
The weighted correlogram is defined as the DFT of the weighted covariance estimates:

where L is the maximum number of time lags.

By using measurement hardware such as frequency analysers which deliver spectra instead
of the original time data, the user could forget that these spectra are in fact computed as in
(3.10) or (3.11).  Consequently, they have to be considered as estimates and not as true
spectra. Limitations and drawbacks of the DFT related to modal analysis are discussed in
[MITC86] and [PAND91a]. Advantages of frequency-domain identification are discussed
in [SCHO91] and also recapitulated in [McKE95] and [LJUN99]. Evidently, the
frequency-domain advantages related to the use of a periodic input signal are not carrying
over to the output-only case.
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5The described filtering and resampling procedure corresponds to the application of the decimate

command of MATLAB’s Signal Processing Toolbox [SIGN97].
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Figure 3.1: Part of the first output signal. By comparing this preprocessed signal
with the original signal (Figure 2.5), the lower sampling rate is obvious.

Example

The mast example of previous chapter (Figure 2.1) is used again in this chapter to illustrate
and compare the system identification methods. As explained previously (see Page 29), the
structure is excited by white noise inputs and 6 acceleration outputs are simulated, sampled
at 100 Hz. The output data are filtered with an eight-order Chebyshev type I lowpass filter
with a cutoff frequency of 10 Hz. Afterwards the data is resampled5 at a lower rate:

. This preprocessing corresponds to practice where the measurements are filteredfs
25Hz
with an (analog) lowpass filter before sampling to prevent aliasing. The filtering introduces
additional poles in the data. Finally, white measurement noise is added to the outputs, with
a noise-to-signal ratio . The N/S ratio is the ratio of the standard deviations of theN/S
10%
noise sequence and the output signal. After resampling 16384 data points per output channel
are left. The first (preprocessed) output signal is partly shown in Figure 3.1. A typical
estimated covariance sequence  (3.8) is shown in Figure 3.2. It is compared with theR̂i (1,1)
true covariance sequence, computed from the stochastic state-space matrices (A,G,C,R0 )
according to Equation (2.56).

An estimated power spectrum , using Welch’s method, is shown and compared withŜy (1,1)
the true spectrum (2.80) in Figure 3.3. The cutoff frequency (10 Hz) of the lowpass filter is
clearly visible. One of the consequences of adding measurement noise, is that the spectrum
does not go to zero for , as would be expected in the case of accelerationfÚ0Hz
measurements (and indicated by the true spectrum). Finally, two non-parametric spectrum
estimates are compared in Figure 3.4: the weighted averaged periodogram (3.10) and the
weighted correlogram (3.11).
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Figure 3.2: The full line represents the true output covariance sequence. The
dashed line with the ‘+’ markers is the estimated output covariance sequence. The
sampling frequency of the true covariance sequence is 4 times higher, but
otherwise both sequences correspond very well.

0 2 4 6 8 10 12

10
−6

10
−4

10
−2

10
0

f [Hz]

| S
y |

Figure 3.3: The full line represents the true spectrum and the dashed line the
estimated spectrum using Welch’s averaged periodogram method: the 16384 data
samples are divided in 8 segments of 2048 points; after multiplication with a
Hanning window, an FFT was applied to every segment; finally the 8 FFTs are
averaged to yield the spectrum estimate. The influence of the lowpass filter at
10 Hz and the added measurement noise are clearly visible.
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6This particular parametrization is also called pole-residue form.
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Figure 3.4: Comparison of non-parametric spectrum estimates. The full line
represents the weighted correlogram (3.11) with the number of time lags .L
512
The estimated covariances are multiplied with a Hanning window before the FFT.
The dashed line represents the weighted averaged periodogram (3.10), see also
Figure 3.3. The correlogram looks smoother.

3.3 FREQUENCY-DOMAIN SPECTRUM-DRIVEN METHODS

A spectrum-driven identification method estimates the parameters of a spectrum model
from "measured" samples of the spectrum matrix. As explained in previous section, these
samples are obtained by applying a non-parametric identification method to the time-
domain measurements. The spectrum can be parametrized in terms of the modal
parameters6 as in (A.6) or (A.8) or in terms of rather abstract matrices as in (2.80) or
(2.82), from which the modal parameters can be extracted in a second stage. The overview
starts with the peak-picking method which seems to be very relevant for the civil
engineering practice. In more than 90% of the cases, a peak-picking variant is used to
estimate the modal parameters of a structure excited by an ambient load. Next, a singular-
value-decomposition extension to peak picking is discussed that overcomes some of the
drawbacks. A final section reviews some recent, more advanced methods that solve the
spectrum-driven identification problem.

3.3.1 Peak picking (PP)

The method

The most simple approach to estimate the modal parameters of a structure subjected to
ambient loading is the so-called Peak-Picking (PP) method. The method is named after the
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key step of the method: the identification of the eigenfrequencies as the peaks of a
spectrum plot. Probably because of its simplicity it is the most widely used method in civil
engineering. The method is for instance discussed in [BEND93]. We will give a theoretical
justification of the method in view of the results of previous chapter.

In case of acceleration measurements, the following expression for the modally
decomposed spectrum was obtained (A.7):

This expression is the product of two summations wherein each term represents the
contribution of a certain mode. A term of the left factor is proportional to  and(s	�i )

	1

reaches a maximum if s approaches  (2.16). For low damping�i
	�i&i� j (1	�2
i )1/2

&i

ratios, this is achieved around . If additionally the assumption is made that thes
 j&i

modes have well-separated frequencies, the spectrum at any eigenfrequency  is&i

dominated by a single mode and can be approximated by:

By defining the complex scalar  as:.i

the approximated spectrum at resonance can be rewritten as:

The interpretation of this equation is that at resonance, each column (or equivalently each
row) of the spectrum matrix can be considered as an estimate of the observed mode shape vc i
up to some scaling factor. Of course, if the column (or row) corresponds to a DOF of the
structure that is situated at a node of a certain mode, this mode cannot be identified.

The damping ratios remain to be determined. In [BEND93] it is suggested to use the half-
power bandwidth method to estimate the damping. Assume that  and  are the two&1 &2

frequencies left and right from, and as close as possible to the eigenfrequency , where&i

the magnitude of a certain element of the spectrum matrix is half the resonance magnitude.
A damping estimate is then obtained as:
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7An operational deflection shape is here defined as the deformation of the structure when it is excited by a
pure harmonic. Theoretically it is a combination of all mode shapes, but in practice only the modes having an
eigenfrequency close to the excitation frequency contribute significantly.

�i 

&2 	 &1

2&i

It is however believed (and confirmed by our numerical example; see Figure 3.19) that this
estimate is not very accurate.

Refinements and practical issues

Some refinements of the PP method exist. The coherence function between two channels
tend to go to one at the resonance frequencies because of the high signal-to-noise ratio at
these frequencies [BEND93]. Consequently inspecting the coherence function can assist
in selecting the eigenfrequencies. Also the phase angles of the cross spectra are helpful: if
real modes are expected, the phase angles should be either 0( or 180( at the resonance
frequencies.

A practical implementation of the PP method was realized by Felber [FELB93]. In order
to get a global picture of the eigenfrequencies, he suggested to compute an averaged
normalized power spectrum from the diagonal elements of the spectrum matrix. By adding
and subtracting signals from symmetric points of the structure the "nature" of a mode (e.g.
torsion versus bending) may be highlighted.

If a good reference sensor (3.1) is chosen only the spectra between all sensors and the
single reference sensor need to be estimated from the time data and not the full spectrum
matrix. This reduces the work in (3.10) or (3.11). The reason is that, theoretically one
column (or one row) of the spectrum matrix suffices to obtain the mode shape estimates
(3.13).

Discussion

The method assumes that the damping is low and that the modes are well-separated. A
Violation of these assumptions leads to erroneous results. In fact the method identifies
operational deflection shapes7 instead of mode shapes and for closely-spaced modes such
an operational deflection shape will be the superposition of multiple modes. Other
disadvantages are that the selection of the eigenfrequencies can become a subjective task
if the spectrum peaks are not very clear and that the eigenfrequencies have to be a subset
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8The trace of a matrix is the sum of its main diagonal elements. By consequence the trace of the spectrum
matrix is the sum of the power spectra.
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Figure 3.5: The trace of the spectrum matrix as a function of the frequency. The
true eigenfrequencies are shown as dash-dotted vertical lines. The overlayed plot
is a zoom of the trace around 7 Hz.

of the discrete frequency values of the DFT (This is of course no problem if the frequency
resolution is fine enough).

Despite these drawbacks many civil engineering cases exist where the method is
successfully applied; see for instance [FELB96] and [CUNH99]. The popularity of the
method is due to its implementation simplicity and its speed, because it basically relies
upon the FFT. For tower-like structures the peak-picking method may become problematic
since the bending modes along any of the 2 principal axes and/or any of the torsion modes
are likely to have closely-spaced frequencies. For bridge-like structures this seems to be
less the case.

Example

The PP method is applied to the simulated data from the mast structure (Figure 2.1). The
spectrum matrix is estimated by Welch’s method (3.10) according to the processing
parameters explained in Figure 3.3. The frequency resolution is , whereû f
1 T
0.0122Hz
T is the measurement time of one segment  (N is the number of dataT
Nû t
2048×0.04s
points per segment). The trace8 of the spectrum matrix is shown in Figure 3.5. This kind of
plot is typically used in the PP method to identify the eigenfrequencies by picking the peaks.
The true eigenfrequencies are also shown as vertical lines. It is impossible to identify the two
closely-spaced modes around 2.4 Hz. The spectrum trace has only one peak at this
frequency. Eventually, the two close modes around 7 Hz could be identified (see zoom of
Figure 3.5). It is however more likely that the two peaks of the spectrum trace are due to the
typical erratic behaviour of the non-parametric spectrum estimates.
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Figure 3.6: The transformed spectra. The full line is the spectrum of the x-bending
signals; the dotted line represents y-bending and the dashed line represents torsion.
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Figure 3.7: Two coherence functions. The full line is the coherence function
between channels 4 and 5 (i.e. one channel in x-direction, the other in y-direction);
the dashed line is the coherence between channels 4 and 6 (i.e. two channels in x-
direction).

More information can be obtained by further processing the signals. By applying a suitable
transformation to the spectrum matrix, the "nature" of the modes can be highlighted. The
transformation is based on the geometry of the structure and the location of the sensors. The
transformed spectra are shown in Figure 3.6. The x-bending, the y-bending and torsion
components of the modes have been separated. Even from this plot, the close modes are not
easily identifiable. Both the x-bending and y-bending graph have a peak around 2.4 and
7 Hz, but this can also signify that these modes are a combination of x- and y-bending.

Plots of coherence functions are most useful to improve the results of the PP method. In
Figure 3.7 the coherence functions between channels 4 and 5 (full line) and channels 4 and
6 (dashed line) are shown. The torsion modes are clear in both coherence functions, but the
bending modes do not show up in the coherence function between a signal in x-direction
(channel 4) and a signal in y-direction (channel 5). This means that the x and y-bending
modes are different modes, although they have very close frequencies.
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9Since the spectrum matrix is a Hermitian matrix, its eigenvalue decomposition coincides with its SVD.

10Although in this paper, the method is called "frequency domain decomposition method", we will stick to
the best-known name (CMIF) in this thesis.

Sy (s) 
 Hc(s)Ru H T
c (s �)

By transforming the spectrum matrix and inspecting coherence functions, it was possible to
identify the close modes with the PP method. It may however be clear that the success of
these proposed enhancements heavily depends on the geometry of the structure and the skill
of the analyst. The identified modal parameters are presented at the end of this chapter,
together with the results of the other identification methods.

3.3.2 Complex mode indication function (CMIF)

The method

A more advanced method consists of computing the eigenvalue decomposition or Singular
Value Decomposition (SVD) of the spectrum matrix9. This "method based upon the
diagonalization of the spectral density matrix" (as it was called) was already used in the
beginning of the eighties to obtain the modes of a vibrating system subjected to natural
excitation [PREV82]. Some years later, the method was also applied to FRFs and became
known as the Complex Mode Indication Function (CMIF). As suggested by the name, the
CMIF was originally intended as a tool to count the number of modes that is present in
measurement data. As a useful by-product the CMIF also identifies the modal parameters
from FRFs [SHIH88]. Recently the spectrum-driven method received again attention as
an alternative for the PP method in civil engineering applications [BRIN00]10.

The method is based on the fact that the transfer function or spectrum matrix evaluated at
a certain frequency is only determined by a few modes. The number of significantly
contributing modes determines the rank of the spectrum matrix. The SVD is typically used
for estimating the rank of a matrix: the number of non-zero singular values equals the rank
[GOLU89]. The spectrum matrix is related to the transfer function matrix  and the inputHc

covariance matrix  as (2.74):Ru

Let us assume that  is of full rank. Since the rank of a product of matrices equals theRu

lowest rank of any of its factors, it suffices to discuss the rank of the transfer function ,Hc

which, in case of acceleration measurements, is modally decomposed as (A.3):
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As already indicated in previous section, at a certain frequency only a few modes are
determining the response. At resonance the transfer function reaches a local maximum and
in case of well-separated modes only one mode is important. This means that the rank of Hc

is approximately one at resonance. If two or more modes have about the same
eigenfrequencies, the rank will be two or more at that frequency.

As said the rank of  carries over to the rank of the spectrum matrix . The SVD of thisHc Sy

matrix can be written as:

where ,  are complex unitary matrices. The diagonal matrix  contains on itsU (s) V (s) � (s)
diagonal the real positive singular values in descending order. At resonance, the number
of singular values that reach a local maximum equal the number of closely-spaced modes.
The function  is the actual CMIF.�(s)

If only one mode is important at a certain resonance frequency , the spectrum&i

approximates a rank-one matrix and can be decomposed as (3.14):

By comparing this expression to (3.13) it is concluded that the first singular vector at
resonance is an estimate of the mode shape at that frequency. In case of mode multiplicity
at a resonance frequency, every singular vector corresponding to a non-zero singular value
yields a mode shape estimate, if the mode shapes are orthogonal to each other. This last
condition is only approximately true.

Discussion

The CMIF method can be considered as an SVD extension to the PP method. The SVD
is able to resolve mode multiplicity. The method can also be applied to the reduced
spectrum matrix . In this case, the maximum number of detectableS ref

y 
Sy L T
�Ù

l×r

multiple poles cannot exceed r, the smallest dimension of . Another limit on theS ref
y

maximum pole multiplicity is the number of rank-one averages that constitutes the
spectrum estimate (3.10).
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Figure 3.8: The Complex mode indication function (CMIF). The singular values
of the spectrum matrix are plotted as a function of the frequency. Around 2.4 Hz
and 7 Hz, two singular values are significant, indicating that there are two close
modes.

Extensions of the CMIF method are possible that do estimate eigenfrequencies and
damping ratios differently as in the PP method. After applying the SVD to the spectrum
matrix, this matrix is in fact decomposed in single-DOF systems. To such a system, single-
DOF modal parameter estimation methods could be applied [EWIN84, HEYL95,
MAIA97, ALLE99].

Example

The SVD is applied to the estimated spectrum matrix of the mast structure (Figure 2.1). The
obtained singular values as a function of the frequency are plotted in Figure 3.8. Since the
full spectrum matrix is used, there are six singular values. Around 2.4 and 7 Hz, there are
two significant singular values, indicating that there are two close modes at these
frequencies. In the neighbourhood of these frequencies, the first singular vector is an
estimate of the "strongest" mode, whereas the second singular vector is an estimate of the
other mode. Since the maximum mode multiplicity is two, it would have been sufficient to
apply the SVD to the reduced spectrum matrix that only consists of the spectra between all
sensors and two reference sensors. The detailed modal parameter estimation results are
presented at the end of this chapter.
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3.3.3 Other spectrum-driven methods

In this section some other more advanced spectrum-driven methods are briefly reviewed.
Contrary to the PP method or the CMIF that consider only one mode at a time, these
methods estimate the parametrized spectrum matrix as a whole.

Frequency-domain maximum likelihood identification

Maximum Likelihood (ML) identification is an optimization based method that estimates
the parameters of a model by minimizing an error norm. A discussion on the use of the ML
estimator to identify parametric frequency-domain models can be found in [SCHO91,
PINT94]. The ML method results in equations that are non-linear in the unknown
parameters. This requires an iterative procedure with related problems such as:
convergence not being guaranteed, local minima, sensitivity to initial values and a high
computational load. However, it seems that these drawbacks have been overcome and it
has been shown that ML identification is a robust method to find the modal parameters of
a structure from a large and noisy data set [GUIL98]. Originally intended for application
to FRFs, the method was extended to use spectra as primary data, so that it also could be
used in output-only cases [HERM98, GUIL99].

Spectrum-driven stochastic subspace identification

Subspace identification will be explained in detail in the sections on covariance-driven and
data-driven identification methods. The major advantage of subspace identification is the
absence of non-linear parametric optimization problems. In [VANO97] a "typical"
subspace algorithm was developed to identify a state-space model (2.51) by fitting the
expression for a discrete-time spectrum (2.80) to measured samples of the spectrum matrix.
The algorithm is perhaps not a pure spectrum-driven method because the first step consists
of transforming the spectrum samples back to time domain by applying the inverse DFT.
The algorithm is certainly useful in these cases where, for some reason, only spectrum
measurements are available. For lightly damped systems and for a small number of
frequency samples, the inverse DFT of the measured spectrum is not a very good estimate
of the output covariance function. This fact is taken into account in [VANO97], based on
results from [McKE95] where an explicit formula is derived for the inverse DFT of a finite
sequence of FRF samples, which differ from the impulse response expression.
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11Traditional means here that it is an input-output based method.

yk � .1 yk	1 � . . . � .p yk	p 
 ek � �1 ek	1 � . . . � �p ek	p

3.4 TIME-DOMAIN COVARIANCE-DRIVEN METHODS

In this section some covariance-driven methods are reviewed. An important feature of a
covariance matrix is that it can be factorized into the system matrices, as pointed out in
Equation (2.56). A first method belongs to the class of so-called instrumental variable
methods. Although its algorithm is formulated in terms of the covariances, it does not use
the factorization property. The second method, on the contrary, is completely based on the
factorization property. It is a so-called subspace method.

3.4.1 The instrumental variable (IV) method

Although the Instrumental Variable (IV) method is far from new, it is extensively
discussed in this thesis in order to highlight the correspondence to the so-called
Polyreference Time Domain (PTD) method after substituting impulse responses by output
covariances. The PTD method is probably the most widely-used traditional11 modal
parameter estimation method.

Instrumental-variable theory

In Chapter 2, it was found that an ARMA model of suitable order can represent a vibrating
structure. Unfortunately, the application of a classical prediction error method [LJUN99]
to an ARMA model results in a highly non-linear parameter estimation problem; see also
Subsection 3.4.3 and 3.5.2. The non-linearity is caused by the MA parameters. The
advantage of the IV method is that it identifies only the AR parameters (and that this is
achieved in a linear way), while the underlying model structure still is an ARMA model.
In Subsection 2.6.2, it was shown that for the extraction of the modal parameters there is
no need to identify the MA part, since they only rely upon the AR part. The ARMA
representation of a vibrating structure was given by Equation (2.59):

If the ARMA order p times the number of outputs l is equal to or larger than the system
order n ( ), the system poles are included in the model.pl�n

The idea of system identification is to "fit" such a model to measured data . A goodyk

parameter estimation method should extract the maximum information from the data,
leaving residuals  that are uncorrelated with past data. This is formally written as:ek
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where the first equality says that  and  are uncorrelated; and the second equalityek yk	i

follows from the zero-mean property of the noise sequence. If on the other hand, the
residuals are correlated with past data, they still contain useful but unmodeled information
and the model is not ideal. The derivation of the IV method starts by imposing conditions
like (3.16) to the ARMA model in order to get rid of the right hand side (the MA part).
The "oldest" noise term is ; so by post-multiplying the ARMA model by  (forek	p y T

k	p	i

) and by taking the expectation we obtain:i>0

Because of stationarity we have: , and the basic IV equation canE[yk y T
k	i]
E[yk�i y

T
k ]
Ri

be written in terms of the output covariances :Ri

By replacing the output covariances by their estimates  (3.8) and writing down theR̂ i

equation for all available time lags i, the AR parameters  can be estimated by.1, . . .,.p

solving the resulting over-determined set of equations in a least squares sense. Finally, the
eigenvalues and the observed mode shapes are obtained from the eigenvalue
decomposition of the companion matrix of the AR coefficients as described in Section
2.6.2.

A more general discussion and some more references on IV methods can be found in
[LJUN99]. Interesting to note (and very relevant for civil engineering practice) is that the
IV method is robust against non-stationary inputs (e.g. a white noise sequence with time-
varying covariance). The proofs are more involved in this case [BENV85].

Introducing the reference sensors

A formulation in terms of the covariances between all sensors and the subset of reference
sensors (3.4) is now be derived. We start with a reversed-time (or backward) ARMA
model that only uses the reference outputs:

The model is running backward in time: the current output  is written in terms ofy ref
k �Ü

r

future outputs. Since only reference outputs are used, the backward matrix coefficients and
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the residuals have reduced dimensions:  and . The order p of the.
b
i �Ü

r×r , �b
i �Ü

r×r e b
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r

reduced model is now related to the system order as: .p�n r

A good (backward) model yields residuals that are uncorrelated with future outputs:

Note that this is, theoretically, a stricter condition as (3.16): the residuals  of a modele b
k

that only uses the reference outputs are uncorrelated with all future outputs. However, due
to the redundancy in the data, there is practically not much difference between this
condition and (3.16). Using (3.4), the basic IV Equation (3.17) is now written as:

From the definition of the covariances and because of stationarity, it holds that: .R T
	i
Ri

By taking the transpose of previous equation and writing it down for q available time lags
i, following set of equations is obtained that can be solved for the backward AR
coefficients in a least squares sense:

The integer q is related to the overdetermination of this system of equations: there are qlr
equations for  unknowns.pr 2

Computing the modal parameters

Similarly to the derivations in Section 2.6, it can be shown that the backward ARMA
model is equivalent to a so-called backward-innovation state-space model and that the
backward AR matrices are related to the state-space matrices as:

where  has been defined in Equation (3.5). By introducing the eigenvalueG ref
�Ü

n×r

decomposition of A, post-multiplying by  and defining:�
	T
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Equation (3.20) can be rewritten as:

This equation reveals that the eigenvalues  and the reduced stochastic modal�d

participation matrix  can be computed from the eigenvalue decomposition of theG ref
m

companion matrix of the backward AR coefficients (see also Section 2.6.2).

The observed mode shapes need to be determined in a second step. The factorization
property of the output covariances (3.6) is useful for this purpose:

By writing down this equation for p time lags i, following set of equations is obtained in
V:

where  is the so-called reversed extended modal stochastic controllability+
ref
p,m�Ù

n×pr

matrix, defined as:

This matrix can be constructed from the results of the first step of the method. The right
hand side of Equation (3.22) was already estimated from the data in the first step of the
method: it is the first row of the Toeplitz matrix in Equation (3.20).

Implementation and stabilization

A typical problem of estimating a parametric model from data is the determination of the
model order. A pth order ARMA model based on r reference outputs contains pr poles.
Consequently, an indication of the model order is given by the "expected" number of poles
covered by the data. This expected number can be based on physical insight or counted as
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12Every spectrum peak corresponds to a pair of complex conjugated poles. Therefore the model order is twice
the number of resonance frequencies.

13The mode shapes  are sometimes replaced by (the transpose of) the modal participation factors .v g
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twice12 the number of peaks in the frequency-plot of a non-parametric spectrum estimate
(see also the PP method, Subsection 3.3.1). A more accurate model order estimate is
provided by the CMIF, a frequency-plot of the singular values of a non-parametric
spectrum estimate (Subsection 3.3.2).

More formal procedures estimate models of different order and compare these models
according to a quality criterion such as Akaike’s Final Prediction Error (FPE) or
Rissanen’s Minimum Description Length (MDL) criterion [LJUN99]. These criteria
include a penalty for model complexity, avoiding an overfit.

However, in modal analysis one is usually not interested in a good model as such, but
rather in the modal parameters extracted from that model. Practical experience with
parametric models in modal analysis applications learnt that it is better to over-specify the
model order and to eliminate spurious numerical poles afterwards. The famous stabilization
diagram (see for instance [HEYL95, ALLE99]) is a great tool to achieve this goal. The
poles corresponding to a certain model order are compared to the poles of a one-order-
lower model. If the eigenfrequency, the damping ratio and the related mode shape (or
modal participation factor) differences are within preset limits, the pole is labelled as a
stable one. If we choose, for instance, the following limits: 1% for eigenfrequencies, 5%
for damping ratios and 2% for the modal vectors, the stability requirements are:

where ‘p’ denotes the model order at which f,  and the mode shapes  are identified13.� v
The Modal Assurance Criterion (MAC) is nothing else than the (squared) correlation
between two modal vectors:
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By definition the MAC is a number between 0 and 1. It is often used in modal analysis
applications because it is able to characterize the correspondence between mode shapes in
one number.

The spurious numerical poles will not stabilize at all during this process and can be sorted
out of the modal parameter data set more easily. For an efficient construction of the
stabilization diagram, it is important to avoid repetitive computations of common steps
when estimating models of different order. For the IV method this is trivially achieved by
estimating the covariance Toeplitz matrix (3.7) only once. First the maximum number of
poles  is specified. Depending on the quality of the data  should significantlynmax nmax

exceed the number of expected poles: a high model order is required to identify poles that
are buried in noise. The maximum ARMA model order  is the nearest integer towardspmax

infinity to . Including the right hand side of (3.19), the IV method requires anmax r
covariance Toeplitz matrix of maximum  block columns and q block rows.pmax�1
Comparing the two expressions for the Toeplitz matrix, (3.7) and (3.19), i can be
determined as  and q can be chosen equal to . By this choice, thei
pmax�1 q
 i
overdetermination of (3.19) is ensured. The lower order models (for ) are simplyp<pmax

obtained by selecting the last p block columns of the initially constructed covariance
Toeplitz matrix and solving (3.19) for the AR coefficients.

Relation to other methods

It is known for some time that there exist similar mathematical expressions for impulse
responses and output covariances (of a system excited by white noise), see for instance
[AKAI74b, BEND93] and Subsection 2.5.2. In modal analysis, this observation is used to
feed classical modal parameter estimation methods, that normally work with impulse
responses, with output covariances instead. Although derived in a different way, the final
equations of the IV method correspond to the Polyreference Time Domain (PTD) method
after substituting impulse responses by output covariances. The PTD method is probably
the most widely-used traditional modal parameter estimation method. It contains the (Least
Squares) Complex Exponential (LSCE) and the Ibrahim Time Domain (ITD) methods as
special cases. For an overview, relations between these traditional (input-output) methods
and the original references, see [LEUR84, ALLE94, HEYL95, ALLE99].

The backward reference model (3.18) is the most useful in practice: in a first stage (3.21)
the poles  and the stochastic participation matrix  are obtained in an efficient way.�d G ref

m

In a full model (i.e. all outputs are considered as references) the involved matrices are
larger. This has a negative effect on the computational efficiency. Also the stabilization
diagram makes less sense in case of a full model: every time the model order p is increased
by one, there are l additional poles (against only r in case of a reference model). This
means that already in a few steps a model is obtained that includes a large number of poles
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and that there is not much stability information. In a second stage the full mode shapes are
obtained according to Equation (3.22). Note that a forward reference model (similar to
(3.17)) isn’t too useful: a first stage would yield the mode shapes at the reference locations
only  and a second stage the full participation matrix , whereas one isLV�Ùr×n Gm�Ù

l×n

obviously more interested in the full mode shapes.

Instead of estimating the mode shapes according to Equation (3.22) that re-uses the output
covariances, it is common practice to use a frequency-domain fitting procedure
[HERM99]. In this case the spectrum matrix is estimated from the data by a non-parametric
identification method (see Subsection 3.2.3). Afterwards parametric spectrum models, like
(A.6) or (A.8), are fitted to the nonparametric spectrum estimate. Because the poles and
covariance matrices  are known from the first IV step, the models (A.6)(A.8) are linearG ref

m

in the mode shapes V, and linear least squares can be applied.

Example

The IV method is applied to the simulated data of the mast structure (Figure 2.1). Sensor 5
in the y-direction and sensor 6 in the x-direction are considered as reference sensors. The
output covariances  are estimated for lags  with  (This is a user’sR̂

ref
k k
1,2, ...,2i	1 i
40

choice). They are gathered in a  ( ) Toeplitz matrix (3.7). A stabilizationli×ri 
240×80
diagram is constructed by identifying ARMA models for orders . Since ,p
1,2, ...,30 r
2
these models have  poles. Note that the maximum ARMA-model order would be2,4, ...,60

. In a first stage, the discrete-time eigenvalues  (diagonal elements of )pmax
 i	1
39 µ i �d
and the output-only modal participation factors  (rows of ) are computed<g ref

i
T
>�Ù2 G ref

m

from the AR coefficients (3.21). The eigenfrequencies and damping ratios are related to the
discrete-time eigenvalues as (see Equations (2.16) and (2.45)):

The stabilization diagram is shown in Figure 3.9. The two zooms reveal that it is possible to
distinguish the two pairs of close modes. Although the trace of the spectrum matrix is not
directly related to the IV method, it is plotted over the stabilization diagram as a visual aid
to select the stable poles.

By selecting one stable pole at each vertical frequency line where stable poles are present,
the analyst obtains a set of eigenfrequencies , damping ratios  and output-only modalfi �i
participation factors . From this stable set the full mode shapes can be obtained in<g ref

i
T
>

a second stage as formulated in (3.22). The detailed modal parameter estimation results are
presented at the end of this chapter.
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Figure 3.9: Stabilization diagram obtained with the IV method. The criteria are 1% for frequencies, 2%
for damping ratios and 1% for the participation vector correlations (3.23). The used symbols are: ‘U’ for
a stable pole; ‘.v’ for a pole with stable frequency and vector; ‘.d’ for a pole with stable frequency and
damping; ‘.f’ for a pole with stable frequency and ‘.’ for a new pole. The model orders are ranging from
1 to 30. Since the number of references is 2, the number of poles is twice the model order. Two zooms
are added that concentrate on the close modes around 2.4 and 7 Hz.

3.4.2 Covariance-driven stochastic subspace identification (SSI-COV)

Like the CMIF method can be considered as an SVD-enhanced PP method, covariance-
driven subspace can & somewhat disrespectful & be considered as an SVD-enhanced
instrumental-variable method. While in the IV method, the factorization property of the
output covariances (2.56), (3.6) was only used in a second stage to obtain the mode shapes,
it is really the basis of the subspace method. The COVariance-driven Stochastic Subspace
Identification method (SSI-COV) is addressing the so-called stochastic realization
problem, i.e. the problem of identifying a stochastic state-space model from output-only
data.

Stochastic realization is closely related to deterministic (input-output) realization, that goes
back to Ho and Kalman [HOKA66] and was extended with the SVD to treat noisy data in
[ZEIG74] and [KUNG78]. The so-called Eigensystem Realization Algorithm (ERA),
developed by Juang [JUAN85, JUAN94], is a modal analysis application of these
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deterministic realization algorithms. The stochastic (output-only) realization problem is
solved in [AKAI74b, AOKI87, ARUN90]. Application of stochastic realization to modal
parameter estimation was reported by Benveniste and Fuchs [BENV85]. They also proved
that their algorithm is robust against non-stationary inputs (e.g. a white noise sequence with
time-varying covariance).

The SSI-COV method identifies a stochastic state-space model from output-only data. The
stochastic state-space model, introduced in Subsection 2.5.1, has the following form:

where  and  are vector signals assumed to be zero mean, white and with covariancewk vk
matrices:

Stochastic realization theory

In this section a modified version of the classical covariance-driven stochastic realization
algorithm is presented. The modification consists of reformulating the algorithm so that it
only needs the covariances between the outputs and a limited set of reference outputs
instead of the covariances between all outputs. This corresponds to classical modal
analysis, where the impulse response matrices  are rectangular matrices having l rowshk

(i.e. the number of outputs) and m columns (i.e. the number of inputs). In output-only
cases, the impulse responses are substituted by output covariances and the inputs by the
reference outputs (see also [JAME95, HERM99]). As in the IV method, the output
covariances are gathered in a block Toeplitz matrix  (3.7). Applying the factorizationT ref

1i

property (3.6) to  yields:T ref
1i
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where the definitions of the extended observability matrix  and the reversedOi�Ü
li×n

extended stochastic controllability matrix  are obvious from (3.27). For ,+
ref
i �Ü

n×ri ri�n
and if the system is observable and controllable, the rank of the  Toeplitz matrixli×ri
equals n, since it is the product of a matrix with n columns and a matrix with n rows. The
SVD is a numerically reliable tool to estimate the rank of a matrix. The application of the
SVD to the block Toeplitz matrix yields:

where  and  are orthonormal matrices (  andU�Üli×li V�Üri×ri U T U
UU T

 Ili

) and  is a diagonal matrix containing the positive singularV T V
VV T

 Iri S�(Ü�)li×ri

values in descending order. The rank of a matrix is found as the number of non-zero
singular values. In the last equality of (3.28), the zero singular values and corresponding
singular vectors are omitted: , , . By comparing (3.27) toU1�Ü

li×n S1�(Ü
�

0 )n×n V1�Ü
ri×n

(3.28), the matrices  and  can be computed by splitting the SVD in two parts:Oi +
ref
i

where  is a non-singular matrix. It is easy to see that this matrix T can beT�Ùn×n

considered as a similarity transformation that is applied to the identified state-space model;
see also Equation (2.26). In other words, whatever the choice of T may be, similarity-
equivalent state-space models will result and we can simply set: . The solution of theT
 I
identification problem is now straightforward. From the definitions of the extended
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observability matrix  and the reversed extended stochastic controllability matrix Oi +
ref
i

(3.27), we know that C equals the first l rows of  and  equals the last r columns ofOi G ref

; or written in MATLAB notation:+
ref
i

A first possible way [ZEIG74] to compute the state transition matrix A follows from the
decomposition property of a shifted block Toeplitz matrix:

where the shifted matrix  has a similar structure as  (3.7), but is composed ofT ref
2i�1 T ref

1i

covariances  from lag 2 to . Matrix A is found by introducing (3.29) in (3.31) andR ref
k 2i

solving for A:

where  denotes the Moore-Penrose pseudo-inverse of a matrix.(•)†

Alternatively [KUNG78], matrix A could also be computed by exploiting the shift structure
of the extended observability matrix :Oi

An equivalent least-squares expression could be derived that makes use of the reversed
extended stochastic controllability matrix instead. However, since , there is less over-r< l
determination in this case.

At this point the identification problem is theoretically solved: the system order n is found
as the number of non-zero singular values in (3.28) and the system matrices A,G ref,C,R ref

0

can be computed as in Equations (3.30) and (3.32) or (3.33). The fourth system matrix R ref
0

(see discussion in Subsection 2.5.2) is simply the zero-lag output covariance matrix. The
two matrices  are sufficient to compute the modal parameters. As discussed inA,C
Subsection 2.4.2, the discrete poles  and the observed mode shapes  are computed as�d V
(see also (2.45), (2.46)):
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Implementation and stabilization

In reality the number of measurements is not infinite and the output covariances have to
be estimated (3.8). Since these output covariances form the basis of the realizationR̂ ref

i

method (3.27), it is evident that the identified system matrices also have to be considered
as estimates: .Â, Ĝ

ref
, Ĉ, R̂

ref
0

Another remark is that in theory the system order n can be determined by inspecting the
number of non-zero singular values of  (3.28). In practice however, the estimatedT ref

1i

covariance Toeplitz matrix  is affected by "noise" leading to singular values that areT̂ ref
1i

all different from zero. As typical noise sources we have:

� Modelling inaccuracies. It is possible that the true system that generated the data
cannot be modelled exactly as a stochastic state-space model. An attempt to
model this system by a state-space model introduces an error in these cases.

� Measurement noise: introduced by the sensors and the electronics of the
measurement hardware.

� Computational noise due to the finite precision of any computer.

� The finite number of data. The covariances have to be estimated, so that the
factorization property (3.6) does not hold exactly. As a consequence the rank of
the covariance Toeplitz matrix will not be exactly n; see Equation (3.27).

In practice, the order can be determined by looking at a "gap" between two successive
singular values. The singular value where the maximal gap occurs yields the model order.
This criterion should however not be applied too dogmatically. For large, real structures
there is generally no clear gap.

To obtain a good model for modal analysis applications, it is probably a better idea to
construct a stabilization diagram, by identifying a whole set of models with different order.
The stabilization diagram was already introduced in Subsection 3.4.1 and Equation (3.23).
In case of the SSI-COV method, an efficient construction of the stabilization diagram is
achieved by computing the SVD of the covariance Toeplitz matrix (3.28) only once. The
number of block rows and columns i of  should be such that , the maximumT ref

1i r i�nmax

model order (see also the discussion on page 70, Subsection 3.4.1). Models of different
order are then obtained by including a different number of singular values and vectors in
the computation of  and  (3.29), from which the system matrices and the modalOi +

ref
i

parameters are deduced as described in previous subsection.
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Figure 3.11: Stabilization diagram obtained with the SSI-COV method. The criteria are 1% for
frequencies, 2% for damping ratios and 1% for the mode shape correlations (3.23). The used symbols are:
‘U’ for a stable pole; ‘.v’ for a pole with stable frequency and vector; ‘.d’ for a pole with stable frequency
and damping; ‘.f’ for a pole with stable frequency and ‘.’ for a new pole. The model orders are ranging
from 2 to 60. Two zooms are added that concentrate on the close modes around 2.4 and 7 Hz.
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Figure 3.10: Singular values of the covariance Toeplitz matrix. The true
model order is 12, but it seems that 16 singular values are significant. By
lowpass filtering the data (see Page 55), additional poles were introduced.

Example

The SSI-COV method is applied to the simulated data of the mast structure (Figure 2.1). The
same  covariance Toeplitz matrix as in the IV example is formed (see Page 72). The240×80
key step of SSI-COV is the SVD of this Toeplitz matrix (3.28). The singular values are
plotted on a log scale in Figure 3.10.
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A stabilization diagram is constructed by identifying state-space models for orders
. The modal parameters are computed from the identified model matrices A andn
2,3, ...,60

C, according to Equation (3.34). The stabilization diagram is shown in Figure 3.11. The two
zooms reveal that it is possible to distinguish the two pairs of close modes. Although the
trace of the spectrum matrix is not directly related to the SSI-COV method, it is plotted over
the stabilization diagram as a visual aid to select the stable poles. The detailed modal
parameter estimation results are presented at the end of this chapter.

3.4.3 Other covariance-driven methods

The random decrement technique

The Random Decrement technique (RD) was introduced by Cole [COLE68] and evolved
to an output-only modal analysis technique [IBRA77, ASMU97, IBRA98]. The RD
technique converts random responses due to unknown or unmeasured stationary random
input to free decays. In [ASMU97] it is shown that so-called RD functions are closely
related to output covariance functions. That is the reason to classify the RD technique as
a covariance-driven method in this thesis (although RD functions are not exactly the same
as covariances). It must be added that the RD technique is not a "new" system
identification method, but since the RD functions can be considered as free decays and are
related to covariances, all covariance-driven methods can be applied to RD functions as
well.

Recent developments

Recently, it is shown how the problem of MA parameter estimation from covariances can
be formulated as a semidefinite program [STOI00]. The proposed algorithm is
computationally fast, statistically accurate, and reliable. In [MARI00], these ideas are
extended and combined with subspace-based techniques to solve multivariate ARMA
parameter estimation problems. Their solution method does not suffer from stability and
positive realness problems that other subspace methods may experience when applied to
specially designed simulated data [DAHL98]. It is beyond the scope of this thesis to go
into further detail; the interested reader is referred to the cited references.
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3.5 TIME-DOMAIN DATA-DRIVEN METHODS

The main advantage of data-driven algorithms is that they do not require any further
preprocessing in order to obtain spectra or covariances. These methods identify models
directly from the time signals. A first method is the data-driven subspace method, that is
closely related to the covariance-driven subspace method of Subsection 3.4.2. Afterwards
the classical prediction error method that identifies AR(MA) models from time data is
briefly reviewed.

3.5.1 Data-driven stochastic subspace identification (SSI-DATA)

Recently a lot of research effort in the system identification community was spent to
subspace identification as evidenced by the book of Van Overschee and De Moor
[VANO96] and the second edition of Ljung’s book [LJUN99]. Subspace methods identify
state-space models from (input and) output data by applying robust numerical techniques
such as QR factorization, SVD and least squares. As opposed to SSI-COV, the DATA-
driven Stochastic Subspace Identification method (SSI-DATA) avoid the computation of
covariances between the outputs. It is replaced by projecting the row space of future
outputs into the row space of past outputs. In fact, the notions covariances and projections
are closely related. They both are aimed to cancel out the (uncorrelated) noise. The first
SSI-DATA algorithms can be found in [VANO91, VANO93]. A general overview of data-
driven subspace identification (both deterministic and stochastic) is provided in the book
of Van Overschee and De Moor [VANO96]. Although somewhat more involved as
compared to previous methods, it is also possible with SSI-DATA to reduce the
dimensions of the matrices by introducing the idea of the reference sensors. This is
demonstrated in [PEET99f, PEET99d] and also in this subsection.

The derivation of SSI-DATA is given for the reference-sensor case. The original algorithm
is simply recovered by considering all sensors as references. First, the Kalman filter states
will be introduced because of their importance in subspace identification. Next, the
principles of SSI-DATA are explained. And finally, the implementation of the projection
in terms of the QR factorization is discussed.

As the SSI-COV method, the SSI-DATA method identifies a stochastic state-space model
(3.25), (3.26) from output-only data.

Kalman filter states

The Kalman filter plays an important role in SSI-DATA. In Subsection 2.5.3, it was
indicated how the forward innovation model (2.58) can be obtained by applying the steady-
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state Kalman filter to the stochastic state-space model (2.51). In this section, the non-
steady-state Kalman filter is introduced. The Kalman filter is described in many books. A
nice derivation can be found in Appendix B of [JUAN94]. The aim of the Kalman filter
is to produce an optimal prediction for the state vector  by making use of observationsxk

of the outputs up to time  and the available system matrices together with the knownk	1
noise covariances. These optimal predictions are denoted by a hat: . When the initialx̂k�1

state estimate , the initial covariance of the state estimate  and thex̂0
0 P0
E [x̂0 x̂T
0]
0

output measurements  are given, the non-steady-state Kalman filter statey0, ...,yk	1

estimates  are obtained by the following recursive formulas:x̂k

expressing the Kalman state estimate, the Kalman filter gain matrix and the Kalman state
covariance matrix. The Kalman filter state sequence  is defined as:X̂i�Ü

n×N

The correct interpretation of the ( )th column of this matrix is that this state  isq�1 x̂i�q

estimated according to Equation (3.35) by using only i previous outputs: . Byyq, ...,yi�q	1

consequence, two consecutive elements of  cannot be considered as consecutiveX̂i

iterations of (3.35). More details can be found in [VANO96]. Important to note is that a
closed-form expression exists for this Kalman filter state sequence and that it is this
sequence that will be recovered by the SSI-DATA algorithm (see further).

Data-driven stochastic subspace identification theory

The SSI-DATA algorithm starts by projecting the row space of the future outputs into the
row space of the past reference sensors. The idea behind this projection is that it retains all
the information in the past that is useful to predict the future. The notation and definition
of this projection is:

The matrices  and  are partitions of the data Hankel matrixYf�Ü
li×N Y ref

p �Ü
ri×N

, as indicated in Equation (3.2). From the definition (3.37), it is clear thatH ref
�Ü

(r�l)i×N

projections and covariances are closely related. Indeed the matrix products  and Yf (Y ref
p )T Y ref

p (Y ref
p )T

are in fact block Toeplitz matrices containing covariances between (reference) outputs; see
also Equation (3.7). Note that expression (3.37) is only the definition of ; it does not�

ref
i
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indicate how the projection is computed. As we will see further, it is computed by the
numerically robust QR factorization.

The main theorem of stochastic subspace identification [VANO96] states that the
projection  can be factorized as the product of the extended observability matrix �

ref
i Oi

(3.27) and the Kalman filter state sequence  (3.36):X̂i

The prove of this theorem for the case where all outputs are considered as references
( ) can be found in [VANO96]. In the present case, where only the past referenceY ref

p ÚYp

outputs have been used, the proof is almost the same, except for the significance of the
obtained Kalman filter state sequence . The non-steady-state Kalman filter is applied toX̂ i

a reduced state-space model that includes only the reference outputs. Following
substitutions have to be made in Equation (3.35):

At first sight, the choice of the reference sensors seems to be unimportant: for all choices
the factorization (3.38) is found. Indeed, theoretically the internal state of a system does
not depend on the choice and number of observed outputs. However in identification
problems where the states are estimated based on observations, the choice and number of
outputs does matter: different reference outputs will lead to different Kalman filter state
estimates .X̂i

Since the projection matrix is the product of a matrix with n columns and a matrix with n
rows (3.38), its rank equals n (if ). The SVD is a numerically reliable tool to estimateli�n
the rank of a matrix. After omitting the zero singular values and corresponding singular
vectors, the application of the SVD to the projection matrix yields:
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where ,  and . The extended observability matrix and theU1�Ü
li×n S1�(Ü

�

0 )n×n V1�Ü
N×n

Kalman filter state sequence are obtained by splitting the SVD in two parts:

In the following, we will set the similarity transformation matrix ; see also theT
 I
discussion after Equation (3.29).

Up to now we found the order of the system n (as the number of non-zero singular values
in Equation (3.39)), the observability matrix  and the state sequence . However, theOi X̂ i

identification problem is to recover the system matrices . If the separationA,G,C,R0

between past reference and future outputs in the Hankel matrix is shifted one block row
down, as indicated in Equation (3.3), another projection can be defined:

where the proof of the second equality is similar to proof of the main subspace theorem
(3.38). The extended observability matrix  is simply obtained after deleting the last lOi	1

rows of :Oi

The state sequence  can now be computed as:X̂i�1

At this moment the Kalman state sequences  are calculated using only the outputX̂ i , X̂i+1

data. The system matrices can now be recovered from following overdetermined set of
linear equations, obtained by stacking the state-space models for time instants i to :i�N	1

where  is a Hankel matrix with only one block row (3.2) and , Yii�Ü
l×N Wi�Ü

n×N Vi�Ü
l×N

are the residuals. Since the Kalman state sequences and the outputs are known and the
residuals are uncorrelated with , the set of equations can be solved for A, C in a leastX̂ i

square sense:
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14Asymptotic means that the number of data (theoretically) goes to infinity: .NÚ�

15The modal parameters are only determined from A, C and are by consequence not suffering from this bias
on .G,R0
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The noise covariances Q, R and S are recovered as the covariances of the least-squares
residuals:

From the properties of stochastic systems (Subsection 2.5.2), it is easy to see how the
matrices  can be transformed to . First the Lyapunov equation isA,C,Q,R,S A,G,C,R0

solved for :�

after which G and  can be computed as:R0

At this point the identification problem is theoretically solved: based on the outputs, the
system order n and the system matrices  are found.A,G,C,R0

The matrices  are sufficient to compute the modal parameters. As discussed inA,C
Subsection 2.4.2, the discrete poles  and the observed mode shapes  are computed as�d V
(see also (2.45), (2.46)):

Positive realness

The computation of  according to (3.42) only leads to asymptotically14 unbiasedQ,R,S
estimates if the number of block rows in the Hankel matrices goes to infinity: . SoiÚ�
in practice, since , a bias will be introduced on  (and thus also on G, )15.ig� Q,R,S R0
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Other algorithms exist that compute asymptotically unbiased estimates. Unfortunately these
algorithms do not guarantee the positive realness of the identified covariance sequence.
More details on positive realness can be found in [VANO96]. Important for the following
of this thesis is that only positive real sequences have a corresponding spectrum matrix that
is positive definite for all frequencies . If a matrix is positive definite, then all its&

diagonal entries are positive [GOLU89]. In Subsection 3.7.1, we will encounter an example
of an identified power spectrum that becomes negative at certain frequencies (which has
of course no physical meaning). A power spectrum is a diagonal entry of the spectrum
matrix and therefore this matrix cannot be positive definite. The model was indeed
identified with the SSI-COV method, a method that does not guarantee the positive-
realness of the identified covariance sequence.

Also important is that only positive real sequences can be converted to a forward
innovation state-space model. Such a model is sometimes useful, as we will see further.
The conversion starts by solving the Riccati equation for P (see also Subsection 2.5.3):

The covariance matrix of the innovations is computed as:

And finally the Kalman gain is obtained as:

Although, we never encountered practical positive realness problems when applying the
SSI-DATA method to our numerous examples, it is shown in [DAHL98] that the problem
is theoretically not solved by the outlined SSI-DATA algorithm. More discussions on the
topic can be found in [MARI00]; see also Subsection 3.4.3.

Implementation

Really crucial in the successful implementation of data-driven subspace algorithms in
general is the RQ factorization of data Hankel matrices. Such a factorisation applied to the
output Hankel matrix of Equation (3.2), (3.3) reads:
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where  is an orthonormal matrix:  and  is a lowerQ�ÜN×N Q T Q 
 QQ T

 IN R�Ü(r�l) i×N

triangular matrix. Since , it is possible to omit the zeros in R and the(r�l) i<N
corresponding rows in :Q T

The division in block rows and columns is made such that the submatrices in (3.44) can all
be expressed in terms of the R and Q submatrices. It is easy to show that the RQ
factorization yields following very simple expressions for the projections of future row
spaces into past row spaces:

Also , the output sequence that is present in the least-squares equations in A, CYii�Ü
l×N

(3.41) is easily written in terms of the RQ factors:

Since  and , all right-hand-side quantities of the least-squaresX̂i
O †
i �

ref
i X̂i�1
O †

i	1�
ref
i	1

Equation (3.41) can be expressed in terms of the RQ factors. Because of their
orthonormality, the Q factors cancel out in this equation. So in this first step (3.44) the Q
matrix should not be calculated. The MATLAB function qr [MATL96], for instance, allows
for the computation of the R factor only. Since typically , an important data(r�l) i«j
reduction is obtained by replacing the  data Hankel matrix  by its R factor(r�l) i×N H ref

of dimension .(r�l) i× (r�l) i
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The computation of this R factor is the most demanding step of the SSI-DATA algorithm.
The number of flops fl is proportional to the number of columns and to the square of the
number of rows of the data Hankel matrix:

Assuming the same number of block rows i and the same number of data points N, the gain
in computational efficiency by introducing the reference sensors (subindex ‘ref’) as
opposed to using all sensors as references (subindex ‘all’) can be expressed as:

which is significant in modal analysis where often many sensors l are used and only few
of them need to be considered as references r.

Evidently, due to the finite data length, the identified state-space model is only an estimate
of the true underlying state-space model that generated the data. This is denoted as

 for a covariance model and as  for a forward innovation model. TheÂ, Ĝ, Ĉ, R̂0 Â, K̂, Ĉ, R̂e

matrices  are asymptotically unbiased estimates, but as stated before, a small bias wasÂ, Ĉ
introduced on the estimates of the other matrices.

The same remark as in the SSI-COV method concerning the determination of the model
order n applies here. Due to noise (modelling inaccuracies, measurement noise and
computational noise) none of the singular values in Equation (3.39) are exactly zero and
the order can only be determined by looking at a "gap" between two successive singular
values. The singular value where the maximal gap occurs yields the model order. However
in many practical cases, no gap is visible. As previously, the problem of order
determination is better solved by constructing a stabilization diagram (3.23). The number
of block rows i of  should be such that , the maximum model order. ModelsH ref r i�nmax

of different order are then obtained by including a different number of singular values and
vectors in the computation of  and  (3.40), from which the system matrices and theOi X̂i

modal parameters are deduced as described previously.
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Figure 3.12: Stabilization diagram obtained with the CVA variant of the SSI-DATA method. The criteria
are 1% for frequencies, 2% for damping ratios and 1% for the mode shape correlations (3.23). The used
symbols are: ‘U’ for a stable pole; ‘.v’ for a pole with stable frequency and vector; ‘.d’ for a pole with
stable frequency and damping; ‘.f’ for a pole with stable frequency and ‘.’ for a new pole. The model
orders are ranging from 2 to 60. Two zooms are added that concentrate on the close modes around 2.4 and
7 Hz.

Example

The SSI-DATA method is applied to the simulated data of the mast structure (Figure 2.1).
The first step of SSI-DATA is the computation of the R-factor of a (r� l ) i×N
( ) data Hankel matrix (3.44). Next the SVD of this R-factor is computed
320×16305
(3.39). Several variants of stochastic subspace identification exist (Section 3.6). They differ
in the weighting of the R-factor before application of the SVD. One of these variants is so-
called Canonical Variate Analysis (CVA), in which the singular values can be interpreted
as the cosines of the principal angles between two subspaces: the row space of the future
outputs  and the row space of the past (reference) outputs . These principal angles areYf Y ref

p

plotted in Figure 3.13.

A stabilization diagram is constructed by identifying state-space models for orders
. The modal parameters are computed from the identified model matrices A andn
2,3, ...,60

C, according to Equation (3.34). The stabilization diagram is shown in Figure 3.12. The two
zooms reveal that it is possible to distinguish the two pairs of close modes. Although the
trace of the spectrum matrix is not directly related to the SSI-DATA method, it is plotted
over the stabilization diagram as a visual aid to select the stable poles. The detailed modal
parameter estimation results are presented at the end of this chapter.
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16Prediction errors are the part of the output data that cannot be predicted from past data.
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Figure 3.13: Principal angles between the row space of future outputs
and the row space of past reference outputs. The true model order is 12,
but it seems that 16 principal angles are significantly different from 90(.
By lowpass filtering the data (see Page 55), additional poles were
introduced.

3.5.2 Other data-driven methods

The prediction error method applied to an ARMA model

Prediction Error Methods (PEM) can be considered as a general system identification
framework [LJUN99]. These methods identify the parameters of a model by minimizing
the so-called prediction errors16. The straightforward application of PEM to estimate an
ARMA model (2.59) from data results in a highly nonlinear optimization problem with
related problems as: convergence not being guaranteed, local minima, sensitivity to initial
values and a high computational load. Despite these drawbacks, the PEM has been applied
to identify the modal parameters of civil engineering structures, see for instance [PIOM93,
ANDE97]. However, in contrast to nonlinear frequency-domain methods (see
Subsection 3.3.3), nonlinear time-domain methods (such as PEM applied to an ARMA
model) never reached an acceptable level of robustness for civil engineering modal
analysis applications [PEET99a]. Apparently the PEM works on simulated examples or
single-output cases, but suffers from divergence or an unreasonable computation time in
case of a large number (10 or more) of sometimes noisy outputs.

The prediction error method applied to an AR model

The non-linearity of the PEM is caused by the MA part of the ARMA model. By omitting
the moving-average part, an auto-regressive model is obtained:
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and the PEM reduces to a linear least squares problem, which is easily solved.
Unfortunately, a pth-order AR model is not an equivalent representation of a vibrating
structure with pl modes. However, the use of an AR model as a substitution of an ARMA
model can be justified if the AR model order goes to infinity: . In practice thispÚ�
means that many spurious poles will be introduced that need to be separated from the true
system poles. The use of AR models for modal parameter estimation is, for instance,
demonstrated in [PAND91a, DERO95].

3.6 COVARIANCE-DRIVEN VS. DATA-DRIVEN SUBSPACE

This section points out some of the similarities and differences between the SSI-COV
(Subsection 3.4.2) and the SSI-DATA method (Subsection 3.5.1). First the similarities.
Both methods start with a data reduction step. In the SSI-COV algorithm the raw time
histories , consisting of l channels of N data points, are converted to the covariances ofyk

the Toeplitz matrix  (3.7). The number of elements is reduced from  toT ref
1i 
Yf Y

ref
p

T
l×N

; with r the number of references and . In the SSI-DATA algorithm a similarli×ri NÚ�
reduction is obtained by projecting the row space of the future outputs into the row space
of the past reference outputs  (3.37). This projection is computed from the�

ref
i 
Yf Y ref

p

QR factorization of the data Hankel matrix (3.2). A significant data reduction is obtained
because only a part of the R factor is needed in the sequel of the algorithm. Both methods
then proceed with an SVD. The decomposition of  reveals the order of the system, theT ref

1i

column space of  and the row space of  (3.29). Similarly the decomposition of Oi +
ref
i �

ref
i

reveals the order of the system, the column space of  and the row space of  (3.40).Oi X̂ i

Several variants of stochastic subspace identification exist. They differ in the weighting of
the data matrices (  for SSI-COV and  for SSI-DATA) before the application ofT ref

1i �
ref
i

the SVD. The weighting determines the state-space basis in which the identified model will
be identified. More details can be found in [ARUN90] and [VANO96]. One of these
variants is so-called Canonical Variate Analysis (CVA), in which the singular values can
be interpreted as the cosines of the principal angles between two subspaces: the row space
of the future outputs  and the row space of the past (reference) outputs . In theYf Y ref

p

SSI-COV implementation of CVA, the weighting of the covariance Toeplitz matrix before
the application of the SVD goes as follows [AKAI74b, ARUN90]:
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In the SSI-DATA implementation of CVA, the weighting of the projection matrix before
the application of the SVD goes as follows [VANO96]:

Also the other subspace variants have equivalent implementations for both SSI-COV and
SSI-DATA.

There are also differences between the covariance-driven and data-driven approaches. As
indicated in Subsection 3.2.2, the covariance Toeplitz matrix can be computed in a very
fast way by using the FFT algorithm. The corresponding step in SSI-DATA algorithm is
the relatively slow QR factorization. Therefore SSI-COV is much faster than SSI-DATA.
In favour of the data-driven method is that it is implemented as a numerically robust square
root algorithm: the output data is not squared up as in the covariance-driven algorithm.
More advantages of the data-driven method become clear in next section, where some
postprocessing tools for the identified state-space model are presented: an analytical
expression for the spectrum matrix and the separation of the total response in modal
contributions.

3.7 POSTPROCESSING

This section deals with some useful postprocessing tools. In the present context,
postprocessing means everything that comes after the identification of a parametric model.
Once such a model is available, it can be analytically converted to other presentation
forms. Modal analysis, a first type of postprocessing, was in fact already discussed in
connection with the various identification methods. For instance, the modal parameters can
be extracted from the AR parameters identified with the IV method; see Equations (3.21),
(3.22). Similarly, the state-space matrices identified with SSI-COV or SSI-DATA allow
us to compute the modal parameters, as formulated in (3.34). Other postprocessing tools
such as spectrum analysis and modal responses are subsequently treated.

3.7.1 Spectrum analysis

The covariance-driven and data-driven system identification methods use time-domain data
to identify a model. It is however interesting to assess the frequency-domain performance
of these methods. Hereto, the identified models are converted to a spectrum model and
compared with a non-parametric spectrum estimate, such as the periodogram (3.10) or
correlogram (3.11). These estimates are directly obtained by applying the FFT to the time



92 CHAPTER 3 STOCHASTIC SYSTEM IDENTIFICATION

Sy(e j&ût ) 
 C (zI	A )	1 G � R0 � G T (z 	1 I	A T )	1 C T

z 
 e j&ût (3.46)

�Sy(e j&ût ) 
 V (zI	�d )	1 Gm � R0 � G T
m (z 	1 I	�d )	1 V T

z 
 e j&ût (3.47)

data without any modelling involved. In Chapter 2, a closed-form expression for the
spectrum of a discrete-time stochastic state-space model was derived, see Equation (2.80):

By introducing the eigenvalue decomposition of A ( ), following "modal"A
��d�
	1

spectrum is obtained:

The IV method

The IV method yields the modal matrices ,  and , see (3.21) and�d�Ù
n×n G ref

m �Ù
n×r V�Ùl×n

(3.22). The matrix  is directly estimated from the data. So only in case all sensorsR ref
0 �Ü

l×r

were considered as references, the complete spectrum matrix can be computed according
to Equation (3.47). Otherwise only the power and cross spectra between the reference
channels can be computed: .LSy L T

�Ù
r×r

The SSI-COV method

The SSI-COV method yields the state-space matrices ,  and , seeA�Ün×n G ref
�Ü

n×r C�Ül×n

(3.30) and (3.32). The matrix  is directly estimated from the data. So only in caseR ref
0 �Ü

l×r

all sensors were considered as references, the complete spectrum matrix can be computed
according to Equation (3.46). Otherwise only the power and cross spectra between the
reference channels can be computed: .LSy L T

�Ù
r×r

The SSI-DATA method

The SSI-DATA method yields the full state-space matrices , ,  andA�Ün×n G�Ü
n×l C�Ül×n

, see (3.41) and (3.43). So, whatever the number of references is, it is theoreticallyR0�Ü
l×l

possible to compute the complete spectrum matrix according to Equation (3.46).Sy�Ù
n×n

Example 

The simulated data of the mast structure (Figure 2.1) is used to compare the parametric
spectrum estimates (3.46), (3.47) with a non-parametric estimate. For all three methods (IV,
SSI-COV and SSI-DATA) a model is identified that contains 20 poles. The analytical
expression for the spectrum is evaluated for frequencies ranging from 0 to 12.5 Hz. The
comparison is made in Figure 3.14. A 20-pole model is satisfactory for the subspace
methods, but for the IV method a higher order model should be used. The spectrum matrix
obtained with the SSI-DATA method is theoretically the full spectrum matrix, regardless the
number of reference sensors used. However, from a plot of the power spectrum of a non-
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Figure 3.14: Comparison of power spectra of the 5th output channel. The rather
erratic dotted line is the non-parametric estimate (Welch’s method). The full line
is the IV spectrum; the dash-dotted line is the SSI-COV spectrum and the thick
dashed line represents the SSI-DATA spectrum. The 20-pole model resulting from
the IV method failed to identify the first pole. This was also observed in the
stabilization diagram (Figure 3.9), where the first pole was not yet stable at n = 20.
The 20-pole models from the subspace methods caught all true poles. However the
SSI-COV power spectrum becomes negative at certain frequencies, which is due
to the unsatisfied positive realness (Page 84) condition. Although it is not the case
in this example, also the IV spectrum can become negative. As discussed on
Page 84, the SSI-DATA method overcomes this problem.
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Figure 3.15: Comparison of power spectra of the 4th output channel (This is a non-
reference channel). The rather erratic dashed line is the non-parametric estimate
(Welch’s method). The thick full line represents the SSI-DATA spectrum. The
correspondence at the peaks is very good, but between the peaks the SSI-DATA
spectrum of a non-reference channel is not as accurate.

reference channel (Figure 3.15), it is clear that spectra involving a non-reference channel are
not as accurately estimated as reference spectra.



94 CHAPTER 3 STOCHASTIC SYSTEM IDENTIFICATION

zk�1 
 Azk � Kek

yk 
 Czk � ek

zm,k�1 
 �d zm,k � Kmek

yk 
 V zm,k � ek

zm,k�1 
 (�d	KmV ) zm,k � Km yk

ek 
 	V zm,k � yk
(3.48)
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3.7.2 Modal response and prediction errors

This subsection presents a technique to split the total measured response in modal
responses. A modal response is defined as the response of a single DOF system, having
the same eigenfrequency and damping ratio as the considered mode, to the same force as
applied to the full system. The technique assumes that the identified model is written in
forward innovation form (2.58):

where  is the Kalman gain and  is the white noise innovation sequence withK�Ün×l ek�Ü
l

covariance matrix . This model can be written in the modal basis:E [ep e T
q ]
Re/pq

where  and . Because  is a diagonal matrix, each element of the�	1 zk
zm,k �	1 K
Km �d
modal state vector  represents the contribution of a single mode. By eliminating thezm,k
innovations in the first equation and re-arranging the second, following state-space model
is obtained:

The idea is now to use this state-space model ( , , , ) in a simulation. All�d	KmV Km 	V I
state-space matrices are known from the identification and the measured output  servesyk
as input in the simulation. The results from the simulation are the modal state sequence

 and the innovation sequence . The innovations can be interpreted as one-step-aheadzm,k ek
prediction errors [LJUN99]. The one-step-ahead predicted output is defined as:

The prediction errors are the differences between the true output and the predicted output:
.  Because each element  of the modal state vector  represents theek
yk	 ŷk z (i)

m,k zm,k
contribution of a single mode, the predicted output can be split in modal responses as:

where  is the (complex) response of the ith mode. By combining the responses of aŷi k
�Ù

l

complex conjugated pair, a real output is obtained.
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Figure 3.16: Modal responses of channel 5. The measured total response is shown in the top chart. The
amplitudes of this signal have been multiplied by 0.5 for scaling purposes. The contributions of the 6
modes are subsequently presented. The sum of these 6 signals plus the prediction errors equals the
measured response. Channel 5 measures a signal in y-direction, with important contributions from the 3rd

and 6th mode, which are bending modes in the y-direction.

The approach of this section can only be applied to models that are identified with the
SSI-DATA method. In order to obtain the forward innovation model, the full G matrix is
needed and not only  as obtained with the SSI-COV method (see alsoG ref

Subsection 3.5.1). Another more important problem, that could not be overcome by
considering all sensors as references, is that the implementation of SSI-COV does not
guarantee the positive realness of the identified covariance sequence. One of the
consequences is that it is not always possible to obtain a forward innovation model
[VANO96].

Example

The separation of the total response in modal responses is illustrated with the simulated data
of the mast structure (Figure 2.1). A 20-pole model is identified with the SSI-DATA method.
Afterwards, the modal state sequence is simulated according to Equation (3.48) and the
modal responses are computed as in (3.49). The modal responses of channels 5 and 6 are
shown in Figure 3.16 and 3.17, respectively.
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Figure 3.17: Modal responses of channel 6. The measured total response is shown in the top chart. The
amplitudes of this signal have been multiplied by 0.5 for scaling purposes. The contributions of the 6
modes are subsequently presented. The sum of these 6 signals plus the prediction errors equals the
measured response. Channel 6 measures a signal in x-direction, with important contributions from the 2nd

and 5th mode, which are bending modes in the x-direction.

3.8 EXPERIMENTAL COMPARISON OF SYSTEM IDENTIFICA-
TION METHODS

This section brings together the modal parameter estimation results of the discussed
identification methods. The lay-out of the other parts concerning the simulated example
is used.

Example

The practical application of a certain identification method was already illustrated in close
connection with its theoretical development. A systematic comparison of the identification
results in terms of the modal parameters, however, was postponed until this section. There
exist other validation tools for system identification (see for instance [LJUN99]), but we are
most interested in the modal parameter estimation performance of a method. The reason is
that we consider modal parameters as essential information to base damage detection
methods on. The comparison is made by a so-called Monte-Carlo analysis.

One Monte-Carlo simulation consists of the following steps. A white-noise input sequence
is generated and applied to the mast structure (Figure 2.1). The simulated outputs are
corrupted by 10% white measurement noise, see Page 55. These "noisy" outputs are then fed
to the system identification methods: peak picking (PP), complex mode indication function
(CMIF), instrumental variable (IV), covariance-driven stochastic subspace identification
(SSI-COV) and data-driven stochastic subspace identification (SSI-DATA). From the six
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outputs, channels 5 and 6 are considered as references. This has the following consequences
for the primary data passed to the identification methods: the "past" part of the data Hankel
matrix (3.2) consists only of these channels; only the covariances between all channels and
these references are computed (3.8) and only the spectra between all channels and the
references are computed (3.10). Every method yields a set of modal parameter estimates.
This procedure is repeated for 100 different realizations of the input sequence and the
measurement noise. Some effort was spent in automating the parameter estimation procedure
to exclude any user interaction during the 100 simulations.

However, some foreknowledge in favour of the PP method could not be avoided. Although
only 4 peaks are visible in the trace of the spectrum matrix (Figure 3.5), we selected 6
frequencies at the peaks of the transformed spectra (Figure 3.6). The x-bending modes are
determined from the 6th column of the spectrum matrix, corresponding to a signal in x-
direction. Similarly, the y-bending modes are determined from the 5th column, corresponding
to a signal in y-direction. Failing to do so would result in completely erroneous mode shape
estimates. Also in estimating the damping ratios with the half-power bandwidth method (that
complements the PP method), the same foreknowledge was present. The other methods
could be applied in an objective way. The parametric methods (IV, SSI-COV, SSI-DATA)
are complemented with a stabilization diagram for pole selection. To construct such a
diagram, models containing 2 to 60 poles were identified. The selection of the poles relies
upon an automatic interpretation of the stabilization diagrams (See Section 4.2). As apparent
from Figures 3.9, 3.11 and 3.12, the subspace methods require a lower model order to find
stable poles. This observation is valid in general, although the figures only represent one
Monte-Carlo run.

The results are represented in three Figures and synthesized in one Table. In our discussion
of the CMIF method (see Subsection 3.3.2), we did not include an alternative frequency or
damping estimation procedures as compared to the PP method. The only difference is that
the CMIF can detect closely-spaced modes and finds the eigenfrequencies in a more
objective way. Therefore the CMIF frequencies and damping ratios are not presented in the
Figures and Table to follow. The results of SSI-COV and SSI-DATA are so close to each
other, that only SSI-DATA is presented.

Figure 3.18 shows the eigenfrequency estimation results for 100 Monte-Carlo simulations.
The bias and variance of the estimates are tabulated in Table 3.1. All methods yield (almost)
unbiased eigenfrequency estimates. Although still small, the standard deviation of the PP
estimates is three times higher than for the other methods.

Figure 3.19 and also Table 3.1 represent the damping estimation results. Notwithstanding
the foreknowledge in favour of the PP method, the very high bias of the damping estimates
(for modes 1, 4, 5 and 6) is striking. It was our experience that this bias can be shifted to
other modes by changing the options of the non-parametric spectrum estimate: frequency
resolution, applied window, number of averages and number of overlapping samples. It
seems however impossible to decrease the bias on all modes or to predict the biased modes.
This example confirms the "common sense" that the half-power bandwidth method is not a
reliable method to estimate damping.
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Figure 3.20 and Table 3.1 represent the mode shape results in terms of the MAC (3.24). This
time also the CMIF results are represented. The mentioned foreknowledge is the reason why
the PP method performed reasonably well. The quality of a CMIF mode estimate varied
considerably with the selected singular vectors around a peak in the decomposed spectrum.
Moreover it was generally not the singular vector corresponding to a peak that gave the best
estimate. The IV method had some problems in estimating the torsion modes (mode 1 and
4), that have a relatively small contribution in the total response. This smaller contribution
is obvious in time domain (Figures 3.16, 3.17) and frequency domain (Figure 3.14).
Concerning mode shape estimation, the advantage of using subspace methods emerges: they
clearly outperform the others.

By taking a close look at the values in Table 3.1, some (small) differences between the
covariance-driven and the data-driven subspace method can be observed. It seems however
that these differences originate from the weighting of the data matrices that was not
equivalent (see Section 3.6). The CVA weighting was applied in case of SSI-DATA,
whereas the covariance Toeplitz matrix of SSI-COV was not weighted. Afterwards we
performed an additional simulation exercise with a CVA-weighted Toeplitz matrix and this
yielded almost exactly the same results as the CVA SSI-DATA method.
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Figure 3.18: Eigenfrequency estimation results from 100 Monte-Carlo simulations. The estimates
are divided by the true values (a value of 1 on the graphs indicates a perfect estimate). These relative
frequencies are shown as dots. The scatter of this quantity gives an idea about the variance of the
estimate. The average estimate is also shown (as a dashed line). The deviation of this quantity from
1 (full line) corresponds to the bias of the estimate. The rows show the 6 modes; the columns
represent the results of 3 identification methods: PP, IV and SSI-DATA. The eigenfrequency
estimates of the PP method can only take the discrete values determined by the frequency resolution
of the spectrum. All methods yield unbiased eigenfrequency estimates. Although still small, the
standard deviation of the PP estimates is three times higher than for the other methods. See also Table
3.1.



100 CHAPTER 3 STOCHASTIC SYSTEM IDENTIFICATION

0 50 100
0

1

2
Peak Picking

M
od

e 
1

0 50 100
0

1

2
Instr. Var.

0 50 100
0

1

2
Subspace

0 50 100
0

1

2

M
od

e 
2

0 50 100
0

1

2

0 50 100
0

1

2

0 50 100
0

1

2

M
od

e 
3

0 50 100
0

1

2

0 50 100
0

1

2

0 50 100
0

1

2

M
od

e 
4

0 50 100
0

1

2

0 50 100
0

1

2

0 50 100
0

1

2

M
od

e 
5

0 50 100
0

1

2

0 50 100
0

1

2

0 50 100
0

1

2

Simulation

M
od

e 
6

0 50 100
0

1

2

Simulation
0 50 100

0

1

2

Simulation
Figure 3.19: Damping ratio estimation results from 100 Monte-Carlo simulations. The estimates are
divided by the true values (a value of 1 on the graphs indicates a perfect estimate). These relative
damping ratios are shown as dots. The scatter of this quantity gives an idea about the variance of the
estimate. The average estimate is also shown (as a dashed line). The deviation of this quantity from
1 (full line) corresponds to the bias of the estimate. The rows show the 6 modes; the columns
represent the results of 3 identification methods: PP, IV and SSI-DATA. Especially the very high
bias of the PP damping estimates is striking. It is rather a coincidence that mode 2 and 3 have
unbiased damping estimates. See also Table 3.1.
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Figure 3.20: Mode shape estimation results from 100 Monte-Carlo simulations. The MAC values (3.24) between
the estimated and the true mode shapes are shown (as dots). The average MAC is also shown (as a dashed line).
The rows show the 6 modes; the columns represent the results of 4 identification methods: PP, CMIF, IV and
SSI-DATA. The scaling of the y-axis varies in vertical direction (to accommodate to the changing estimation
quality of the different modes), but not in horizontal direction, allowing an easy comparison of the methods. The
IV estimates for the first mode are too bad to fit into the scales. Also the average correlation of the PP estimates
of the third mode could not be represented. The subspace methods clearly outperform the others. See also Table
3.1.
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3.9 CONCLUSIONS

This chapter presented 5 stochastic system identification methods in detail, and briefly
reviewed some others. The main focus of this thesis is on time-domain methods, although
some simple frequency-domain methods were included for comparison and because of
their historical value. Next to the theoretical development of a method, its practical
application was illustrated with a Monte-Carlo simulation study.

The main conclusions are synthesized in Table 3.2.

The basic peak-picking method (PP) finds the eigenfrequencies as the peaks of non-
parametric spectrum estimates. This frequency selection procedure becomes a subjective
task in case of noisy civil-engineering data, weakly-excited modes and relatively close
eigenfrequencies. The related half-power bandwidth damping estimation method is
unreliable; and operational deflection shapes are identified instead of mode shapes. The
advantage of this FFT-based method is its processing speed (‘++’ in Table 3.2), although
the total analysis time can increase considerably by the amount of user interaction needed
to improve the results (‘%’ in Table 3.2): inspection of spectra form added and subtracted
signals, interpretation of coherence functions, trial of different reference sensors to get
reasonable mode shapes, <

The complex mode indication function (CMIF) is an SVD-extension of the PP method,
allowing for an objective selection of the eigenfrequencies and the identification of closely-
spaced modes. It seems however that the mode shape estimation quality depends on the
selected singular vector around resonance (and that it is not always the vector at resonance
that gives the best estimates). The modal responses can be more or less computed in the
CMIF method by transforming the frequency lines around resonance in the decomposed
spectrum back to time domain (‘+ / %’ in Table 3.2).

The parametric methods (IV, SSI-COV, SSI-DATA) share the advantage that stabilization
diagrams can be constructed by identifying parametric models of increasing order. These
diagrams are very valuable in separating the true system poles from the spurious numerical
poles.

The instrumental-variable method (IV) does not involve an SVD and consequently suffers
from the lack of a noise-truncating mechanism. This is reflected in the fact that the mode
shape estimates are less accurate than in the subspace methods and that higher order
models are required to obtain good modal parameter estimates. A lot of additional poles
are necessary for fitting the noise (‘%’ for the stabilization criterion in Table 3.2).

Both covariance- (SSI-COV) and data-driven subspace methods (SSI-DATA) seem to
perform equally well concerning modal parameter estimation performance, although
theoretically the numerical behaviour of SSI-DATA should be better than that of SSI-COV
since it avoids to square up the data. The SSI-COV method is considerably faster than the
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PP CMIF IV SSI-
COV

SSI-
DATA

Primary data Spec. Spec. Cov. Cov. Data

Numerical tools FFT FFT
SVD

FFT

LS
EVD

FFT
SVD
LS

EVD

QR
SVD
LS

EVD

Computation time + + + + + + / %

User interaction time % + / % + + +

Modal parameters:
Stabilization
Eigenfrequencies
Damping ratios
Mode shapes

n.r.
+ / %
%

%

n.r.
+ / %
%

+ / %

%

+
+

+ / %

+
+
+
+

+
+
+
+

Postprocessing:
Spectrum analysis
Modal responses

n.r.
%

n.r.
+ / %

+
%

+
%

+ +
+

Table 3.2: Comparison of stochastic system identification methods. ‘LS’ stands for Least Squares;
‘EVD’ stands for EigenValue Decomposition. A ‘+’ (‘%’) means that the methods performs well
(badly) for the row entry criterion. The abbreviation ‘n.r.’ stands for ‘not relevant’. In the PP and
CMIF method no complete model is identified, therefore parametric spectrum analysis is not
possible.  Since the IV and the SSI-COV method yield models that can generally not be converted
to forward innovation form, they obtain a ‘%’ for the modal responses criterion. The slowest method
concerning pure computation time (SSI-DATA) receives a ‘+ / %’ for this criterion because it still is
much faster than prediction error methods.

SSI-DATA method since its data-reduction step can be implemented with the FFT,
whereas SSI-DATA requires a slower QR factorization step. Evidently, because it only
uses linear numerical algorithms, the SSI-DATA method is still much faster than nonlinear
prediction error methods that are sometimes proposed to estimate the modal parameters of
civil-engineering structures (see Subsection 3.5.2). When it comes to postprocessing tools
such as spectrum analysis and the computation of modal responses, the implementation of
SSI-DATA is preferred (see Section 3.7).
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This chapter describes the implementation of stochastic system identification
methods to estimate the modal parameters of structures excited by an unknown
force. In Section 4.1, the development of a Graphical User Interface for MATLAB is
described. By pushing buttons the user is guided through the whole process of
output-only modal analysis: converting measurements to engineering units,
preprocessing the data, system identification, extracting modal parameters from
a stabilization diagram, “gluing” mode shape parts together and animating mode
shapes. Section 4.2 describes a “batch” approach to modal analysis. The large
amount of data collected in the course of this thesis forced us to develop an
automatic modal analysis procedure that excludes any user interaction.
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4.1 MACEC, A GRAPHICAL USER INTERFACE FOR OUTPUT-
ONLY MODAL ANALYSIS

4.1.1 Introduction

There exist several modal analysis software packages. Originally developed in mechanical
engineering for identification based on input-output data (FRFs or impulse responses),
today some of these packages also have modules for output-only modal analysis; e.g.
recent revision of the LMS CADA-X system [CADA98]. However most commercial
dedicated software packages have some drawbacks in a research environment: it is
impossible to review the implementation of an algorithm and it is often not straightforward
to add own developments to these packages. MATLAB [MATL96] on the other hand is an
open environment that offers computation, visualization and programming tools. The basic
package consists of general-purpose functions that can be used to make more application-
specific toolboxes. Most of the functions are accessible ASCII-files which are compiled
at their first call in a session; so the user can learn from their implementation or even
modify it. Some existing toolboxes in the field of system identification and modal analysis
will be briefly reviewed.

Both the System Identification Toolbox [LJUN95] and the Frequency Domain System
Identification Toolbox [KOLL95] offer data preprocessing, identification and model
validation tools. The first identifies time domain models from the data whereas the latter
operates in the frequency domain. These toolboxes have been written by people with an
electrical engineering background, but since they can identify any linear dynamic system
from measurements, they can also be used in mechanical and civil engineering (a bridge
is assumed to be a linear dynamic system). In the end both toolboxes offer a mathematical
model that matches the data. However, from previous chapters it might be clear that some
postprocessing is essential for our purposes: the extraction of modal parameters from the
model, the construction of stabilization diagrams and the visualization of the structure’s
geometry and mode shapes.

Next to official toolboxes supported and distributed by The MathWorks, there exist also
many toolboxes in a connection program for MATLAB-related third party products. One of
these products is the Structural Dynamics Toolbox [BALM97], that offers possibilities in
experimental modal analysis, FE analysis and updating. The toolbox has geometry and
mode shape visualization possibilities. Unfortunately, the identification is based on FRFs
and therefore not suitable for output-only modal analysis.

From this overview of existing software packages, it is clear that the need arose to develop
an own program for output-only modal analysis. The name of the program is MACEC,
standing for Modal Analysis on Civil Engineering Constructions [LAQU98, PEET99b,
PEET99c, VAND99].
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Figure 4.1: The GUI approach.

4.1.2 Development of MACEC

In a first stage, the system identification methods described in Chapter 3 are implemented
as MATLAB command-line functions. These functions are executed by typing their name
together with the input and output variables. For instance:

» [invar] = ssi_data(y,i,’cva’,ref);

applies the CVA-variant of data-driven stochastic subspace identification (see
Subsection 3.5.1) to the data matrix y. Half the number of block rows in the data Hankel
matrix (3.2) is specified by variable i. The reference sensors are specified as column
numbers of y in variable ref. The output variable invar contains intermediate results
after the application of the QR factorization and the SVD. A stochastic state-space model
in forward innovation form [A,K,C,Re] is then identified in a second run of the same
command:

» [A,K,C,Re] = ssi_data(invar,n,’model’);

where n is the desired model order.

The difficulty with all these functions is that one has to know the syntax and keep track of
the variables. Therefore a MSc project was set up in order to build a Graphical User
Interface (GUI) incorporating most of the existing functions for data conversion, system
identification and adding functions for mode shape animation [LAQU98]. Instead of typing
in commands, the user just has to click buttons (Figure 4.1):

There might exist more flexible environments to create a GUI, but probably none of these
have the same matrix computation and 2D and 3D visualization possibilities as MATLAB.
Also algorithm development is very easy in MATLAB, because of the interaction between
the function under development and the workspace: the programmer can always control
the state of the variables.

Inspiration for the design and implementation of a MATLAB GUI was found in [MARC96,
GUI97]. Two questions are very important when designing a GUI:

� Do the users always know where they are?
� Do they always know where to go next?
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Figure 4.2: MACEC main window.

In order to get positive answers to these questions MACEC is constructed around one main
window (Figure 4.2), that is divided into three main tasks: preprocessing - system
identification - visualization. To perform each of these tasks a new window is opened and
after the user has gone through all desired features of the task, the window is closed and
the user returns to the main window.

4.1.3 Functions of MACEC

The main functions of MACEC are reviewed. They can be divided into three categories:
preprocessing % system identification % visualization.

Preprocessing

The measured time data can be imported into the program in ASCII-format or a more
efficient binary format. Upon loading into the program, the data is scaled to engineering
units and information about the sensor location is added to the channels. If the original data
was stored in Volts [V], it is scaled to obtain accelerations [m/sec2]. Scaling the data is
straightforward, once the user has created an ASCII-file containing the sensitivities of all
his sensors (Figure 4.3). For the interpretation of the channels it is essential to incorporate
the physical locations of the measurement points and axis (node number and DOF) into
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Figure 4.4: Specifying the location and sensitivity axis of the channels.

Figure 4.3: Scaling raw measurements from Volts to accelerations
[m/sec2] by selecting the used sensor and the amplification factor.

the internal data format. In case a sensitivity axis of a sensor does not coincide with one
of the global axis, it can be defined with two angles: , the angle in the.� ]	180(,180(]
XY-plane; and , the angle perpendicular to the XY-plane (Figure 4.4).�� [	90(,90(]

Next the true preprocessing can begin. Preprocessing is the data treatment before system
identification and it highly influences the identification result. Following possibilities are
implemented:

� Decimate: the data is low-pass filtered and resampled at a lower rate. The
identification can concentrate on a limited frequency band.

� Detrend: the best straight line fit is removed from the data. This removes the DC-
component that can badly influence the identification results.
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Figure 4.5: MACEC’s preprocessing window with time and frequency domain representation of the signals.

� No Elec: removal of spurious frequencies (e.g. at 50 Hz due to AC power supply).
This operation is not the same as stopband filtering, but it really removes only the
component at a certain frequency.

� Delete channel: removal of a complete channel. For instance a very noisy channel
can be better removed to improve the identification results.

� Time window: a certain high-quality time segment can be selected for further
analysis.

The effect of a preprocessing procedure can be seen immediately, both in time and
frequency domain (Figure 4.5). There is also an "undo" possibility.

System identification

Currently two complementary methods are implemented: The Peak-Picking (PP) method
and the data-driven stochastic subspace identification (SSI-DATA) method. If the user
selects the PP method (Subsection 3.3.1), a window with the average of the power spectra
is opened, the mouse pointer changes into a cross-hair and the user can pick the peaks
(Figure 4.6). Operational deflection shapes are determined at the selected frequencies.
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Figure 4.6: Illustration of the peak-picking procedure.

The second method is SSI-DATA method (Subsection 3.5.1). First the user has to specify
some input-parameters of the algorithm: the selection of reference channels, the maximum
model order and the model order range. After some computations (QR factorization and
SVD), a stabilization diagram is constructed (Figure 4.7). The user can change the
stabilization criteria (defaults are 1% for eigenfrequencies, 5% for damping ratios and 1%
for mode shape correlations). The better the quality of the data, the stricter these tolerances
can be set. The diagram is represented together with the average of the power spectra for
visual reference. The stable poles are graphically selected.

Visualization

The identified mode shapes are graphically represented as deformations of the structure.
The DOFs were already attributed to the channels in the preprocessing step (Figure 4.4).
Before visualization, a grid of nodes and the connections between the nodes in terms of
beams or surfaces need to be defined. This is realized by loading two ASCII-files into the
program: a grid file and a beam or surface file. The grid file contains 4 columns: node
number and X, Y, Z coordinates. The beam file contain 2 columns: a MATLAB Line object
is defined by 2 nodes; whereas the surface file has 4 columns: 4 nodes define a MATLAB

Patch object. These files can easily be generated within MACEC with the "beam/surface-
generator", see [VAND99]. Visualization of DOFs that were not measured can be done in
a "slaving" procedure: the unmeasured slave DOFs are related to measured master DOFs.
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Figure 4.8: Use of reference sensors to glue mode
shape parts.

Figure 4.7: Stabilization diagram for pole selection in the SSI-DATA method.

Every setup of simultaneously measured channels yields after identification a part of the
global mode shape. These parts are glued together with the aid of reference sensors,
common to all setups. These common sensors are automatically detected by MACEC. As
illustrated in Figure 4.8, least squares approximation is used to determine the scaling factor
of a certain mode between two setups. The scaling factor is different from one if the
(unknown) excitation changes from one setup to another, which is generally the case.
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Figure 4.9: The mode -shape visualization window of MACEC.

Now we are ready to visualize the mode shapes. The visualization window  (Figure 4.9)
offers a lot of possibilities: scrolling through all modes, representation of undeformed
structure and node numbers, 3D-view with possibility to change the viewpoint, animation
of mode shapes, <
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4.2 AUTOMATIC MODAL ANALYSIS

There are cases that user interaction is not desired. A first example was already
encountered in Chapter 3, where 100 Monte-Carlo simulations were performed to study
the statistical properties of stochastic system identification methods. In each simulation
run, the stabilization diagrams of the IV, SSI-COV and SSI-DATA method needed to be
interpreted to find the stable poles. A second, more practical example is continuous
monitoring of structures. In this case, the vibration monitoring system yields massive
amounts of data. Modal parameters have to be extracted from these data, since our
approach to damage detection requires the modal parameters as damage indices. Such a
continuous-monitoring case will be treated in Chapter 7.

From this, it is clear that a realistic monitoring system should incorporate an automatic
modal analysis procedure that excludes any user interaction. Nevertheless the idea of the
stabilization diagram should not be abandoned since it proved to be essential in
distinguishing true system poles from numerical poles. To reconcile these requirements,
a procedure was developed that relies upon the automatic interpretation of stabilization
diagrams. It consists of following three steps:

1. One single representative data set is used to perform a classical identification
(with user interaction!). Such an analysis gives an idea about the quality of the
data and the choices of the stabilization criteria for eigenfrequencies, damping
ratios and mode shapes.

2. The automatic procedure takes off. The stabilization diagram is scanned and
columns of stable poles are identified. The elements of such a column have close
frequencies and high mode shape correlations. To exclude accidentally stable
poles, a column should contain a minimum number of stable poles, otherwise it
is rejected. As representative for a column, the pole having its eigenfrequency
closest to the average of the column is selected. This procedure is repeated for
every data set.

3. There is no guarantee that every data set yields the same stable poles. For
instance, the input may change from one data set to another. Sometimes a pole is
missing (not well excited) or an additional pole is identified (at an harmonic of
the input). Therefore the stabilization approach is followed again in this step to
pair the poles between two data sets. Sometimes the stabilisation requirements for
frequencies have to be reduced. This will be the case in Chapter 7, where varying
frequencies are normal due to varying environmental conditions.
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The proposed automatic modal analysis procedure was tested on data sets of varying
quality: the numerical simulations of Chapter 2 and 3, the reinforced concrete beam data
and the steel mast data of Chapter 5 and the prestressed concrete bridge data of Chapter 7.
The results are presented in the respective chapters. In all these cases it turned out to be a
robust method.

4.3 CONCLUSIONS

In this chapter the development of a GUI for MATLAB was described. The goal was a
complete and user-friendly package for output-only modal analysis (with civil engineering
applications in mind). MATLAB was selected as development environment because of its
extensive computation and visualization tools. Another reason was that it is a very open
programming environment with access to most of the code, allowing the programmer to
easily modify implementations or add new features. The toolbox has preprocessing, system
identification and visualization possibilities that allow both a fast quality check of the data
on site (PP method) and a more accurate analysis afterwards (SSI-DATA method).

Additionally an automatic modal analysis procedure was proposed that is able to treat a
large number of data sets without any user interaction. This automatization is a key issue
of a continuous monitoring system that is based on modal parameters.
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The simulation example of Chapter 2 and 3 proved to be very useful to compare
system identification methods. Although the simulation study was carefully
designed to be in close agreement with reality, a system identification method
should also be assessed using real vibration data. In Section 5.1, data from
vibration tests on reinforced concrete beams are used. A laboratory test under well-
controlled experimental conditions in terms of boundary conditions and excitation
sources, is a logical second step after performing numerical simulations.
Particularly interesting about the tests on the beams is that they were artificially
damaged in order to verify the damage-detection potential of the dynamic
characteristics. In Section 5.2, data from a steel mast excited by wind load is used.
This is a true real-life test. An application concerning the vibration monitoring of a
rigid prestressed concrete bridge, is deferred to Chapter 7.
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1COST stands for European Co-operation in the Field of Scientific and Technical Research
[http://www.belspo.be/cost/], [http://www.ulg.ac.be/ltas-vis/costf3/costf3.html].

5.1 REINFORCED CONCRETE BEAMS

5.1.1 Introduction

As a part of the experimental work of this thesis, 4 reinforced concrete beams were
extensively tested. The aim of the beam tests was not only to provide experimental data for
the system identification methods, but also to verify whether it is fundamentally possible
to measure the damage-induced changes in the dynamics of a structure. Therefore the
beams were subjected to progressive artificial damage. At each intermediate damage state,
a vibration experiment was set up. The 4 beams differed in the induced damage pattern.
Results from the 2nd and 3rd beam are presented in this thesis. Results on the 4 beams can
be found in [PEET96, PEET97, MAEC98a, DEVI99, PEET99a, MAEC00a].

The usefulness of the beam tests is confirmed by the fact that they were selected as
"benchmark" tests by working group 2 of COST1 action F3 on Structural Dynamics.
Published results on this benchmark case can be found in [PASC99b, PASC99a].

First the static and dynamic test procedures are described and some typical measurement
data represented. Next the application of stochastic subspace identification to the vibration
data is illustrated. And finally, the evolution of the modal parameters throughout the
damage stages is tracked.

5.1.2 Data acquisition

The beams

All 4 test beams have the same dimensions. Four objectives were envisaged when
designing the test beams:

� The first eigenfrequency should have the same order of magnitude as the lowest
eigenfrequencies encountered in typical civil engineering structures like bridges,
i.e. 2-10 Hz. An advantage of a low fundamental eigenfrequency is that within a
measurable frequency interval, e.g. 0-1000 Hz, a lot of modes will be present.
This is important because there is some belief that the higher modes are
influenced more by cracking than the lower ones. The eigenfrequencies are
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Figure 5.1: Steel reinforcement for the concrete beams.

proportional to . With the height  and the length , a firsth L 2 h
0.2 m L
6 m
eigenfrequency of about 20 Hz was obtained.

� Earlier test programs in other institutions [DIET80, ROHR91] have revealed the
difficulty of obtaining simple supports for dynamic tests: ambient vibration
interferes with the artificial force input, finite rigidity of the supports can
influence mode shapes and eigenfrequencies, and radiation will add extra
damping to the inherent damping of the concrete beam. Therefore, a completely
free test setup is adopted which means that the beam is supported by a number of
very flexible springs resulting in rigid body eigenfrequencies of about 1 Hz,
which is much lower than the eigenfrequency of the first bending mode,

. A consequence is that the static test configuration will be differentf1�20 Hz
from the dynamic one. Also in [BRIN95] a free-free dynamic test setup is
adopted. Due to the limited length of the concrete test beam, the eigenfrequencies
were quite high. The first eigenfrequency was .f1
278.8 Hz

� To avoid any coupling effect between horizontal and vertical bending modes, the
width  of the beam is chosen to be different from the height.w
0.25 m

� The reinforcement ratio should be within a realistic range. By a proper choice of
the steel quality, the interval between onset of cracking and beam failure can be
made large enough to allow modal analysis at well separated levels of cracking.

These four objectives result in a 6 m long beam of rectangular cross section
. There are 6 reinforcement bars of diameter , equallyA
200×250 mm 2 3
16 mm

distributed over tension and compression side, corresponding to a reinforcement ratio of
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Figure 5.2: Static test setup for beam 2. A triangle
represents a hinge; a circle represents a roller. The unit
of distance is 1 m.

Figure 5.3: Static test setup for beam 3. A triangle
represents a hinge; a circle represents a roller. The unit
of distance is 1 m.

Load step 0 1 2 3 4
Total load [kN] 0 8 15 24 32

Table 5.1: Loading sequence of beam 2.

Load step 0 1 2 3 4 5 6
Total load [kN] 0 2×4 2×6 2×12 2×18 2×24 2×25.3

Table 5.2: Loading sequence of beam 3.

about 1.4%. Shear reinforcement consists of vertical stirrups of diameter 8 mm, every 200
mm. The reinforcement is shown in Figure 5.1. A total beam mass of  resultsm
750 kg
in a density of the reinforced concrete of .!
2500 kg/m 3

Static tests

As stated in the introduction, we concentrate on beams 2 and 3 in this thesis. Beam 2 is
simply supported with a span of 3.6 m and two cantilevers of 1.2 m to minimize the
influence of the own weight. A static load is applied at the centre of the beam, resulting in
a maximum bending moment at the position where the load is applied. The bending
moments decrease linearly to reach zero at the supports. The static test setup for beam 2
is illustrated in Figure 5.2. The loading sequence is represented in Table 5.1.

Beam 3 is also simply supported, but now the full length of the beam is used. Two static
loads are applied at 2 m from both sides of the beam. This is a so-called four-point bending
test. The bending moments are constant between the loads and vary linearly between a load
and a support. The static test setup for beam 3 is illustrated in Figure 5.3. The loading
sequence is represented in Table 5.2.
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Figure 5.4: Force-Displacement diagram
(Beam 2). The displacements at mid-
section are shown.
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Figure 5.5: Force-Displacement diagram
(Beam 3). The displacements at mid-
section are shown.

Figure 5.6: Progressive cracking (Beam 2). The visually observed cracks at the maximum load of the 4 load steps
are shown from top to bottom.

During the application of the static load, the deflection of the beams at several locations
is measured (Figures 5.4 and 5.5). At the maximum load of each step, also crack widths
and strains are measured. The progressive cracking of the beams is represented in
Figures 5.6 and 5.7. Figure 5.8 gives an idea about the deflection of beam 3 during one of
the final load steps.
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Figure 5.8: Deflection of beam 3 during one of the final
load steps.

Figure 5.7: Progressive cracking (Beam 3). The visually observed cracks at the maximum load of the 6 load steps
are shown from top to bottom.
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Figure 5.9: Dynamic test setup for both beams.

Dynamic tests

After each load step, the beams are unloaded, flexible springs are connected to the beams
and the supports are removed. The springs are connected at the theoretical nodal points of
the first bending mode, located at a distance from a side of . Figure 5.90.224L
1.344 m
gives an impression of the dynamic test setup. Due to the low-pass filtering characteristics
of a free-free setup, there were no ambient sources to excite the beam. Therefore artificial
excitation was applied. An impulse hammer and an electromagnetic shaker were
subsequently applied. The dynamic force is applied in vertical direction at an outer point
of an end section. This ensures the excitation of both vertical bending and torsion modes.
Every 20 cm, accelerations are measured at both sides of the beam. A pseudo-random (also
called multi-sine) signal was chosen to drive the shaker. Typical impact test data is shown
in Figure 5.10.

5.1.3 System identification

The data-driven stochastic subspace identification (SSI-DATA) method is applied to the
impact response data. It may seem strange to use an impact excitation to validate a
stochastic system identification method. Indeed, strictly speaking one of the assumptions
of a stochastic system is violated, namely the white noise assumption of the input. However
the use of an impact instead of white noise does not introduce additional poles in the data
(which would be identified erroneously as system poles by output-only system
identification methods). The system identification results of beam 2 in its undamaged state
are presented in this Subsection.
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Figure 5.10: Typical impact data. The top row represents the impact force; the bottom row represents an
acceleration response. The left column contain time histories; the corresponding spectra are shown in the right
column. The sampling frequency is 5000 Hz. The impact hammer was able to generate a reasonable response in
a frequency range from 0 to 700 Hz.

Modal parameters

The whole surface of the beam was scanned with accelerometers in 6 setups. The 2
accelerometers at one of the sides of the beam are the reference sensors which remained
on their position during the 6 setups. They are necessary to merge the relative modal
amplitudes of different setups in an output-only modal analysis. Every impact test was
repeated 4 times. By consequence 24 independent samples are available to estimate the
eigenfrequencies and damping ratios. A typical stabilisation diagram is shown in
Figure 5.11. Table 5.3 represents the mean values  and estimated standard deviations f̄ , �̄ 1̂f , 1̂�
of the 12 modes that could be identified in the range . The corresponding mode0Ú700 Hz
shapes are shown in Figure 5.12. The represented hammer results are in good agreement
with the shaker results where a pseudo-random input signal was used. A pseudo-random
signal consists of discrete sines, all with the same amplitude but with a random phase
angle. A comparison between hammer and shaker results can be found in [PEET97].
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Mode type B1 (s) B2 (a) B3 (s) T1 (a) B4 (a) B5 (s)

 [Hz] 22.35 62.43 119.9 175.5 198.1 293.9f̄
 [Hz] 0.02 0.03 0.08 0.08 0.08 0.11̂f

 [%] 0.5 0.38 0.5 0.64 0.44 0.45�̄

 [%] 0.1 0.01 0.1 0.06 0.01 0.021̂
�

Mode type T2 (s) B6 (a) B7 (s) T3 (a) B8 (a) T4 (s)

 [Hz] 377 400 518.1 551 647.5 695f̄
 [Hz] 0.1 0.1 0.2 0.1 0.2 21̂f

 [%] 0.37 0.45 0.45 0.41 0.45 0.5�̄

 [%] 0.03 0.02 0.03 0.02 0.02 0.11̂
�

Table 5.3: Estimated eigenfrequencies and damping ratios of beam 2 in its undamaged state. The
mean values and estimated standard deviations are based on 24 samples (6 setups × 4 impacts). The
first 12 bending and torsion modes are given. The mode type has to be interpreted as follows: ‘B’
stands for bending; ‘T’ for torsion; then a counter is given and finally it is specified whether it is a
symmetric mode (s) or an anti-symmetric one (a).
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Figure 5.11: Stabilization diagram obtained by applying the SSI-DATA method to impact
data. The criteria are 1% for frequencies, 5% for damping ratios and 2% for the mode shape
correlations. The used symbols are: ‘U’ for a stable pole; ‘.v’ for a pole with stable
frequency and vector; ‘.d’ for a pole with stable frequency and damping; ‘.f’ for a pole with
stable frequency and ‘.’ for a new pole.
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Figure 5.12: First 12 identified mode shapes, ordered from left to right from top to bottom. These mode shapes
are obtained by applying the SSI-DATA method to impact data.

Postprocessing

Some postprocessing tools are applied to impact data from the first set-up of beam 2 in its
undamaged state. Each setup consists of 12 output channels. The data were sampled at a
rate of 5000 Hz and 12288 data points were measured. Before identification the data was
low-pass filtered and resampled at a rate of 1250 Hz. The SSI-DATA method is used to
identify a 70-pole state-space model. Channels 1, 2 and 7 are chosen as reference channels
in the identification. As explained in Subsection 3.7.1, the identified stochastic state-space
model can be considered as a parametric spectrum estimate. Figures 5.13 and 5.14 compare
some elements of this spectrum matrix with a non-parametric spectrum estimates (using
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Welch’s method, see Subsection 3.2.3). There is a remarkable agreement, indicating that
the SSI-DATA method is able to identify successfully a high-order system.

Experience learnt that, when applying subspace methods to impact data, it is important to
include enough zeros in the data before the impact takes place. Otherwise the amplitudes
of the estimated spectrum will be a few orders of magnitude lower than Welch’s
periodogram. It was observed that the number of zeros before the impact should be at least
the number of block rows in the data Hankel  matrix (3.2). Without sufficient zeros, the last
rows of this Hankel matrix would contain response data that only starts after the impact and
would have a much lower energy content.
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Figure 5.13: Comparison of power spectra of channel 12. The full line is Welch’s
periodogram; the crosses represent the SSI-DATA parametric estimate. Although
the represented channel is not a reference channel, the agreement is excellent.
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Figure 5.14: Comparison of cross spectra between channel 1 and channel 12. The
full line is Welch’s periodogram; the crosses represent the SSI-DATA parametric
estimate. The top figure shows the absolute value of the spectrum; the bottom
figure shows the phase angle. Again the agreement is excellent.
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Figure 5.15: Modal responses of the first channel. The measured total response is
shown in the top chart. The amplitudes of this signal have been multiplied by 0.5
for scaling purposes. The contributions of the 5 modes are subsequently presented.
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Figure 5.16: Prediction error of the first channel. It is not a white noise sequence,
but rather a low-pass filtered impulse, where the offline filter was applied in both
forward and backward direction. This filtering procedure corresponds to the
decimate command of [SIGN97] that was indeed applied to the data.

In a next stage the frequency content is further reduced by low-pass filtering. We
concentrate on the first 5 modes to study the modal responses and the prediction errors
(Subsection 3.7.2). The modal responses of the first output signal are shown in Figure 5.15.
The prediction error sequence  of the same signal is shown in Figure 5.16. Classically,ek

the prediction errors are white noise, but in this case, the prediction error sequence looks
more like a low-pass filtered impulse. This is in fact no surprise, since the prediction errors
not only depend on the modelling inaccuracies and the measurement noise but also on the
"unknown" input. Notice that the input was measured in this case, but it is unknown in the
sense that it was not used in the system identification method. From the covariance matrix
of the prediction errors , shown in Figure 5.17, it is even possible to locateRe
E [ek e T

k ]
the unknown input.
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Figure 5.17: Covariance matrix  of the prediction errors. TheRe
largest values indicate the location of the input. The true
excitation was indeed applied between accelerometer 1 and 3.
The location of the sensors and the force is represented in
Figure 5.18.

Figure 5.18: Top view of a part of the beam. The location of the
sensors is represented by large dots. The hammer impact
location is situated at the cross.

5.1.4 Evolution of the modal parameters

The SSI-DATA method is used to estimate the modal parameters of the beams at each
intermediate load step. The evolution of eigenfrequencies and damping ratios of the beams
throughout the damage stages is represented in Figures 5.19%5.22. Due to damage the
eigenfrequencies are decreasing by 25% or less and the damping ratios are increasing by
a factor 2 to 5. Contrary to an obstinate belief, it is not the case that the higher modes are
more sensitive to damage.

It is important to judge of these changes with respect to the uncertainties of the estimates.
The statistical analysis that was presented in Table 5.3 for beam 2 in its undamaged state
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is repeated for every state and for both beams. From the mean value  and estimatedx̄
standard deviation  of a stochastic variable x, the  confidence interval on1̂x 100(1	. )%
the true value of x is given by:

where  is found from a statistical table of Student’s t-distribution. The symbol  is thet
. 2,� �

number of DOFs, which is one less than the number of samples N in this case,
. In order to compute the 95% confidence interval, for instance, we have�
N	1
23

 and . Figures 5.23%5.26 show the evolution of eigenfrequencies and.
0.05 t
. 2,�
2.07

damping ratios for modes 2, 3 and 4 together with the 95% confidence intervals. The
decrease of eigenfrequencies is statistically relevant. Concerning damping, the situation is
rather unclear. In general the damping seems to increase, but the uncertainty on the
estimates is quite high.

As shown in [PEET96], the mode shapes are also changing due to damage. The changes
remained small however. The mode shape curvatures are much more sensitive parameters
than the mode shapes themselves. They are also a better indicator for local defects.
Unfortunately it is numerically not evident to compute the curvatures of an estimated mode
shape. Ideas related to the computation of modal curvatures and their use for damage
localization can be found in [PAND91b, MAEC99, MAEC00a].

As a general conclusion of the laboratory beam tests, we can state that vibration-based
damage detection is very promising. We should however not forget that the experimental
conditions were more advantageous than in a real situation. Therefore Chapter 7 of this
thesis will deal with a real case from civil engineering practice: an existing bridge was
subjected to realistic damage scenarios and the dynamic tests were performed under
varying environmental conditions that are possibly eroding the damage-detection potential
of vibration-based monitoring.
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Figure 5.19: Relative changes due to damage of the first 12 eigenfrequencies of beam 2. The symmetric bending
modes have white bars; the anti-symmetric have light gray bars and the torsion modes are represented by dark gray
bars. The undamaged state is represented by load step 0, see Table 5.1. The first eigenfrequency decreases with
25% and the others with 14% or less.
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Figure 5.20: Relative changes due to damage of the first 12 eigenfrequencies of beam 3. The symmetric bending
modes have white bars; the anti-symmetric have light gray bars and the torsion modes are represented by dark gray
bars. The undamaged state is represented by load step 0, see Table 5.2. The first eigenfrequency decreases with
25% and the others with 22% or less.
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Figure 5.22: Relative changes due to damage of the first 12 modal damping ratios of beam 3. The order of the load
steps is reversed as compared to Figure 5.20 to improve visibility. With an exception of mode ‘B5 (s)’, the damping
ratios are increasing with a factor 2 due to damage.

01234

B1
(s)

B2
(a)

B3
(s)

T1
(a)

B4
(a)

B5
(s)

T2
(s)

B6
(a)

B7
(s)

T3
(a)

B8
(a)

T4
(a)

0.7

2.7

4.7

6.7

Rel. damp.

Load 
step Mode

Figure 5.21: Relative changes due to damage of the first 12 modal damping ratios of beam 2. The order of the load
steps is reversed as compared to Figure 5.19 to improve visibility. The damping ratios are increasing with a factor
2 to 5 due to damage.
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Figure 5.23: Relative eigenfrequency changes for mode 2, 3 and 4 (beam 2). The
95% confidence intervals are also given. The full line represents mode 2; the
dashed line is mode 3 and the dotted line is mode 4. The decrease of the
eigenfrequencies due to damage is statistically relevant. The results for the other
modes are similar.

0 1 2 3 4 5 6

0.8

0.85

0.9

0.95

1

Load step

R
el

at
iv

e 
fr

eq
ue

nc
y

Figure 5.24: Relative eigenfrequency changes for mode 2, 3 and 4 (beam 3). The
95% confidence intervals are also given. The full line represents mode 2; the
dashed line is mode 3 and the dotted line is mode 4. The decrease of the
eigenfrequencies due to damage is statistically relevant. The results for the other
modes are similar.
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Figure 5.25: Relative damping ratio changes for mode 2, 3 and 4 (beam 2). The
95% confidence intervals are also given. The full line represents mode 2; the
dashed line is mode 3 and the dotted line is mode 4. Damping seems to increase
with damage, but the uncertainty on the damping estimates is quite high. The
results for the other modes are similar.
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Figure 5.26: Relative damping ratio changes for mode 2, 3 and 4 (beam 3). The
95% confidence intervals are also given. The full line represents mode 2; the
dashed line is mode 3 and the dotted line is mode 4. Damping seems to increase
with damage, but the uncertainty on the damping estimates is quite high. The
results for the other modes are similar.
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Figure 5.27: Typical wind turbulence spectrum compared with
an earthquake spectrum [BALE93].

5.2 STEEL MAST

5.2.1 Introduction

In the design process of a steel transmitter mast, the damping ratios of the lower modes are
important factors. The wind turbulence spectrum (Figure 5.27) has a peak value at a very
low frequency around 0.04 Hz [BALE93]. All eigenfrequencies of the considered structure
are situated at the descending part of the turbulence power spectrum, and thus in fact only
the few lower modes of vibration are important for determining the structure’s response
to dynamic wind load. The structure under consideration is a steel frame structure with
antennae attached to the top. In order to prevent malfunctioning of the antennae, the
rotation at the top has to be limited to 1(. Only once in 10 years, this value may be
exceeded. The dynamic response (and thus the rotation angle) of a structure reaches its
maximum at resonance, where the amplitude is inversely proportional to the damping ratio.
So the damping is directly related to the maximum rotation angle. A high damping ratio
means that the amount of steel needed to meet the specification of limited rotation can be
reduced.

The only way to determine the true damping ratios is by performing a vibration test on the
structure. Such a test does not only yield the damping ratios, but also the eigenfrequencies
and the mode shapes at the sensor locations. This allows to validate and eventually update
a finite element model of the structure. The most practical way to excite the mast is using
the wind. Since it is very difficult, if not impossible, to measure the dynamic wind load,
only responses were recorded and the mast tests constitutes an excellent real-life example
to validate stochastic system identification methods.

The mast was tested twice with an interval of more than one year. The reason for the
second test was that the dynamic behaviour of the mast changed because of the installation
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Figure 5.28: Steel mast structure on 24 February
1997, before the installation of the antennae.

Figure 5.29: Steel mast structure on 26 March 1998,
after the installation of the antennae.

of eccentric antennae at the top (see further). Both tests are summarized in this thesis. More
extensive results can be found in [PEET98a, PEET99f, PEET99e]. First the mast structure
and the data acquisition is presented. Next the application of stochastic subspace
identification to the vibration data is illustrated.

5.2.2 Data acquisition

The tested mast structure is a part of a cellular phone network. The mast is situated in the
port of Antwerp. Figure 5.28 shows the mast on 24 February 1997, the date of the first test.
Figure 5.29 is a photograph that was taken on 26 March 1998, the date of the second test.
The difference is that the second time the sectorial antennae were installed. They are
expected to have an important influence on the dynamics of the structure, since their added
mass is considerable (+10%) and they are located close to the top, a position where large
displacements occur. A typical cross section is given in Figure 5.30. The mast has a
triangular cross section consisting of 3 circular hollow section profiles of which the section
and the thickness decrease from bottom to top. The 3 main tubes are connected with
smaller tubes forming the diagonal and horizontal members of the truss structure. The
structure is composed of 5 segments of 6 m, reaching a height of 30 m. At the top in the
centroid of the section an additional tube rises above the truss structure resulting in a total
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Figure 5.30: Cross section of the mast. The
accelerometer positions are indicated with H1,
H2 and H3.

height of 38 m. The antennae are connected to this tube at a height of 33 m. A ladder is
attached to one side of the triangle. Together with the diagonals, this ladder is disturbing
somewhat the symmetry of the structure. The mast is founded on a thick concrete slab
supported by three piles.

The measured DOFs are the following: every 6 m, from 0 to 30 m, 3 horizontal
accelerations were measured. Their measurement direction are indicated in Figure 5.30 as
H1, H2 and H3. Assuming that the triangular cross section remains undeformed during the
test, the 3 measured accelerations are sufficient to describe the complete horizontal
movement of the considered section. At ground level (0 m) also 3 vertical accelerations
were measured in order to have a complete description of all displacement components of
the foundation. During the second test 2 supplementary perpendicular sensors were
installed on the central tube at 33 m. These 2 sensors, also  measuring in horizontal
direction, allow a better characterization of the mode shapes. Due to the limited number
of acquisition channels and high sensitivity accelerometers, the described measurement
grid of 23 sensor positions was split in 4 setups. In output-only modal analysis where the
input force remains unknown and may vary between the setups, the different measurement
series can only be linked if there are some sensors in common. The three sensors at 30 m
are suited as references since it is not expected that these are situated at a node of any mode
shape.

The cut-off frequency of the analog anti-aliasing filter was set at 20 Hz. The data were
sampled at a rate of 100 Hz during 5 minutes for each setup. Figure 5.31 compares the
power spectra of the signals measured at the same location in both tests. It is clear that the
dynamic behaviour of the mast changed quite drastically due to the added eccentric mass
of the antennae.
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Figure 5.31: Comparison of power spectra of the signals measured at 30 m in Y-
direction (Figure 5.30). The top spectrum represents the first test (24 February
1997); the bottom spectrum originates from the second test (26 March 1998). The
differences are due to the installation of the antennae.

From the relative heights of the peaks in the acceleration spectra, one can definitely not
conclude that only the lower modes are important for determining the structure’s response
to dynamic wind load. However, as stated in the introduction, the most important design
criterion for this kind of structures is a maximum rotation angle. Therefore displacements
are the quantities to look at. Roughly speaking, the peaks in Figure 5.31 have to be divided
by  to obtain displacements and, indeed, the lower modes are becoming more important.&2

5.2.3 System identification

The data-driven stochastic subspace identification (SSI-DATA) method is applied to the
mast response data. We emphasize the differences between the two tests and examine the
influence of the choice and number of reference sensors on the identification results.

Modal parameters

Before identification the data was decimated with factor 8: it was filtered through a digital
low-pass filter with a cut-off frequency of 5 Hz and resampled at 12.5 Hz. This operation
reduces the number of data points and makes the identification more accurate in the
considered frequency range . The higher modes, situated in the range ,0Ú5 Hz 5Ú20 Hz
are identified in a separate analysis without low-pass filtering and using only a limited time
frame. As usual, the modal parameters are selected from a stabilization diagram
(Figure 5.32). Table 5.4 presents the mean values  and estimated standard deviations f̄ , �̄ 1̂f , 1̂�
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Figure 5.32: Stabilization diagram obtained by applying the SSI-DATA method to low-pass
filtered mast data (second test). The criteria are 1% for frequencies, 5% for damping ratios
and 2% for the mode shape correlations. The used symbols are: ‘U’ for a stable pole; ‘.v’ for
a pole with stable frequency and vector; ‘.d’ for a pole with stable frequency and damping;
‘.f’ for a pole with stable frequency and ‘.’ for a new pole. A zoom is added that concentrate
on the close modes around 1.175 Hz.

of the first 7 modes for both tests. We may have high confidence in the identified
frequencies, since their standard deviations are extremely low. Due to the increased mass,
the eigenfrequencies of the second test are lower. As usual the damping ratio estimates are
more uncertain. The very low damping values indicate that there are not much damping
mechanisms present in such a steel structure. It seems that fixing the antennae had some
positive influence on the damping ratios, in the sense that they are higher for the lower
modes. Nevertheless, they are still lower than the values that can be found in design codes,
which is a rather unsafe situation. Some representative mode shapes identified from the
second test are shown in Figure 5.33. The mode shape results from the first test and a
comparison with an FE analysis can be found in [PEET98a].
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Figure 5.33: Some representative mode shapes (second test), identified with the SSI-DATA method. The mode
numbers are indicated in bold. Also the corresponding eigenfrequencies are given. The Z-axis represents the height
with a unit of 1 m. The other axes represent relative modal amplitudes.
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Mode number 1 2 3 4 5 6 7

’97 Test  [Hz] 1.487 1.492 2.953 2.976 6.793 7.155 7.343f̄
 [Hz] 0 0 0 0 0 0 01̂f

 [%] 0.5 0.4 0.2 0.18 0.14 0.32 0.29�̄

 [%] 0.2 0.3 0.1 0.07 0.03 0.07 0.081̂
�

’98 Test  [Hz] 1.17 1.179 1.953 2.61 2.711 3.687 4.628f̄
 [Hz] 0 0 0 0 0 0 01̂f

 [%] 0.5 0.7 0.7 0.3 0.17 0.2 0.2�̄

 [%] 0.2 0.2 0.1 0.1 0.05 0.1 0.11̂
�

Table 5.4: Estimated eigenfrequencies and damping ratios of both tests of the mast structure (in ’97
without and in ’98 with antennae). The mean values and estimated standard deviations are based on
8 samples (4 setups, each setup measured twice). The first 7 modes are given.

Influence of reference sensors

The low-pass filtered data of the second test is used to examine the influence of the choice
and number of references on the identification results. Two types of analyses are
performed. In a first analysis, all outputs  are considered as references . This casel
9 r
9
will be called "full analysis". Next, only the outputs located at a height of 30 m are
considered as references  and the others are partially omitted in the identificationr
3
process, as explained in Subsection 3.5.1. This case is called "reduced analysis". The
number of data points N and half the number of block rows i in the data Hankel matrix
(3.2) are the same in both cases, so that the reduced analysis only required 44% of the
computational time as compared to the full analysis; see equation (3.45). We have chosen

, so that the maximum model order equals  in the reduced analysis and i
10 ri
30 li
90
in the full analysis. This is reflected in Figure 5.34, where the principal angles (Section 3.6)
obtained in both cases are shown. The graph suggests that the reduced analysis required
a lower-order model to fit the data. We can think of two possible explanations: the reduced
analysis is not able to extract all features from the data or it gets faster rid of the noise
because the reference outputs are chosen so as to have the best signal-to-noise ratios. The
detailed analysis in [PEET99f] revealed that the estimated modal parameters are almost
exactly identical in both analyses. So if the first explanation would be true, it seems to have
no consequences on the quality of the modal parameters.
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However, there are some objective differences between the full and reduced analysis. In
Figure 5.35, the power spectra from a reference signal are compared. The full and reduced
analyses perform equally well. Figure 5.36 shows the spectra of a non-reference signal. In
this case the reduced analysis had some problems in modelling the frequency ranges
between resonance peaks.

It is also interesting to take a look at the prediction errors (Subsection 3.7.2). The
prediction errors cumulate modelling inaccuracies, measurement noise and the unknown
input. In order to obtain one number, the total prediction error for channel i is defined0(i)

as:

where  is the ith output channel. In Table 5.5, the prediction errors for two differenty (i)
k

reduced analyses and the full analysis are presented. It is confirmed that the non-reference
channels are not so well modelled as the reference channels.

From the comparison between the reduced and full analysis, we can conclude that the
reduced analysis is considerably faster, while it yields identical results in terms of the
identified modal parameters. The analysis of spectra and prediction errors made clear that
the non-reference channels are more affected by modelling errors. These errors are mainly
situated between the resonance peaks and not at the resonances.
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Figure 5.34: Principal angles between the row space of future outputs and the row
space of past outputs. The used symbols are: ‘*’ for the reduced analysis and ‘+’
for the full analysis. The true model order is found from the gap between the
principal angles. The gap for the reduced analysis is situated at  and for then
14
full analysis at .n
18
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Figure 5.35: Comparison of power spectra of a reference signal. The dashed line
is Welch’s periodogram; the full line represents the full analysis and the dash-
dotted line is the spectrum from the reduced analysis. All spectra are well in line.
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Figure 5.36: Comparison of power spectra of a non-reference signal. The dashed
line is Welch’s periodogram; the full line represents the full analysis and the dash-
dotted line is the spectrum from the reduced analysis. The frequency ranges
between resonance peaks is not well tracked by the reduced analysis.

Channel 1 2 3 4 5 6 7 8 9

References: 1, 2, 3 15 14 14 17 17 24 23 23 25
References: 2, 3, 8 17 13 14 18 13 24 22 14 27
Full analysis 13 13 14 13 13 18 13 14 14

Table 5.5: Total prediction errors  [%] for all 9 output channels. Two reduced analyses (one with0(i)

channels 1, 2, 3 as references, the other with channels 2, 3, 8 as references) and the full analysis are
presented. In the reduced analyses, the prediction errors are lower for the reference channels and
comparable with the full analysis. The prediction errors for non-reference channels are considerably
higher.
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5.3 CONCLUSIONS

To complement the simulation example of Chapter 2 and 3, two real vibration experiments
were discussed in this chapter. They confirmed the identification quality of stochastic
subspace identification methods.

The beam tests proved that it is fundamentally possible to measure the damage-induced
changes in the dynamics of a structure. The main purpose of the mast test was to measure
the damping ratios. The data was also used to study the influence of the choice and number
of reference sensors on the identification results.
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In this chapter, a method is proposed to distinguish temperature effects from
damage events. The chapter is organized as follows. Section 6.1 motivates the
chapter: from literature and our own experience it is clear that there is an influence
of temperature on the eigenfrequencies of a construction. A system identification
approach is proposed to quantify this influence. Section 6.2 discusses how an
accurate environmental model can be obtained from temperature - frequency data.
The use of the environmental model for simulations is outlined in Section 6.3. The
idea is that, if the bridge has changed, the simulated frequencies will significantly
deviate from the measured frequencies. All elements of the proposed damage
detection method are synthesized in Section 6.4. Section 6.5, finally, concludes the
chapter.
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Figure 6.1: Damage events vs. temperature effects on the first eigenfrequency of
the Z24-Bridge. The top figure represents the evolution of the frequency as a
function of the applied damage scenarios. Scenarios 3 to 7 are reversible (see
Chapter 7 for details). The bottom figure represents these temperature effects on
the first eigenfrequency during a cold period in the beginning of February 1998.
The results of this chapter were already used to filter out the temperature effects
in the top figure. The scaling of the y-axis is the same in both figures. The normal
frequency changes are as large as the changes due to damage!

6.1 INTRODUCTION

6.1.1 Motivation

In almost all studies on vibration-based damage detection, the varying environmental
conditions are disregarded. Indeed, in numerical simulations and laboratory tests they do
not play any role, but when it comes to a real-life situation as the monitoring of a bridge,
it can be suspected that temperature differences of about 50(C during the year will have
an influence on the dynamic characteristics. It is for instance known that the Young’s
modulus of concrete decreases with increasing temperature and that also boundary
conditions may be temperature-dependent. Both parameters have their influence on the
eigenfrequencies. Damage (a loss of stiffness), on the other hand, decreases the
eigenfrequencies (Take a look at Figures 5.19 and 5.20!). The problem is that damage-
induced frequency changes can be completely masked by changes due to normal varying
environmental parameters. Figure 6.1 synthesizes the motivation of this chapter. It is a
preview of the results obtained on the Z24-Bridge that will be treated in full detail in
Chapter 7.
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Other experimental evidence of the relation between temperature and eigenfrequencies can
be found in literature. Alampalli [ALAM98] reports that the relative eigenfrequency
differences  of a bridge due to freezing of the supports ( ) were an order of/ f / f
40	50%
magnitude larger than changes due to damage ( ), which was in this case an/ f
3	8%
artificial saw cut across the bottom flanges of both girders. It must be mentioned that the
studied bridge was relatively small, with a span of 6.76 m and a width of 5.26 m and it was
tested using an impact hammer. Roberts and Pearson [ROBE98] are describing a
monitoring program on a 9-span bridge with a total length of  840 m. They found that
normal environmental changes could account for changes in eigenfrequencies of as much
as  during the year. Farrar et al. [FARR97] found that the first eigenfrequency of3	4%
the Alamosa Canyon Bridge varies approximately 5% during a 24 h time period. In a paper
by Sohn et al. [SOHN99], the same bridge data is used to build a regression model that
describes the variation of eigenfrequencies due to varying temperatures. The model is used
to establish confidence intervals of the frequencies for a new temperature profile. Rücker
et al. [RUCK95] showed that the temperature effects on the dynamics of a 7-span highway
bridge in Berlin can also not be neglected. Rohrmann et al. [ROHR00] are examining the
physical phenomena that are possibly causing the frequency changes of 10% during the
year observed at that bridge. Finally, Askegaard and Mossing [ASKE88] found that a 3-
span reinforced concrete footbridge exhibits normal frequency variations of 10% during
the year.

Mode-shape-based damage identification methods may still work in the presence of
temperature variations. Most of above observations are the result of a continuous-
monitoring program that only consists of a few accelerometers (in order to reduce the
costs). Theoretically, one well-placed sensor suffices to retrieve the eigenfrequency
information. Owing to the limited number of sensors, experimental evidence of the
influence of temperature on the mode shapes is lacking. It is however generally assumed
that an eventual influence will be much smaller than the local change in the mode shape
(or its curvature) that would occur at the location of damage. These local changes are
typically the basis for mode-shape-based damage localization methods.

6.1.2 A system identification approach

From literature and our own experience it is clear that, especially in continuous monitoring
systems, the need arises to separate abnormal frequency changes from normal changes. The
idea is to find an environmental model that quantifies the relation between environmental
parameters and eigenfrequencies. Having a model at hand, it would be possible to predict
the frequencies of the structure from measured temperatures. If the prediction of a
frequency does not correspond (within certain confidence intervals) to the measured
frequency, something "abnormal" is going on and the structure is possibly damaged.
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A first approach to establish an environmental model could be a detailed analysis of the
physics that drive the eigenfrequency changes. From material research it should be able to
find a relation between temperature and the dynamic Young’s modulus E of concrete and
asphalt. The eigenfrequencies of a homogeneous specimen are proportional to the square
root of Young’s modulus: . Another physical fact is that freezing of the soil changesf~ E
the boundary conditions of a structure [ALAM98] and this affect again the structural
stiffness and thus the eigenfrequencies. One could try to quantify this (nonlinear) relation.
The full story is even more complex. A single structure may consist of steel, concrete and
asphalt parts that all play their role in the stiffness. In the process of heating up and cooling
down, the thermal inertia of these materials are also important and temperature differentials
will exist. Most references cited in previous subsection are giving physical explanations
for the frequency changes, however they do not explicitly quantify it. In Rohrmann et al.
[ROHR00] the physical phenomena are examined in more detail by building a combined
thermal-structural FE model that uses meteorological data of the Berlin area to compute
eigenfrequencies of the studied bridge.

From all this, it may be clear that finding a "physical" environmental model is almost
impossible. In these situations, one typically relies upon a system identification approach.
Mathematical methods are used to derive a black-box model that is entirely based on
measurements.

In Chapter 3, the inputs are unmeasurable ambient forces and output-only system
identification methods are used to estimate a model from measured output data
(accelerations). In a second step eigenfrequencies are obtained from the modal
decomposition of the model. In this chapter, the inputs are measurable ambient parameters
(temperatures) and the outputs are the estimated eigenfrequencies. Hence classical input-
output system identification can be used to estimate a model. In a second step the model
will be used for simulation. A whole chapter (Chapter 2) was devoted to justify the choice
of a model structure that was assumed in the identification. The chosen models could all
represent a vibrating structure. Here, such a justification is not given and a (simple) model
structure is proposed that is not necessarily able to represent the "true" system of
temperature-driven frequency changes. However, model validation tools are applied to
ensure that the model accurately describes the input-output behaviour so that it can be used
with confidence for simulations. Except for the derivation of the simulation error and its
statistics, this chapter was inspired by [LJUN99].
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6.2 IDENTIFYING THE MODEL

6.2.1 ARX models

A straightforward approach to obtain an environmental model is to apply (multiple) linear
regression: a relation between a frequency and some of the environmental parameters
measured at the same time instant is derived by applying linear least squares to the data
(see for instance [MONT91]). These "static" linear regression models, that only relate
simultaneously measured data, are not very flexible in the sense that they are not able to
model the dynamics of the heating up/cooling down process of the structure. Therefore we
are looking at "dynamic" models instead.

Probably the most simple dynamic model described in the system identification literature
(see for instance [LJUN99]) is the ARX model that consists of an Auto-Regressive output
and an eXogeneous input part:

where  is the output & in this case an eigenfrequency & at time instant ;  is the inputyk k uk

& in this case a temperature & and  is the equation error term modelling the disturbancesek

that act on the input-output process. Typical sources for the disturbances are unmodelled
inputs and measurement noise. This term is not known, but it is assumed that it is white
noise, with zero mean  and covarianceE [ek ]
0

For establishing confidence intervals on the model, we additionally assume that  has aek

Gaussian distribution. The ARX model is characterized by 3 numbers: the auto-regressive
order , the exogeneous order  and the pure time delay between input and output .na nb nk

The orders  and  are determining the number of model parameters, gathered in thena nb

column vector :�

By introducing the shift operator, , and defining the operator polynomials:q 	1 yk
yk	1
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 b(q)uk�ek (6.5)
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a(q)y m
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 b(q)

1̂y

1̂u

u m
k � 1̂y ek�c (6.9)

yk 
 b1 uk�ek (6.6)

the ARX model can also be written as:

The "static" regression model corresponds to the ARX model with a special choice of the
model orders and time delay. More specifically, it is an ARX010 model (with

):[na ,nb ,nk]
 [0,1,0]

If more than 1 input variable is included, Equations (6.1) and (6.6) are still valid but  isuk

a column vector and the  coefficients are row vectors. The advantage of general ARXb
models over static regression models is that they are dynamic models: the current output
and input are related to outputs and inputs at previous time instants.

In system identification the data is often normalized: the means are removed (otherwise
there would be an offset term in Equations (6.1) and (6.6)) and the result is divided by the
sample standard deviation. The mean value  and sample standard deviation of variablex̄ 1̂x

x are defined as:

Where  denotes a sample of variable x. The notation  is explained by the fact that itxk 1̂x

is an unbiased estimate of the true standard deviation , in case x is a stochastic variable.1x

The normalized input and output data  are then computed from the measured datauk,yk

 as:u m
k ,y m

k

It can be instrumental to transform an identified ARX model back to the engineering units
of the original data. This is achieved by introducing Equation (6.8) in the "normalized"
ARX model (6.5):

where the offset c is computed as:
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6.2.2 ARX models and least squares (LS)

The popularity of ARX models is based on the fact that an estimate of the parameter vector
 is easily obtained by applying linear Least Squares (LS). To show this, the ARX�

equation (6.1) is reformulated as:

with:

Assuming that the number of available input-output samples is such that this equation can
be written down N times, following matrix equation is obtained:

in which following definitions have been used:

This over-determined set of equations is solved in a LS sense to yield an estimate of :�

In order to examine the statistical properties of the estimate, it is assumed that the "true"
system can be described by:
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We also assume, for the moment, that  is a deterministic sequence. This corresponds to3k

the usual LS assumption that the regressor variable is deterministic (i.e. it can be measured
without an error) whereas the dependent variable is stochastic. Under these assumptions
it can be proven that [LJUN99]:

�  is a consistent estimate of , i.e.  as .�̂ �0 �̂Ú�0 NÚ�

� The LS estimate is unbiased, i.e.

The derivation uses the fact that  is a deterministic sequence and that the noise3k

has zero mean.

� The covariance of the LS estimate is given by:

The true noise covariance  is of course unknown, but an unbiased estimate is�0

provided by (see [LJUN99], Page 554):

in which the number of estimated parameters is denoted as  and thed
dim(�)
residuals are defined as . By consequence, an estimate of theJk (�̂) 
 yk 	 3

T
k �̂

covariance of the estimate can be computed as:

Notice that it was necessary to assume that  is a deterministic sequence. On the other3k

hand  is a stochastic variable as indicated by Equation (6.11). Since  contains pastyk 3k

outputs, both assumptions are contradictory and, strictly speaking, the derivations of the
statistical properties are not valid. In [LJUN99], two chapters are spent examining the
statistical properties of general input-output models. Evidently, the proves are more
involved, but when applying the results to the ARX case, the same expressions as above
are found. The difference is that the covariance matrix  has to be considered as theP

�̂

asymptotic (i.e. for ) covariance matrix.NÚ�



6.2 Identifying the Model 153

R 0
e (i) 
 E [e 0

k�i e
0
k ] 
 �0/i

R̂e (i) 
 1
N M

N

k
1
Jk�i (�̂)Jk (�̂)

V 


1
N M

N

k
1
J

2
k (�̂) (6.13)

6.2.3 Quality assessment

Having a lot of input candidates (e.g. the temperature has been measured at several
locations) and the possible choices for the model orders and the time delay  therena ,nb ,nk

are many different ARX models that can be identified from the data. By consequence,
criteria are needed that assess and compare the quality of models. We will consider a few
of them. A more general discussion on the issue can be found in [LJUN99].

The Least Squares method minimizes the sum of squares of the equation errors . A firstek

quality criterion is thus the value of the loss function:

The problem of using the loss function as a quality criterion is that it continuously
decreases as the model order increases. Other criteria include penalties for model
complexity like Akaike’s Final Prediction Error (FPE) criterion or Rissanen’s Minimum
Description Length (MDL) criterion [LJUN99].

The square roots of the diagonal elements of the estimated covariance matrix  (6.12) areP̂
�̂

estimates of the standard deviations  of the model parameter estimates  ( ).1̂
�̂i

�̂i i
1,...,d
These standard deviations are a measure of the accuracy of the estimate. If some
parameters have a large relative standard deviation, too many parameters have been
included in the model and the model order should be reduced.

One of the basic assumptions is that  is a white noise sequence. This means that thee 0
k

noise covariance function equals, see Equation (6.2):

A quality check consists of verifying whether the estimated model yields residuals that can
be considered as white. Hereto the covariance function is estimated as:

This function should be "close to zero" for time lags . Confidence intervals on beingig0
"close to zero" are in this case provided by the statistical F-distribution. If the residuals
cannot be considered as white noise, they still contain information about the system that
it is not picked up by the model.
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1Notice that in system identification one speaks of simulation if only input information is used to estimate
the outputs. If next to the inputs, also the outputs up to some previous time instant are used to estimate the current
output, one speaks of prediction.

yk 
 G(q,�)uk�H(q,�)ek (6.14)

If enough data is available, it can be split in two data sets: estimation data that is used to
estimate the model and validation data that is not yet used. Evidently, assessing the quality
of a model using validation data is more challenging than using estimation data.

6.3 USING THE MODEL FOR SIMULATIONS

Once a good model is obtained, it can be used for simulations1. New input measurements
are fed to the model generating the outputs. If the simulated output values are "deviating
too much" from the measured ones, the model is not valid anymore. If we were sure about
the initial quality of the model, we can conclude that the system has changed. To make it
more practical: new temperature measurements are fed to the environmental model of a
bridge. If the simulated model frequencies are deviating too much from the measured
system frequencies something happened to the bridge that cannot be explained by
temperature effects. Especially, if the measured frequencies are lower, the bridge is
probably damaged.

The statement "deviating too much" in last paragraph is a rather subjective criterion to
judge of the state of a structure. More objective statistical criteria are needed. These will
be developed in the following. Subsection 6.3.1 discusses the general case, whereas
Subsection 6.3.2 specializes to the ARX case.

6.3.1 The simulation error and its statistical properties

A general parametrized linear input-output model structure is given by:

where G is the transfer function and H is the noise model. As before, q is the shift operator
and  is the parameter vector. Based on the input-output data, the model parameters can�

be estimated by so-called prediction error methods [LJUN99]. The estimate is denoted as
. In case of an ARX model, the prediction error method corresponds to the linear least�̂

squares method (see Subsection 6.2.2).
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2The asterix is used as a superindex to make the difference with the "old" quantities that were used to
estimate the model.
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d̂k ~ N (0,Pd̂k
) (6.19)

Assume that new inputs  are available2. The corresponding new outputs  from theu �

k y �

k

true system are assumed to be generated by:

where  is the true model parameter vector and  are the actual disturbances with�0 e 0
k

covariance . All these true model quantities are of course unknown. The noise-free�0

simulated outputs from the estimated model can be computed as:

It is interesting to examine the statistical properties of the simulation error , defined asd̂k

the difference between the true (measured) outputs and the simulated ones:

The last step is obtained as the first order approximation of an expanded Taylor series,
where the transfer operator row vector  is defined as:J(q,�0 )

Since  is a consistent and unbiased estimate of  and  is a zero-mean Gaussian�̂ �0 e 0
k

distributed noise sequence, it follows from Equation (6.17) that  is asymptotically (i.e.d̂k

for ) Gaussian distributed with zero mean  and asymptotic covarianceNÚ� E[d̂k ]
0
. This is denoted as:E[d̂ 2

k ]
Pd̂k

An expression for  remains to be determined. For convenience of notation, wePd̂k

introduce:
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~ N (0,1)

Inserting Equation (6.17) into the definition of the covariance  yields:Pd̂k

Because the input  is a deterministic sequence and the expected value of the actual noiseu �

k

sequence is zero, this expression can be simplified as:

where the noise contribution is written in shorthand notation as:

By defining the covariance function of the stochastic sequence  as:v 0
k

and introducing the asymptotic covariance matrix of the model parameters , theP
�̂

asymptotic covariance of the simulation error equals:

In next section we will see how this covariance can be estimated in the case of an ARX
model.

The covariance matrix can be used to establish confidence intervals. Hereto
Equation (6.19) is normalized:

The true  is not known. If it is replaced by its estimate , the Student’s t-distributionPd̂k
P̂d̂k

should be used instead of the normal distribution. The  confidence interval on100(1	.)%
the true value  is therefore given by:yk



6.3 Using the Model for Simulations 157
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where  is found from a statistical table of Student’s t-distribution. The symbol  is thet
. 2,� �

number of degrees of freedom of the data after modelling, which equals in this case
, with . In order to compute the 95% confidence interval, for instance,�
N	d d
dim(�)

we have  and  (for a large number of data points N). The significance.
0.05 t
. 2,�
1.96

of the 95% confidence interval is that 95% of these intervals will contain the true value .yk

In the introduction of this section, it was stated that damage could be detected if the
measured frequencies are lower than the simulated ones. The confidence interval (6.22)
gives a statistical guidance in judging how much lower a measured frequency should be.

6.3.2 The ARX case

The asymptotic covariance of the simulation error (6.21) remains to be estimated. We will
specialize to the ARX case to derive the estimate. Equation (6.21) constitutes of 3
quantities: ,  and . They are estimated in the following.P

�̂
J0 u �

k R 0
v (0)

Asymptotic model parameter covariance matrix estimate P̂
�̂

As explained in Subsection 6.2.2, the asymptotic model parameter covariance matrix
estimate  follows from the statistical properties of the LS method that was used to findP̂

�̂

, see Equation (6.12).�̂

Transfer operator estimate J (q,�̂)

The row vector  was defined in Equation (6.18) as:J0 u �

k

The parameter vector of an ARX model is given by Equation (6.3). The partial derivatives
of the transfer function to these model parameters are:

By comparing the ARX model (6.1) with the general model structure (6.14), the transfer
function G can be written as:
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and by introducing the definitions of the operator polynomials  and , seea(q) b(q)
Equation (6.4), the partial derivatives can finally be written as:

These expressions are time domain filtering operations on the input sequence . Anu �

k

estimate of  is obtained by replacing the true, but unknown, parameters  byJ(q,�0 )u �

k �0

their estimate to yield .J(q,�̂ )u �

k

Filtered white noise covariance estimate R̂ 0
v (0)

Finally, the covariance of the noise contribution has to be estimated, see Equation (6.20):

By comparing the ARX model (6.1) with the general model structure (6.14), the noise
model H can be written as:

By consequence, the noise sequence  is the sequence that, when filtered through an auto-v 0
k

regressive filter, yields the white noise sequence :e 0
k

The computation of  goes as follows. With the definitions:R 0
v (0)
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where  is the state vector;  is the state transition matrix and  is thexk�Ü
na A�Ü
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process noise vector, Equation (6.23) can be written as:

The state covariance matrix is defined as  and the process noise covariance�
E[xk x T
k ]

matrix as . Assuming stationarity and because  is independent of any of theQ
E[wk w T
k ] e 0

k

previous outputs , we have:v 0
k	1, ...,v

0
k	na

This is a Lyapunov equation that can be solved for . Any of the diagonal elements of � �

equals . By consequence an estimate  of  is obtained by replacing R 0
v (0) R̂ 0

v (0) R 0
v (0) �0

by  as the single non-zero element in Q and  by  in A.�̂ a0 (q) â (q)

6.4 SYNTHESIS

This section synthesizes the method that was developed in previous sections to discriminate
damage events from temperature effects. The method is split in two parts. Part A discusses
the preliminary steps to undertake with data from the healthy structure. Part B is the
monitoring part that indicates how data from a possibly damages structure should be used
to detect damage. The overview is given in Figure 6.2.
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A. The healthy structure
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B. The (possibly) damaged structure
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5. Simulate the output from the model of step 3:
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, ŷk � t .
2

,�
P̂d̂k

Figure 6.2: Environmental model of a vibrating structure: estimation and simulation.
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6.5 CONCLUSIONS

In this chapter, a method was developed to detect damage in the presence of varying
environmental parameters such as temperature. A literature survey and our own experience
revealed the undeniable influence of temperature on the eigenfrequencies of a construction
and provided the motivation to develop a method that distinguishes temperature effects
from damage events. We relied upon a system identification approach to estimate an
environmental model. This model can be used for simulation by feeding it with new
temperature data. The idea is that, if the construction has changed, the simulated
frequencies will significantly deviate from the measured frequencies. This chapter
discussed the theoretical development of the method and provided a statistical framework.
The practical use (and success) of the method will be demonstrated in next chapter.



162 CHAPTER 6 ENVIRONMENTAL MODELS OF VIBRATING STRUCTURES



163

�
	�����������

In this chapter, a final application is presented. The Z24-Bridge was extensively
instrumented and tested with the aim of providing a “feasibility proof” for vibration-
based health monitoring in civil engineering. We have chosen to discuss this final
case at the end of this thesis since almost all theoretical developments of previous
chapters can be applied to it. The chapter is organized as follows. An introduction
to the bridge and the tests is given in Section 7.1. In Section 7.2 different excitation
sources that have been applied to the bridge are compared. Section 7.3 discusses
the evolution of the modal parameters with progressive artificial (but realistic)
damage. The practical use of the environmental model of Chapter 6 for damage
detection is demonstrated in Section 7.4. Section 7.5, finally, concludes the
chapter.
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1The acronym SIMCES stands for System Identification to Monitor Civil Engineering Structures
[http://www.bwk.kuleuven.ac.be/bwm/SIMCES.htm]. It was a Brite-EuRam III project [http://www.cordis.lu].

Figure 7.1: The Z24-Bridge: longitudinal section and top view [KRAE99b]. The
bridge is slightly skew: the supports are not perpendicular to the longitudinal axis.

7.1 INTRODUCTION

The data of this final application originate from the European Brite-EuRam project
SIMCES1. The project was running from January 1997 to April 1999. Seven partners from
6 European countries were involved. The Structural Mechanics division of the K.U.Leuven
coordinated the project. The work programme consisted of 4 tasks: (1) data collection, (2)
adaptation, application and assessment of stochastic system identification methods, (3) FE
modelling of reinforced concrete structures and (4) model-based damage identification
methods. The main efforts were concentrated on 1 test object: the Z24-Bridge. The Swiss
Federal Laboratories for Material Testing and Research EMPA were responsible for all
bridge tests.

The Z24-Bridge overpassed the national highway A1 between Bern and Zürich,
Switzerland. It was a classical post-tensioned concrete box girder bridge with a main span
of 30 m and 2 side-spans of 14 m (Figure 7.1). Both abutments consisted of 3 concrete
columns connected with concrete hinges to the girder. Both intermediate supports were
concrete piers clamped into the girder. Although there were no known structural problems,
the bridge dating from 1963 was demolished at the end of 1998. A new railway adjacent
to the highway required a new bridge with one larger side-span.
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Before complete demolition the bridge sacrificed its last months for the sake of science.
It was subjected to three types of testing:

� A long-term continuous monitoring test. This test took place during the year
before demolition. The aim was to quantify the environmental variability of the
bridge dynamics. Results will be presented in Section 7.4 (see also [PEET00b,
PEET00c, PEET00f, PEET00e]).

� Short-term intermittent monitoring tests. The aim was to compare the results from
different excitation types and system identification methods. Results will be
presented in Section 7.2 (see also [PEET98b, PEET99d, PEET00a, PEET00d]).

� Progressive damage tests. These tests took place in a one-month time period
shortly before the demolition of the bridge and alternated with the intermittent
monitoring tests. The aim was to prove that realistic damage has a measurable
influence on the dynamics. Results will be presented in Section 7.3 (see also
[PEET98d, DERO00]). Additionally the continuous monitoring system was still
running during the progressive damage tests, see Section 7.4.

The bridge test and data acquisition procedures are described in [KRAE99c, KRAE99b,
KRAE99a]. The tests were unique in that they combined long-term monitoring with the
application of realistic damage scenarios. Other bridge-test examples are available in
literature but either of the two aspects is missing. A well-known example is the I40-Bridge
in Albuquerque, NM, USA [FARR98, FARR00]. The applied damage scenarios were torch
cuts in the web and flange of the steel girder. No long-term monitoring was performed. In
Section 6.1, a literature survey of long-term monitoring projects was given, but in these
cases no damage could be applied to the bridges.

Similar to the beam data (Chapter 5, Page 118), the Z24-Bridge data were selected as
"benchmark" data by working group 2 of COST 1 action F3 on Structural Dynamics.
Furthermore, the Z24-Bridge is adopted as a case study by the Civil Engineering Group of
IMAC, the International Modal Analysis Conference. Participating researchers will present
their system identification results at the next conference, IMAC 19, to be held in February
2001 in Kissimmee, FL, USA.
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7.2 EXCITATION SOURCES

7.2.1 Introduction

Since a few decades, people are performing vibration tests on large civil engineering
structures. An important issue is how to excite such structures in order to obtain
measurable acceleration levels. We will give a short overview of some typical excitation
sources without claiming exhaustiveness. More references can be found in [GREE95,
FARR99a].

The extrapolation to civil engineering of traditional input devices used in mechanical
engineering leads to huge reaction mass shakers or impact testing based on a falling
weight. In literature also other, sometimes creative solutions are proposed to excite large
structures. Gentile et al. [GENT98] are describing vibration tests on a cable-stayed bridge
that was excited in the vertical direction by a heavy truck that drove over a plank and in
horizontal direction by sudden braking of the truck. Another way of vertically exciting a
bridge is a sudden release of a heavy mass that was suspended from the bridge. This
technique was applied to the Vasco Da Gama Bridge in Lisbon, Portugal as reported by
Cunha et al. [CUNH99]. Delaunay et al. [DELA99] are describing tests where the
Normandie Bridge, France, was horizontally excited by a sudden release of a tension cable
that connected the bridge with a tug-boat. Finally, Deger et al. [DEGE94] used rocket
engines to excite a composite steel/concrete bridge both horizontally and vertically. All
these excitation methods are also referred to as free vibration testing. The input is not
necessarily measured but it is impact-like and the responses are free vibrations.

The last ten years or so, more attention was paid to so-called ambient excitation. The
structural response to freely available "natural" sources such as traffic, wind, waves and
micro-earthquakes is measured. Obviously the exact forces from these sources that are
transmitted into the bridge cannot be measured. The advantage of using ambient sources
is that they are cheap (for free!). Ambient excitation that causes sometimes unacceptable
noise during forced or free vibration testing, turned out to be beneficial in vibration testing
of large structures.

7.2.2 Excitation sources applied to the Z24-Bridge

During the night after the application of a certain damage scenario (see next section for
details about the damage scenarios), an ambient and a shaker test were performed by
EMPA [KRAE99c]. After scenario 8, additionally a drop weight was used to excite the
bridge. That is why this comparison study uses the data originating from the vibration
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measurements after that scenario. Figure 7.2 illustrates the excitation sources that have
been applied to the Z24-Bridge.

In order to capture the mode shapes in some detail, the accelerations of the bridge were
measured in 9 setups of 28 roving and 5 reference sensors. A roving sensor changes
position from one setup to another, whereas a reference sensor is common to all setups.
The data were sampled at a rate of 100 Hz; the cut-off frequency of the anti-aliasing filter
was 30 Hz.

The ambient sources acting on the bridge were highway traffic, wind and walking of the
test crew in case of low traffic density. Typical bridge response data are shown in
Figure 7.3. The measurement time was 10 min 55.36 s for each setup, corresponding to
65536 samples. Two shakers have been used in the shaker tests: one was located at a side-
span, the other at the mid-span. The input signals were uncorrelated band-limited noise
between 3%30 Hz. Typical output data are shown in Figure 7.4. Finally, also a drop weight,
located at mid-span, served as excitation source. Four impacts were generated per setup as
apparent from the response data (Figure 7.5). The measurement time was in this case
81.92 s, corresponding to 8192 samples. The maximum level of the drop weight response
corresponds to the shaker response level. The ambient response level is 40 times lower.
The response spectra of the three excitation types are compared in Figure 7.6.

Figure 7.2: Photographs illustrating the applied excitation sources. Left: traffic on the highway as ambient
excitation. Middle: the installation of a reaction mass shaker of EMPA. Right: the drop weight system developed
by the Structural Mechanics division of the K.U.Leuven.
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Figure 7.5: Drop weight response data. Vertical acceleration at 1st reference
location.
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Figure 7.4: Shaker response data. Vertical acceleration at 1st reference location.
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Figure 7.3: Ambient response data. Vertical acceleration at 1st reference location.
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Figure 7.6: Comparison of response spectra: ambient response (full line), shaker
response (dashed line), drop-weight response (dash-dotted line). The accelerations
were all measured at the 1st reference location.

7.2.3 System identification results

From the numerical simulations of Chapter 3, we learnt that subspace identification is the
most accurate stochastic system identification method. In [PEET98b], the peak-picking
(PP), the instrumental-variable (IV) and the data-driven stochastic subspace identification
(SSI-DATA) method were compared using data from a preliminary vibration test on the
Z24-Bridge. It was confirmed that subspace identification is the preferred method.

The large amount of data (33 channels × 65536 samples) makes the direct use of
SSI-DATA difficult, since it requires the QR factorization of a data Hankel matrix with
65536 columns, see Equation (3.44). This is not feasible in practice due to the memory and
speed limitations of a standard computer anno 2000. A first solution is using recursive QR
updating, i.e. recomputing the R factor as new data becomes available [GOLU89]. This
relaxes the memory requirement but, unfortunately, increases the computation time. A
more practical solution is simply using only a part of the data. The high number of samples
was inspired by frequency resolution and spectrum averaging considerations of frequency
domain methods. Time domain methods typically need less samples. It suffices that the
data contain a "reasonable" number of cycles of the slowest mode. Additionally time
domain methods have no averaging mechanism.

If for instance the (ambient) excitation does not excite all modes continuously, it can be
advantageous to use all 65536 samples. In this case the covariance-driven stochastic
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Figure 7.7: Stabilization diagram obtained by applying the SSI-COV method to ambient
data from the Z24-Bridge. The criteria are 1% for frequencies, 5% for damping ratios and
2% for the mode shape correlations. The used symbols are: ‘U’ for a stable pole; ‘.v’ for a
pole with stable frequency and vector; ‘.d’ for a pole with stable frequency and damping;
‘.f’ for a pole with stable frequency and ‘.’ for a new pole (3.23).

subspace identification method (SSI-COV) can be used. As discussed in Section 3.6, the
SSI-COV method has the advantage that the data can efficiently be compressed to
covariances by applying the FFT. In this section the SSI-COV method was applied to
three data sets: ambient, shaker and drop weight data. The identification parameters were:

� the number of samples:  (ambient and shaker),  (drop weight);N
65536 N
8192
� the number of channels: ;l
33
� the number of reference sensors: (the reference sensors for the identificationr
5

of one setup were chosen to coincide with the reference sensors for gluing the
mode shape parts of the different setups together);

� the number of time lags: ;i
40
� the system orders for constructing the stabilisation diagrams: .n
2,3,...,80

A typical stabilization diagram for the ambient data is shown in Figure 7.7. Seven modes
could be identified from all three data sets. The eigenfrequencies and damping ratios are
represented in Tables 7.1 and 7.2. The frequency differences between the excitation types
are generally small. The variances of the modal parameters and the differences between
the excitation types are partly explained by changing temperature. Measuring 9 setups for
all 3 excitation types took almost one day and, as shown in Section 7.4, changing
temperature has a significant influence on the frequencies of this bridge. The standard
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Mode 1 2 3 4 5 6 7

Ambient  [Hz] 3.859 4.903 9.75 10.29 12.43 13.37 18.99f̄
 [Hz] 0 0.02 0.02 0.05 0.15 0.14 0.31̂f

Shaker  [Hz] 3.846 4.816 9.739 10.42 12.41 13.16 19.14f̄
 [Hz] 0 0 0 0.03 0.05 0.05 0.051̂f

Drop  [Hz] 3.844 4.817 9.743 10.38 12.19 13.2 19.18f̄
weight  [Hz] 0 0 0 0.04 0.11 0.05 0.021̂f

Table 7.1: Comparison of eigenfrequencies identified from three data sets with respectively ambient,
shaker and drop weight excitation. The mean values  and estimated standard deviations  are basedf̄ 1̂f

on 9 samples originating from the 9 independent setups.

Mode 1 2 3 4 5 6 7

Ambient  [%] 1.1 1.2 1.4 1.5 3.1 4.3 2.3�̄

 [%] 0.3 0.1 0.2 0.4 0.4 1.2 0.31̂
�

Shaker  [%] 1.1 1.7 1.7 2.6 3.5 3.3 2.4�̄

 [%] 0.1 0.1 0.1 0.4 0.4 0.3 0.21̂
�

Drop  [%] 0.83 1.6 1.7 1.9 4.1 4.3 2.5�̄

weight  [%] 0.02 0.1 0.1 0.1 0.8 0.2 0.21̂
�

Table 7.2: Comparison of damping ratios identified from three data sets with respectively ambient,
shaker and drop weight excitation. The mean values  and estimated standard deviations  are based�̄ 1̂

�

on 9 samples originating from the 9 independent setups.

deviations of the ambient results are somewhat larger. Taking into account their higher
uncertainty, the damping ratios seem to be consistently identified from all three data sets.

The identified mode shapes are shown in Figure 7.8. The 1st mode is a vertical bending
mode. The 2nd mode is a transverse bending mode, combined with torsion of the girder.
The 3rd and 4th mode are combining vertical bending with torsion, which is typical for skew
bridges. The 5th mode is a vertical symmetric bending mode. The 6th mode is a vertical anti-
symmetric bending mode with an important vertical movement of the piers. Finally, the 7th

mode is a torsion mode. The correlations between the corresponding modal vectors from
different excitation types are represented in Table 7.3. Mode 5 was not well identified from
the drop weight data, the shaker data yielded a 6th mode shape of lower quality and also the
7th ambient mode was not well identified.
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Figure 7.8: Seven mode shapes of the Z24-Bridge, ordered from left to right, from top to bottom. Except for the
7th mode all represented shapes were identified from ambient data.
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Mode 1 2 3 4 5 6 7

Ambient vs. shaker 1 0.99 0.94 0.88 0.94 0.73 0.81
Ambient vs. drop weight 1 0.97 0.94 0.87 0.79 0.96 0.8
Shaker vs. drop weight 0.99 0.98 0.98 0.92 0.85 0.77 0.9

Table 7.3: MAC values (3.24) between the corresponding mode shapes from the three excitation
types. The MAC is a value between 0 (i.e. no correlation) and 1 (i.e. perfect correlation).

7.2.4 Conclusions

Except for the higher standard deviations of the ambient results, all three excitation types
yielded comparable modal parameters. But next to the accuracy of the results, other criteria
guide the choice of an excitation source:

� If mass-normalized mode shapes are required, one cannot use ambient excitation.
To obtain the correct scaling of the mode shapes, the applied force has to be
known.

� If the cost of testing is a major concern, the use of shakers can be excluded. The
price of a shaker and the additional man power needed to install it on a structure,
makes it not very cost-effective, see also [KRAE99c].

� If a structure has low-frequency (below 1 Hz) modes, it may be difficult to excite
them with a shaker, whereas this is generally no problem for a drop weight or
ambient sources. The high-frequency modes on the other hand, are not always
well excited by ambient sources.

� By adjusting the settings of the damper on which the mass of the drop weight
system falls, the frequency content of the excitation can be controlled in some
sense. The level of excitation can be determined by the initial height of the mass.
Above a certain frequency, the frequency content and the level of excitation of
the shaker can also be controlled. This is evidently not the case for the ambient
sources.

� The use of artificial excitation only makes sense when the generated response
surpasses the ambient response which is always present. For very large structures,
e.g. long span cable-stayed bridges, this becomes almost impossible.
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Criterion Ambient Shaker Drop
Weight

Mass-normalized mode shapes % + +
Price + % +

Low frequency excitation + % +
High frequency excitation % + +

Controlled amplitude % + +
Continuous monitoring + % %

Intermittent monitoring + + +

Table 7.4: Strong points (+) and weak points (%) of the three excitation sources.

� If the purpose of the tests is continuous monitoring, only ambient excitation can
be used. For intermittent monitoring, also the use of a drop weight can be
considered: it is cheap, fast and easy to install.

Previous discussion is synthesized in Table 7.4.

The accelerations of a structure as a result of ambient excitation are typically very small
and can vary considerably during acquisition, for instance depending on whether a truck,
a car or no traffic is passing (Figure 7.3). This causes challenges to the sensors, the
acquisition system and the identification algorithms that, in the limit, need to extract
weakly excited modes from noisy data. The developments of the last years both on the
acquisition side as on the identification side (i.e. the development of subspace
identification methods) greatly enhanced the use of ambient vibration testing to estimate
the modal parameters of a structure.
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2Bundesministerium für Verkehr, Abteilung Strassenbau. Schäden an Brücken und anderen Ingenieur-

bauwerken, 1982 & 1994.

7.3 PROGRESSIVE DAMAGE TESTS

7.3.1 The scenarios

The aim of the progressive damage tests was to study the influence of damage on the
dynamics of a bridge. A detailed description of the design and implementation of the
damage scenarios that have been applied to the Z24-Bridge can be found in [KRAE99b,
KRAE99a]. The discussion in this thesis is limited to the elements that are essential for
understanding the proposed damage detection method.

The choice and extent of the scenarios were guided by following criteria:

� In order to be convincing as a "feasibility proof", the scenarios should be realistic.
Hereto, the Swiss database of bridge damage cases was consulted2.

� The traffic on the most important highway of Switzerland must not be disturbed,
nor the people endangered when applying the scenarios. Therefore special safety
measures were taken (see [KRAE99b, KRAE99a] for details) and the scenarios
were never pursued to the safety limits. A consequence was that the induced
damages remained small.

� There was only a limited time period available for applying the damage scenarios.
This period was situated between the opening of the new bridge adjacent to the
Z24-Bridge and the complete demolition of the Z24-Bridge.

The retained damage scenarios are listed in Table 7.5. Some photographs of the damage
scenarios are collected in Figure 7.9.
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# Date Scenario Comments

1 04.08.98 1st Reference measurement "Healthy" structure

2 09.08.98 2nd Reference measurement After installation of the
settlement system

3 10.08.98 Settlement of pier: 2 cm Natural causes: erosion,
flooding, soil settling4 12.08.98 Settlement of pier: 4 cm

5 17.08.98 Settlement of pier: 8 cm
6 18.08.98 Settlement of pier: 9.5 cm

7 19.08.98 Tilt of foundation

8 20.08.98 3rd Reference measurement Cracks are closing after
removal of settlement

9 25.08.98 Spalling of concrete: 12 m2 Natural causes: vehicle impact,
carbonisation, corrosion10 26.08.98 Spalling of concrete: 24 m2

11 27.08.98 Landslide at abutment Natural causes: erosion,
flooding

12 31.08.98 Failure of a concrete hinge Natural causes: corrosion,
overload

13 02.09.98 Failure of anchor heads I Natural causes: corrosion
14 03.09.98 Failure of anchor heads II

15 07.09.98 Rupture of tendons I Natural causes: bad injection of
tendon tubes + corrosion16 08.09.98 Rupture of tendons II

17 09.09.98 Rupture of tendons III

Table 7.5: Progressive damage test scenarios. The dates are referring to the start of the vibration
measurements.
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Figure 7.9: Photographs illustrating the applied damage scenarios. From left to right, from top
to bottom: (1) cutting of a pier to install the settlement system, (2) settlement system, (3) spalling
of concrete, (4) failure of a concrete hinge, (5) failure of anchor heads, (6) failure of tendon
wires. The first two photographs are provided by EMPA.
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7.3.2 Evolution of the modal parameters

The SSI-DATA method was applied to the ambient data acquired after each damage
scenario. The acquisition strategy was already explained in Section 7.2. Here, the
preprocessing consisted of the selection of a high-quality segment of 8192 data points and
sending the data through a digital low-pass filter with a cut-off frequency of 20 Hz.
Afterwards the data was resampled at a 2 times slower rate (i.e. 50 Hz) than the original
one. The SSI-DATA identification parameters were:

� the number of samples: ;N
4096
� the number of channels: ;l
33
� the number of reference sensors: (the reference sensors for the identificationr
5

of one setup were chosen to coincide with the reference sensors for gluing the
mode shape parts of the different setups together);

� the number of time lags: ;i
20
� the system orders for constructing the stabilisation diagrams: .n
2,3,...,80

These parameters led to a reasonable computation time to digest 17 data sets, each
consisting of 9 setups. The results after scenario 8 were discussed in detail in previous
section.

The evolution of eigenfrequencies throughout the progressive damage tests is somewhat
obscured by temperature effects. Therefore the frequency results will only be treated in
next section, after correcting for temperature. In this section, we will concentrate on the
evolution of the damping ratios and mode shapes.

The estimated damping ratios of the first 5 modes of all damage scenarios are represented
in Appendix C.1. The main conclusions are:

� The damping ratios of the Z24-Bridge are in the range 1%3%, which is normal.
� The uncertainties on the damping ratio estimates is quite high.
� There is no clear trend in the evolution of the damping with damage.
� It will be difficult to incorporate damping ratios in a damage detection method.

It is more interesting to observe how the mode shapes are changing with damage. To
compare mode shapes, the modal amplitudes are divided by the norm of the modal vector.
The evolution of the first 5 mode shapes between some damage scenarios are represented
in Figures 7.10%7.15. Mode shape changes between scenarios are clearly visible. They
contain useful information for model updating and damage identification methods. The use
of the first mode shape to locate damage on the Z24-Bridge is shown in [MAEC98b,
MAEC00b].
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Figure 7.10: Vertical components of mode shape 1. The sign of the modal
displacements at one side of the bridge is switched to allow visualization of both
sides in one graph. The full line corresponds to scenario 2, the dashed line is from
scenario 6 and the dotted line with crosses is from scenario 8. There is a (small)
change of the mode shape at the side of the settled pier. After removal of the
settlement, the mode shape coincides with the original one.

Figure 7.11: Evolution of mode shape 5. The full line is the real part; the dotted line is the imaginary part. Scenario
4, 6, 11 and 12 are represented. Settling the pier makes the mode shape losing its symmetry (top figures). Cutting
a concrete hinge at the abutment on the right introduced a torsion component (bottom figures).



180 CHAPTER 7 THE Z24-BRIDGE

5 10 15 20 25 30 35 40 45
Position [−]

M
od

e 
sh

ap
e 

[−
]

Figure 7.12: Transverse components of mode shape 2. The full line corresponds
to scenario 1, the dashed line is from scenario 2 and the dotted line with crosses is
from scenario 6. Only cutting the pier already affects this mode. Imposing the
settlement further changed the mode.
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Figure 7.13: Transverse components of mode shape 2. The full line corresponds
to scenario 2, the dashed line is from scenario 7 and the dotted line with crosses is
from scenario 8. After removal of the settlement and tilt, the mode shape coincides
with the mode from scenario 2 (after cutting the pier).
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Figure 7.14: Vertical components of mode shape 3. Scenarios 2, 3, 4, 5 and 6 are
respectively represented by a full line, a dotted line, a dashed line, a dash-dotted
line and a full line with crosses. Gradually increasing the settlement uniformly
changes this mode (disregarding some anomalies in scenario 3).
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Figure 7.15: Vertical components of mode shape 4. Scenarios 2, 3, 4, 5 and 6 are
respectively represented by a full line, a dotted line, a dashed line, a dash-dotted
line and a full line with crosses. Gradually increasing the settlement uniformly
changes this mode (disregarding some anomalies in scenario 3).
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7.4 CONTINUOUS MONITORING AND DAMAGE DETECTION

In this section, the damage detection capabilities of the continuous monitoring system
installed on the Z24-Bridge will be demonstrated. The method outlined in Chapter 6 and
synthesized in Figure 6.2 will be applied. The input data are measured environmental
parameters; the output data are eigenfrequencies, identified with the SSI-DATA method.
In [RUSH99] an alternative approach was pursued, based on eigenfrequencies identified
with the PP method and a "static" linear regression model.

7.4.1 The monitoring system

From 11 November 1997 till 11 September 1998, the bridge has continuously been
monitored. The aim of the monitoring system was to provide both environmental and
vibration data. A detailed description of the system is given in [KRAE99b, KRAE99a].
Every hour, 49 environmental parameters were measured: air temperature, wind
characteristics, humidity, bridge expansion and several soil, concrete and asphalt
temperatures. The locations of the thermocouples are shown in Figure 7.17. Figure 7.16
shows the air temperature and the soil temperature at one of the piers. Additionally, every
hour during 11 minutes, 8 accelerometers are capturing the vibrations of the bridge. Notice
that the number of accelerometers and measurement locations used in the continuous
monitoring system is much less than the number of accelerometers used in the intermittent
monitoring system (Section 7.2).
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Figure 7.16: Typical environmental data. Top: air temperature. Bottom: soil
temperature at one of the piers. The represented measurement period is from 11
November 1997 till 20 April 1998. The sampling time is 1 h. The soil temperature
variations are much smoother.
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Mode Success
rate [%]

Eigenfrequency

Min. [Hz] Avg. [Hz] Max. [Hz] Max.diff. [%]

1 98 3.81 4 4.38 14
2 93 4.98 5.21 5.89 18
3 96 9.6 10.16 11.2 16
4 77 10.24 10.84 12.09 17

Table 7.6: Automatic modal analysis results for the first 4 modes of the healthy structure. The
"success rate" expresses the percentage of successful identifications of a certain mode. The minimum
(min.), average (avg.) and maximum (max.) frequencies are specified, together with the relative
maximal differences (max. diff.). The frequency differences (14%18%) occurred before any known
damage took place and have to be explained by normal environmental changes. See also Figure 7.18.

Figure 7.17: Cross-section of the Z24-Bridge and location of the thermocouples
in any of the three spans [KRAE99b].

As indices for the dynamic behaviour of the structure, it is natural to take the modal
parameters. A problem is that they cannot be measured directly and have to be estimated
from acceleration data. A key issue in our approach to continuous monitoring is therefore
the automatic extraction of the modal parameters. The automatic modal analysis
procedure, proposed in Section 4.2 was applied to the 5652 data sets from the continuous
monitoring system. The results are summarized in Table 7.6. Due to the sometimes low
excitation (especially at night when there is not much traffic) the automatic procedure
could not identify all 4 modes at every time instant. However, especially for the first 3
modes, the automatic procedure performs very well. The two close modes around
10%11 Hz caused problems for the automated PP method described in [RUSH99].
Figure 7.18 provides a graphical representation of the results.
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Figure 7.18: Automatic modal analysis results for the first 4 modes of the healthy structure. A clearly
visible quite long cold period starts at day 75 (i.e. beginning of February 1998). Besides shorter
periods, the monitoring system was not operating from day 166 till day 200. See also Table 7.6.

7.4.2 System identification

Plotting the data

The first step in system identification is plotting the data in various ways. This step reveals
already quite useful information about the behaviour of the Z24-Bridge under a changing
environment. In Figure 7.19, the 1st eigenfrequency is plotted vs. the temperature of the
asphalt layer TP1. In Figure 7.20, the 2nd eigenfrequency is plotted vs. the temperature of
the deck soffit TDS2. In both cases, the relation between temperature and frequency can
roughly be described by two straight lines, with the knee situated around 0°C. This bilinear
behaviour is observed for almost all combinations of frequency vs. temperature. With
increasing temperature, the bridge stiffness normally decreases. Mode 2 is somewhat an
exception in the sense that its frequency increases with increasing temperatures (for
positive temperatures).
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Figure 7.19: 1st Eigenfrequency vs. asphalt layer temperature TP1. The data comes
from the healthy structure.
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Figure 7.20: 2nd Eigenfrequency vs. deck soffit temperature TDS2. The data comes
from the healthy structure.

Some effort was spent in trying to find out the cause of the bilinear behaviour. Whereas the
temperature vs. time functions are very smooth; the frequency vs. time functions are rather
irregular. This can be observed in Figure 7.21, where three different temperatures and the
sign-reversed first eigenfrequency  are plotted as a function of time. All quantities have	 f
been normalized. At first sight there seems to be no relation between frequency and
temperature, although on a larger time scale it would be clear that the frequency follows
the main trends of the temperature data. However, by plotting the same quantities measured
during a cold period (Figure 7.22), it appears that the normalized opposite frequency is
almost perfectly in line with the normalized temperature of the asphalt layer TP1. The
central web temperature TWC1 and the soffit temperature TS1 are lagging behind and can
by consequence not be the driving forces of the eigenfrequency variation. Also freezing
of the soil around the boundaries of the bridge cannot explain the variations. The soil
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3In this section, the eigenfrequencies are considered as a time series of measurement values, so it makes
sense to speak about the frequency content of the eigenfrequencies.
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Figure 7.21: Normalized temperatures and sign-reversed 1st eigenfrequency during a warm period:
TP1 (full line), TWC1 (dashed line), TS1 (dash-dotted line) and - f1 (full line with crosses).

temperature has a much lower frequency content (Figure 7.16) than the eigenfrequencies3.
We conclude that during warm periods the asphalt does not play any role, but during cold
periods it contributes significantly to the stiffness of the structure. This explains the
observed non-linearity in Figures 7.19 and 7.20.

This conclusion is confirmed by the results of a recent paper [WATS00] in which the
seasonal variations of asphalt road pavements are experimentally studied with falling
weight deflectometer tests. Figure 7.23 is an extract from that paper, representing the
change of Young’s modulus of asphalt with changing temperature. The role of the asphalt
layer in the overall stiffness of the Z24-Bridge is also apparent from geo-radar
measurements [KRAE99a]. It was found that the asphalt layer of the bridge deck had an
average thickness of 16 cm instead of 8 cm as indicated on the construction drawings of
the bridge.
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Figure 7.23: Young’s modulus of asphalt as a function of temperature. Below 0(C
the stiffness of asphalt increases dramatically [WATS00].
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Figure 7.22: Normalized temperatures and sign-reversed 1st eigenfrequency during a cold period:
TP1 (full line), TWC1 (dashed line), TS1 (dash-dotted line) and - f1 (full line with crosses).
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Environmental model of the Z24-Bridge

For simplicity linear models are considered. Therefore only data from periods where the
asphalt does not play any role is taken into account. If desired, a separate linear
environmental model for the negative temperature range could be identified or more
involved nonlinear models could be derived for the whole temperature range. In any case,
in the following only positive temperature data are considered.

The high number of input candidates ( ) makes it necessary to apply variable selection
49
procedures. Many inputs offer redundant information and not all of them should be
included in the model. The high number of measured quantities is fine in a research
project, but an economic monitoring system should operate with only a few environmental
parameters.

Next to several temperatures also the wind characteristics, rainfall and humidity have been
monitored. Since no relation was found between these last three quantities and the
eigenfrequencies, only temperature variables are retained as input candidates. Next
reduction is forced by circumstances. Due to collateral damage from the construction of
a new bridge adjacent to the Z24-Bridge all the soil temperature sensors failed at the end
of the monitoring period. Also other sensors failed. The number of input candidates could
already be reduced from 49 to 22: the air temperature and 21 concrete and asphalt
temperatures are retained.

In a next step the correlations between all inputs and outputs are determined.  The
correlation  between two variables x and y is defined as:r̂xy

with  a sample,  the mean value and  the sample standard deviation of variable x; seexk x̄ 1̂x

Equation (6.7).   is the sample covariance. An absolute value of the correlation closeR̂xy

to 1, indicates a high linear association between the two variables. Input variables for
which the (absolute) correlation exceeds 0.99 are grouped together, since they offer almost
the same information. Six groups are obtained. The input variable that has the largest
correlation with most of the 4 eigenfrequencies is selected as representative for the group.
The retained variables are TWN2, TP2, TDT2, TS2, TSWN3 and the air temperature.
Almost all representative variables are originating from the main span (span 2) of the
bridge. An important remark is that a low correlation can also mean that there is just a time
delay between two signals, so it is possible that the six retained variables still contain some
redundancy.
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Mode
ARX model Static regression model

V FPE V FPEna nb nk na nb nk

1 2 1 4 0.145 0.145 0 1 0 0.212 0.213
2 3 2 0 0.533 0.536 0 1 0 0.896 0.897
3 2 1 0 0.507 0.509 0 1 0 0.548 0.549
4 2 2 0 0.569 0.572 0 1 0 0.612 0.613

Table 7.7: Comparison between ARX and static regression SISO models: TDT2 vs. eigenfrequency.
The model parameters are given in Appendix C.2.

Having reduced the number of possible input candidates to 6, input-output model are
identified according to the theory of Section 6.2. Our strategy to find a good model is the
following. For all 4 eigenfrequencies and remaining 6 input candidates, single-input single-
output (SISO) ARX models are estimated. A good and simple (i.e. with only a few
parameters) model is selected for each of the 24 input-output combinations, according to
the quality criteria of Subsection 6.2.3. Next, the input is selected that yields "on the
average" the best models for all 4 frequencies. The best models have the lowest values for
the loss function V (6.13) and Akaike’s FPE. It turned out that the model based on TDT2
performed best; but it must be added that not much quality loss was observed when using
any of the temperatures TWN2, TP2 or TS2. The results are represented in Table 7.7. The
input and output data were normalized (6.8) before the models were identified. The model
for the first mode seems to be much better than the models for the other 3 modes. The
static regression results are also represented. Especially for the first 2 modes, the
improvements of an ARX model over a static model are evident. The estimated model
parameters and their standard deviations are given in Appendix C.2.

Afterwards input variables were added to the SISO models. It was observed that the ARX
models hardly improved. For instance, the quality measures of a multiple-input single-
output (MISO) ARX214 model, that includes all 6 input variables and has the first
eigenfrequency as output, are: , . These values have to be comparedV
0.142 FPE
0.143
with the values on the first line of Table 7.7. The static models on the other hand could be
improved. The quality criteria for a MISO ARX010 model that includes all input variables
are: , . It is not only more expensive to measure many temperatures,V
0.187 FPE
0.188
but also redundant. Multiple static linear regression does not perform better that single-
input ARX modelling (0.187 > 0.145).

Another indication that ARX models perform better than static models is provided by the
whiteness test of the residuals; see Subsection 6.2.3. In Figure 7.24 the auto-correlation
function  of the SISO ARX214 and static models are plotted, together with theR̂e(i) �̂
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Figure 7.24: Auto-correlation function of the residuals of the TDT2 vs. f1 models.
The ARX214 residual auto-correlation function is represented by a dashed line; the
static residual auto-correlation is represented by a full line. The 99% confidence
intervals are shown as a dotted line. A white noise sequence would have its auto-
correlation function in this interval for lags different from zero.

99% confidence intervals. The residual sequence of the static model is not white noise at
all.

7.4.3 Damage detection

Once a good model is obtained, it can be used for simulation. New temperature
measurements are fed to the models and they simulate the eigenfrequencies of the Z24-
Bridge. In Section 6.3 an objective statistical criterion was established that determines
whether a simulated frequency, determined by the temperature history and the
environmental model, is deviating too much from the measured one. The data which were
already used to identify the ARX models, and also new data, are fed to the models to yield
the simulated frequencies and the 95% confidence intervals (6.22).

The simulation errors and the confidence intervals for mode 1 are plotted in Figure 7.25.
An outlier is defined as a point that exceeds the confidence interval. A random outlier is
probably due to a bad identification of the eigenfrequency whereas repeated outliers are
indicating that something happened with the bridge. The vertical dash-dotted line is
splitting the simulation errors in two parts: the left part is related to data that was already
used to identify the model, the right part is related to new data. Figure 7.26 is a zoom of
Figure 7.25 that concentrates on the period of the progressive damage tests. The
comparison between the simulated and measured first eigenfrequency is made in
Figure 7.27; see also Equations (6.9) and (6.10). This figure is basically giving the same
information but in terms of the eigenfrequencies themselves, rather than the simulation
errors of the normalized eigenfrequencies. The simulation errors and the confidence
intervals for mode 2, 3 and 4 are plotted in Figures 7.28%7.30. 
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It is immediately clear that damage is detected at the end of the monitoring period for all
frequencies. By taking a closer look at the figures, following observations can be made:

� Concerning mode 1, damage is detected from day 277 on (15 Augustus 1998).
This corresponds to the period between the pier settlement of 4 cm and the
settlement of 8 cm (see Table 7.5). The preceding scenarios seem to have no large
influence on the first eigenfrequency.

� The reversible character of the settlement damage scenarios is evident around day
282 (20 Augustus 1998). It appears also that the bridge did not completely
recovered after removal of the settlement as the simulation errors are still
exceeding the confidence intervals; see Figures 7.25%7.27.

� As apparent from Figures 7.28%7.30, the environmental models for modes 2, 3
and 4 detect damage from day 269%270 on (7%8 Augustus 1998). Around these
dates, the settlement system was installed. Although the bridge was not yet settled
and there were no cracks in the bridge girders, the installation of the settlement
system required that one of the piers needed to be cut; see also Figure 7.9 and
Table 7.5. Damaging the pier clearly affects the frequencies of modes 2 to 4.

� The decrease of the second eigenfrequency with damage is very spectacular, see
Figure 7.28.

� There are some anomalies in the simulation errors of the first and second
eigenfrequency; see Figures 7.25 and 7.28. They are clearly exceeding the
confidence limits at days 248%249 (17%18 July 1998). We are not sure what the
cause of that frequency drop could be. Maybe it was a temporarily increase of the
mass of the bridge due to some heavy trucks that were standing on the bridge for
the installation of the two shakers, see Figure 7.2.

� From Figure 7.26, also a strange increase of the first eigenfrequency around day
270 (8 Augustus 1998) is observed. This date coincides with the installation of the
settlement system. Maybe one of the safety measures caused this apparent
stiffness increase.
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Figure 7.25: Mode 1 results. Simulation errors (crosses) and 95% confidence intervals (dashed lines) of the
ARX214 model for TDT2 vs. f1.
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Figure 7.26: Zoom of Figure 7.25. Mainly the period of the progressive damage tests is represented.
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Figure 7.27: Mode 1 results. The measured eigenfrequencies are represented by crosses, the simulated frequencies
and the 95% confidence intervals are represented by full lines. 
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Figure 7.28: Mode 2 results. Simulation errors (crosses) and 95% confidence intervals (dashed lines) of the
ARX320 model for TDT2 vs. f2.
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Figure 7.29: Mode 3 results. Simulation errors (crosses) and 95% confidence intervals (dashed lines) of the
ARX210 model for TDT2 vs. f3.
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Figure 7.30: Mode 4 results. Simulation errors (crosses) and 95% confidence intervals (dashed lines) of the
ARX220 model for TDT2 vs. f4.
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7.4.4 Conclusions and recommendations

In this section, the damage detection capabilities of the continuous monitoring system
installed on the Z24-Bridge was demonstrated. The method outlined in Chapter 6 and
synthesized in Figure 6.2 was applied. ARX models were fitted to data from the healthy
structure. An ARX model that includes the thermal dynamics of the bridge is superior to
a static regression model. Also, it turned out that a temperature measurement at one
location was sufficient to find an accurate model. The ARX models are used for simulating
the eigenfrequencies. If a new measured eigenfrequency lies outside the estimated
confidence intervals, it is likely that the bridge is damaged. In case of the Z24-Bridge and
the applied damage scenarios, we could successfully detect damage.

A first and important problem is the choice and the number of quantities that have to be
included in the monitoring system. The vibration sensors (accelerometers) should not be
put on nodal points of the mode shapes of interest. For the studied Z24-Bridge, a good
place to put a temperature sensor was the top of the concrete deck, under the asphalt layer,
in a central location of the main span of the bridge. It was also important to catch the
temperature course of the asphalt. Below 0(C, the asphalt layer seemed to be responsible
for the frequency variations.

Not only the temperatures at different locations have been monitored, but also the wind
characteristics, rainfall and humidity. However no relation was found between these last
three quantities and the eigenfrequencies. Therefore only temperature variables are retained
as inputs.

The added dynamics of the traffic on the bridge has not been studied. We have no
measurements of this input variable; so it has to be considered as a disturbance source in
the identified ARX models.

Sometimes "moisture absorption" is mentioned as another source of environmental
variability. However we do not believe that this significantly changes the mass of the
bridge. It is well known that concrete hardly absorbs any water and furthermore every
bridge has a draining system so that the actual amount of water on the bridge will always
be limited.

Since the ARX models are "dynamic" models, they need some time to start up. If
temperature information is fed into the models, it takes some time before the simulated
frequencies converge to the steady state frequencies. It was observed that 24 h was a safe
margin for all 4 modes to obtain reliable simulations.
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4Due to the limited amount of data from the studied bridge it was not feasible to identify dynamic models.
Identifying a static regression model was the best strategy in that case.

The Young’s modulus of fresh concrete increases significantly during the first months.
Therefore it is better to wait until convergence before starting to identify environmental
models for a new bridge.

In [FARR97, SOHN99] it is suggested that temperature differentials across the deck of the
Alamosa Canyon Bridge are the driving forces for the frequency variations, whereas for
the Z24-Bridge temperature measurements at a single location seem to be sufficient. The
difference is that in [SOHN99] a static regression model was used4, whereas we are using
dynamic ARX models. Probably the use of temperature differentials is an attempt to
overcome the lack of dynamics in the model. That is also what we observed: in contrast to
the dynamic models, our static models could be improved by adding more input variables.

7.5 CONCLUSIONS

In this chapter, a final application was presented. The Z24-Bridge was extensively
instrumented and tested with the aim of providing a "feasibility proof" for vibration-based
health monitoring in civil engineering.

From the comparison of different excitation types it can be concluded that ambient
vibration testing is a valuable approach to estimate the modal parameters of large
structures, especially with the improvements of acquisition systems and identification
algorithms of the last years.

The progressive damage tests prove that realistic damage scenarios have a measurable
influence on the dynamics of the bridge.

The long-term continuous monitoring test made it possible to derive environmental models
for the bridge. These models are essential to detect damage in the presence of varying
temperatures.
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8.1 CONCLUSIONS

This thesis discussed system identification and damage detection in civil engineering. The
work did not only consist of the application of available theory to civil engineering
structures, but also contained theoretical developments. The main conclusions of this thesis
are the following.

� The relation between FE models of vibrating structures, stochastic state-space
models and modal models justifies the use of stochastic system identification to
estimate the modal parameters of a structure excited by white noise (see
Chapter 2).

� Almost all state-of-the-art stochastic system identification methods & peak-
picking, complex mode indication function, instrumental variables, covariance-
driven and data-driven stochastic subspace identification & are theoretically and
experimentally compared (see Chapter 3). From the comparison of the estimated
modal parameters, it is concluded that the subspace methods are the preferred
methods (see Section 3.9). The prediction error method applied to an ARMA
model is only briefly discussed, because until present this nonlinear time-domain
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method did not reach an acceptable level of robustness and speed for civil
engineering modal analysis applications.

� The data-driven stochastic subspace identification method could be adapted and
extended to make it suitable for modal analysis applications. The adaptation
consists of reducing the dimensions of the matrices (and the computation time)
by removing some of the redundancy that is typically present in a modal analysis
experiment because usually many sensors are used. The extension consists of
efficiently combining the stabilization diagram with subspace methods.
Additionally, a technique was developed to split the total measured time response
in modal responses.

� The theoretical development of subspace methods combined with developments
on the acquisition side greatly enhanced the use of ambient vibration testing in
which case weakly excited modes and noisy data are no exception (see
Section 7.2)

� The development of a GUI for output-only modal analysis makes the subspace
identification method accessible to non-experienced users (see Section 4.1). The
development of an automatic modal analysis procedure is a key issue of a
continuous monitoring system that relies upon the evolution of the modal
parameters (see Section 4.2).

� Many simulated (Chapters 2 and 3), laboratory (Chapter 5) and real-life
applications (Chapters 5 and 7) are presented in this thesis to illustrate the
modelling concepts and the use of the system identification methods.

� A method was developed to distinguish normal environmental from damage
influences on the eigenfrequencies of a structure (Chapter 6). This method
combined with subspace identification was validated on real data and showed to
be a successful real-life damage detection method.

8.2 FUTURE RESEARCH

We believe that this thesis contains useful contributions to the solution of the vibration-
based structural health monitoring problem. Nevertheless future research is certainly
needed to obtain a robust, automatic, generally applicable monitoring system.
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� By the introduction of subspace methods in civil engineering, the output-only
modal analysis problem seems to be largely solved and it is expected that not
much can be improved on the quality of the estimated modal parameters. A
related topic that can be improved, however, is the automatic modal analysis
procedure. The (simple) approach that we proposed in Section 4.2 turned out to
work quite well, but not in 100% of the cases (see Table 7.6). It is still possible
to build some more intelligence in the method.

� Concerning the identification and use of the environmental model (see Chapter 6
and Section 7.4) some further improvements are possible. As visible on
Figures 7.19 and 7.20, the frequency-temperature relation of the Z24-Bridge
exhibits a nonlinear behaviour. It may be worthwhile to try to identify a nonlinear
environmental model to include the data from temperatures below 0(C. It would
be interesting to validate the use of the environmental model to detect damage
(Section 7.4) on other structures too. Of course, structures like the Z24-Bridge
that were monitored during almost a year and artificially damaged afterwards, are
not daily available. In this thesis the problem of structural damage detection was
reduced to a problem of detecting outliers (see Figures 7.25, 7.28, 7.29 and 7.30).
In this case methods from the statistical process control literature can be useful
(see for instance [MONT96]).

� This thesis addressed level 1 damage detection (see Sections 1.1 and 1.2) based
on eigenfrequencies of the structure. A predictive condition-based maintenance
strategy can rely upon the continuous application of level 1 methods. It would
however be interesting to extend the monitoring capabilities by using mode shape
information and/or an analytical structural model in some automatic manner. This
would allow for a localization and quantification of the damage.

� A last open problem has a more theoretical nature. In Chapter 2 the route was
followed from a physical model of a vibrating structure to models that can be
identified from data. It is an interesting exercise to explore this route in the other
direction in order to find out which conditions need to apply to the identified first-
order state-space model so that it can be converted to a physically realizable
equivalent second-order system consisting of masses, dampers and springs (see
for instance [ALVI93]). Notions as stability and positive realness are likely to
play an important role in this matter.
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A.1 TRANSFER FUNCTIONS

In Section 2.7, following expression for the transfer function in the Laplace domain was
found, see Equation (2.71):

This expression can be rewritten by introducing the expressions of  in terms ofVc,L
T

c ,Dc

the modal parameters of the original FE model. This will be developed in the following
two subsections.

A.1.1 From forces to displacements

In case of displacement measurements, the matrix  equals zero; see Equation (2.24).Dc

After substituting the participation matrix  by Equation (2.31) and the observed modeL T
c

shapes  by Equation (2.33), the transfer function from forces to displacements can beVc

written as:
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where , the ith column of , is an eigenvector of the original FE model (2.1). The�i �Ù
n2

,

modal decomposition (A.1) explicitly shows that the modes occur in complex conjugated
pairs. The expression between brackets is the full  transfer function matrix thatn2 ×n2

contains the transfer functions between all DOFs of the discretized system. Pre-multiplying
by  and post-multiplying by  selects the rows and columns of the transfer functionCd B2

matrix at the output and input locations respectively.

A.1.2 From forces to accelerations

As stated before, in most practical cases accelerations are measured. By consequence
matrix  can be written in terms of the modal parameters , seeDc Dc
Vc�

	1
c L T

c

Equation (2.36). The transfer function from forces to accelerations can now be written as:

Accelerations are the second derivatives of displacements. This corresponds in the Laplace
domain to a multiplication by . However, at first sight this seems not to be the case: as 2

multiplication by  is observed by comparing Equation (A.2) with (2.71). In order tos�	1
c

convert this expression to a different form, the orthogonality conditions for the P matrix
(2.17) are rewritten as:

The upper left block of this equation is isolated:

Both sides are multiplied by s, pre-multiplied by  and post-multiplied by ; also twoCa B2

identity matrices are inserted into the right hand side to yield:
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By adding this "zero" to (A.2), substituting the participation matrix  by Equation (2.31)L T
c

and the observed mode shapes  by Equation (2.34), the transfer function from forces toVc

accelerations can be written as:

or:

By comparing this expression with the displacement transfer function (A.1), it is indeed
observed that a multiplication by  was needed to go from displacements to accelerations.s 2

A.2 SPECTRA

In Section 2.7, following expression for the spectrum was found, see Equation (2.75):

Some identification methods of Chapter 3 need an expression for the spectrum that is
written as a sum of modal contributions instead of a product. This can be achieved by
applying the partial fraction expansion.

A.2.1 The displacement spectrum

In case of displacement measurements, the matrix  equals zero; see Equation (2.24). TheDc

modal decomposition of the spectrum (2.75) reduces to:

In the application of the partial fraction expansion, two residual matrices  need to beP1,P2

found that satisfy:
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Both sides are pre-multiplied by  and post-multiplied by  to yield:(sI	�c ) (s �I	�c )

This expression should hold for all values of s. In practice, s is restricted to purely
imaginary values  where  [rad/s] is an arbitrary frequency. Since then , its
 j& & s �
	s
is found that  by imposing that the term in s disappears. If  and  are replacedP1
P2 P1 P2

by , as to stress its continuous-time character and its relation to the modal parameters,Pc,m

the residuals of the partial fraction expansion are found from:

which is a so-called continuous-time Lyapunov equation that can be solved for . FromPc,m

Equation (A.4) it is seen that  is a symmetric matrix that depends on the systemPc,m�Ù
n×n

poles, the participation factors and the input covariance. After introducing the partial
fraction expansion, the displacement spectrum reads:

Note that s is substituted by  as the argument of . With the matrix  definedj& Sy Gc,m�Ù
n×l

as:

and its ith row denoted as: , the modal decomposition of the displacement spectrum<gc
T
i
>

can be rewritten as:

The matrix  is called continuous-time stochastic modal participation matrix . HoweverGc,m

there is an important difference with the classical participation matrix . Every row ofL T
c

this last matrix only depends on 1 mode, whereas a row of  theoretically depends onGc,m

all modes. This fact becomes more clear if we would find a closed-form expression for
such a row . From the definition of  (A.5), it is found:<gc

T
i
> Gc,m
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In general, it is not possible to find a closed-form expression for the solution of a
Lyapunov equation (A.4). However, thanks to the diagonal structure of , the ith row of �c Pc,m

can be written as:

Inserting this closed-form expression and Equations (2.31) and (2.33) into the definition
of  (A.5), yields:Gc,m

It turns out that a single output-only modal participation vector  depends on all<gc
T
i
>

modal parameters of the system, on the input locations and on the input covariance matrix.

An alternative way of obtaining the modal decomposition of the spectrum first computes
all the products in Equation (2.75) and then applies the partial fraction expansion to every
cross-product of two modal contributions. This approach is for instance followed in
[HERM97] and [BRIN00].

A.2.2 The acceleration spectrum

If accelerations are measured, the modal decomposition of the spectrum is found by
inserting the modal decomposition of the transfer function (A.3) into Equation (2.74):

The same partial fraction expansion may be applied as before. With the matrix  in caseGc,m

of accelerations, defined as:
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which is similar to Equation (A.5), the modal decomposition of the acceleration spectrum
can be written as:
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D 


0.0756 	0.0048 0.0553 	0.0048 0.0655 0.0129
	0.0048 0.0701 0.0070 0.0701 0.0011 0.0599
0.0553 0.0070 0.0850 0.0070 0.0701 	0.0188

	0.0200 0.0024 	0.0105 0.0024 	0.0153 	0.0059
0.0024 	0.0173 	0.0031 	0.0173 	0.0004 	0.0125
	0.0106 	0.0031 	0.0231 	0.0031 	0.0168 0.0077

. . .

. . .

	0.0200 0.0024 	0.0106 0.0024 	0.0153 	0.0058
0.0024 	0.0173 	0.0031 	0.0173 	0.0004 	0.0126
	0.0105 	0.0031 	0.0231 	0.0031 	0.0168 0.0078

0.1301 	0.0100 0.0888 	0.0100 0.1095 0.0257
	0.0100 0.1185 0.0138 0.1185 0.0019 0.0979
0.0888 0.0138 0.1454 0.0138 0.1171 	0.0352

�
�	�	����
���������	�

������	����"����

In this appendix the numerical values of the state-space model of the simulation example
of Chapters 2 and 3 are presented. The purpose of this appendix is to allow for
reproducibility of the identification results by interested researchers.

Example

The discrete-time state-space matrices, with a sample time , of the simulationût
0.04 s
example are:
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A 
 diag 0.9963 0.0766
	0.0766 0.9963 , 0.9874 0.1485

	0.1485 0.9874 , 0.9871 0.1502
	0.1502 0.9871

0.9648 0.2531
	0.2531 0.9648 , 0.9026 0.4203

	0.4203 0.9026 , 0.9005 0.4247
	0.4247 0.9005

B 
 10	3×

0.3640 	0.1943 	0.3181 	0.1943 0.0229 0.3964
0.3304 	0.1763 	0.2887 	0.1763 0.0208 0.3598

	0.8032 	0.1299 	0.8715 	0.1299 	0.8373 	0.0708
	0.6776 	0.1096 	0.7352 	0.1096 	0.7064 	0.0597
	0.0946 0.8263 	0.1318 0.8263 	0.1132 0.8585
	0.0797 0.6959 	0.1110 0.6959 	0.0953 0.7230
0.5558 	0.2914 	0.4595 	0.2914 0.0482 0.5879
0.4201 	0.2202 	0.3473 	0.2202 0.0364 0.4443
1.1588 0.2230 1.2835 0.2230 1.2212 0.1151
0.7228 0.1391 0.8005 0.1391 0.7617 0.0718
0.1573 	1.2013 0.2280 	1.2013 0.1926 	1.2625
0.0976 	0.7451 0.1414 	0.7451 0.1195 	0.7831

. . .

. . .

0.5165 	0.2755 	0.4512 	0.2755 0.0327 0.5625
0.4688 	0.2501 	0.4095 	0.2501 0.0297 0.5105

	1.1713 	0.1883 	1.2680 	0.1883 	1.2196 	0.1045
	0.9882 	0.1588 	1.0697 	0.1588 	1.0290 	0.0882
	0.1376 1.2032 	0.1925 1.2032 	0.1650 1.2507
	0.1159 1.0132 	0.1621 1.0132 	0.1390 1.0533
	0.7626 0.4068 0.6476 0.4068 	0.0575 	0.8144
	0.5763 0.3075 0.4894 0.3075 	0.0434 	0.6155
	1.3754 	0.2693 	1.5327 	0.2693 	1.4541 	0.1331
	0.8579 	0.1680 	0.9560 	0.1680 	0.9069 	0.0830
	0.1855 1.4308 	0.2713 1.4308 	0.2284 1.5051
	0.1151 0.8875 	0.1683 0.8875 	0.1417 0.9336

C 


	0.5304 0.5199 2.2337 	2.1894 0.2661 	0.2608
0.2831 	0.2775 0.3613 	0.3541 	2.3239 2.2778
0.4636 	0.4544 2.4236 	2.3756 0.3707 	0.3633
	0.7527 0.7378 3.2574 	3.1929 0.3869 	0.3792
0.4015 	0.3936 0.5235 	0.5132 	3.3837 3.3167
0.6575 	0.6444 3.5262 	3.4564 0.5412 	0.5305

. . .

. . .

	2.5591 2.5084 	8.5827 8.4127 	1.1765 1.1532
1.3415 	1.3149 	1.6519 1.6192 8.9861 	8.8082
2.1154 	2.0735 	9.5059 9.3176 	1.7055 1.6718
3.5109 	3.4414 10.1867 	9.9850 1.3876 	1.3601
	1.8731 1.8360 1.9945 	1.9550 	10.7027 10.4908
	2.9816 2.9225 11.3517 	11.1269 2.0297 	1.9895
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C.1 EVOLUTION OF THE DAMPING RATIOS

The estimated damping ratios of the first 5 modes of all damage scenarios are represented
in Table C.1. This table is teaching us that the relatively high uncertainties on the damping
ratios makes it difficult to use them to detect damage.

C.2 ENVIRONMENTAL MODEL OF THE Z24-BRIDGE

The properties of the input-output data are given in Table C.2. These are required to
convert the ARX models that are identified from normalized data back to engineering
units, see Equations (6.8)%(6.10). The parameters of the identified ARX models are given
in Table C.3, whereas the parameters of the static regression models can be found in
Table C.4.
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S
ce

na
ri

o

mode 1 mode 2 mode 3 mode 4 mode 5

�̄

[%]
1̂
�

[%]
�̄

[%]
1̂
�

[%]
�̄

[%]
1̂
�

[%]
�̄

[%]
1̂
�

[%]
�̄

[%]
1̂
�

[%]

1 0.9 0.2 1.4 0.3 1.4 0.3 2 0.5 2.4 0.7
2 1 0.8 1.4 0.4 1.4 0.4 1.6 0.6 2.6 0.4
3 0.9 0.4 1.1 0.2 1.1 0.3 1.5 0.4 2.8 1.1
4 1.1 0.3 1.3 0.2 1.4 0.4 1.6 0.3 2.5 0.7
5 1 0.7 1.4 0.5 1.5 0.5 2 1.2 3.3 1.2
6 1.3 0.5 1.8 0.9 1.4 0.5 1.3 0.3 2.5 0.7
7 1 0.5 1.3 0.4 1.5 0.3 1.4 0.4 2.3 0.6
8 1.1 0.4 1.3 0.4 1.4 0.6 1.4 0.3 2.7 1
9 1.3 0.6 1.5 0.5 1.3 0.5 1.5 0.3 2.6 0.7

10 1.2 0.7 1.1 0.4 1.4 0.3 1.8 0.7 2.6 0.7
11 1 0.4 1.6 0.5 1.1 0.4 2.1 0.8 2.5 0.7
12 1.2 1.1 1.6 0.6 1.3 0.4 1.8 0.4 2.5 1
13 1 0.2 1.8 0.4 1.3 0.4 1.8 1.8 2.2 0.5
14 1.2 0.5 1.7 0.5 2.3 1.8 1.8 0.6 2.4 0.4
15 1.4 0.6 1.9 0.5 1.7 0.3 1.9 0.4 2.7 0.6
16 1.1 0.3 1.9 0.6 1.4 0.4 1.6 0.4 2.3 0.9
17 1 0.7 1.6 0.5 1.6 0.2 1.6 0.4 2.3 0.5

Table C.1: Evolution of the damping ratios with damage. The mean values  and estimated standard�̄

deviations  are based on 9 samples originating from the 9 independent setups. The results were1̂
�

obtained by applying SSI-DATA to the ambient vibration data.

Mode
Input Output

ū [(C] 1̂u [(C] ȳ [Hz] 1̂y [Hz]

1 15.299 9.009 3.943 0.039
2 " " 5.189 0.049
3 " " 10.016 0.109
4 " " 10.686 0.145

Table C.2:  Mean values and sample standard deviations of the input-output data, based on samples
from the positive temperatures only. Therefore the mean values of the frequency outputs  areȳ
different from the values of Table 7.6 that considered all samples.
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Mode Model â0 â1 â2 â3 b̂1 b̂2

1 2 1 4 �̂i

1̂
�̂i

10 -0.320
0.022

-0.282
0.022

%

%

-0.357
0.022

%

%

2 3 2 0 �̂i

1̂
�̂i

10 -0.292
0.023

-0.266
0.023

-0.176
0.023

3.074
0.242

-2.996
0.243

3 2 1 0 �̂i

1̂
�̂i

10 -0.204
0.023

-0.144
0.023

%

%

-0.435
0.026

%

%

4 2 2 0 �̂i

1̂
�̂i

10 -0.166
0.023

-0.143
0.023

%

%

-1.476
0.251

1.052
0.248

Table C.3: ARX model parameters. The estimated values  and their standard deviations  are�̂i 1̂
�̂i

specified.

Mode Model b̂1

1 0 1 0 �̂i

1̂
�̂i

-0.887
0.011

2 0 1 0 �̂i

1̂
�̂i

0.321
0.022

3 0 1 0 �̂i

1̂
�̂i

-0.672
0.017

4 0 1 0 �̂i

1̂
�̂i

-0.623
0.018

Table C.4: Static regression model parameters. The estimated values  and their standard deviations �̂i 1̂
�̂i

are specified.
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Situering van het onderwerp

Gezondheidscontrole van structuren is een bloeiend onderzoeksdomein gedreven door de
noodzaak om subjectieve visuele inspectiemethodes aan te vullen met objectieve niet-
destructieve methodes die gebaseerd zijn op metingen van fysische grootheden en
computeranalyses. Men onderscheidt globale en lokale methodes. Lokale methodes gaan
de toestand na van een beperkt deel van de structuur en maken gebruik van: akoestiek,
wervelstromen, hardheidstesten, magnetische velden, radiografie, ... Een van de weinige
globale controlemethodes maakt gebruikt van trillingsmetingen. Het globale schadedetectie
mechanisme van de methode bestaat hierin dat een lokale stijfheidsverandering de globale
dynamische eigenschappen van de structuur verandert. In de "0 Hz variante" van de
methode worden de verplaatsingen van de structuur gemeten onder een statische belasting.

Het grote voordeel van een globale methode is dat de metingen op slechts één plaats
volstaan om een beeld te krijgen van de toestand van de hele structuur. Methodes
gebaseerd op trillingsmetingen kunnen met regelmatige tussenpozen toegepast worden &
wat dan en tijdelijke meetopstelling zou vergen & ofwel permanent & wat verondersteld
dat de sensoren permanent geïnstalleerd blijven op de structuur. Dankzij de permanente
opstelling is een verschuiving mogelijk van een preventieve tijdsgebonden naar een
voorspellende toestandsgebonden onderhoudstrategie. Zo’n verschuiving vermindert zowel
het risico op een ernstig falen van de structuur als de totale onderhoudskost door het
vermijden van overbodige inspecties.

Het veelbelovende perspectief dat gezondheidscontrole met behulp van trillingsmetingen
biedt, heeft vele onderzoekers wereldwijd geïnspireerd. Doebling et al. maakten een
overzicht en een klasseverdeling van de literatuur [DOEB96]. Er is enige consensus om
vier niveaus van schade-identificatie te onderkennen (zie bijvoorbeeld [RYTT93]):

� niveau 1 % ontdekking: Is de structuur al dan niet beschadigd?
� niveau 2 % plaatsbepaling: Waar bevindt zich de schade?
� niveau 3 % begroting: Hoe ernstig is de schade?
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Figuur N.1: Leeftijdsverdeling van bruggen in de VS [CHAS97]. The tijdsas loopt
van rechts naar links.

� niveau 4 % voorspelling: Hoe lang gaat de structuur nog standhouden en wat is de
overgebleven dienstbelasting?

De ontdekking van schade (niveau 1) komt neer op het vaststellen van veranderingen van
de dynamische eigenschappen zoals eigenfrequenties. Twee benaderingen zijn denkbaar
om trillingsonderzoek boven niveau 1 uit te tillen. In een eerste benadering wordt een groot
aantal sensoren ingezet om lokale veranderingen van modevormen vast te stellen. De
plaatsbepaling van de schade is dan typisch nauwkeurig tot op de afstand tussen twee
sensoren na. Een tweede benadering heeft niet zoveel sensoren nodig, maar wel een
analytisch model van de structuur. Model parameters die met de schade verband houden
worden zodanig bijgesteld dat de dynamische eigenschappen van het model overeenkomen
met die op de structuur gemeten zijn. Eindige-elementenmodel updating (bijstelling)
methodes zijn hier een voorbeeld van [FRIS95].

Alhoewel trillingsonderzoek toepasbaar is op allerlei structuren worden bruggen
beschouwd als belangrijke kandidaten. Zoals blijkt uit Figuur N.1 beleefde het bouwen van
bruggen in de VS een hoogconjunctuur in de jaren 60 toen het autowegennet dat de
deelstaten verbindt vorm kreeg. De Europese situatie is vergelijkbaar waar de aanleg van
de meeste autowegen in de zelfde periode geschiedde. Veel van de toen gebouwde bruggen
bereiken hun kritische leeftijd en aan de hand van voorspellingen kan men aantonen dat
de onderhoudsvraag tegen 2010 een ongekende hoogte zal bereiken. Trillingsonderzoek
is een nuttige methode om de toestand van deze bruggen in te schatten en
onderhoudsprogramma’s op te stellen.

Recente tuikabel en hangbruggen met een grote overspanning worden standaard uitgerust
met een ingebouwd controlesysteem dat bestaat uit allerlei soorten sensoren:
versnellingsopnemers, windmeters, verplaatsingsopnemers, hellingmeters, rekstrookjes,
thermometers, ... Over de hele wereld vindt men dergelijke goed uitgeruste bruggen, maar
een van de best uitgeruste is de Tsing Ma Brug in Hong-Kong (zie Figuur N.2). Gebouwd
in 1997 en met een hoofdoverspanning van 1377 m, wordt deze brug gecontroleerd met
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1Het enkel meegeven van de Nederlandse term zou tot verwarring kunnen leiden. Deelruimte is beter bekend
als subspace, en maximum likelihood klinkt wellicht wat bekender dan maximale waarschijnlijkheid.

Figuur N.2: De Tsing Ma Brug in Hong-
Kong is uitgerust met ongeveer 600 sensoren.

behulp van ongeveer 600 sensoren.

Controlesystemen worden voor meer gebruikt dan enkel voor schadedetectie. Beschreven
toepassingen en doelstellingen van werkzame systemen zijn: kwaliteitscontrole tijdens de
constructie van de brug; het controleren van ontwerpparameters van een pas voltooide
brug; bij uitzonderlijke windsnelheden dienst doen als waarschuwingssysteem om de brug
voor alle verkeer te sluiten; in de loop van zijn bestaan de gebruiksgrens en uiterste
grenstoestand van de brug opvolgen. Er bestaat echter enige vaagheid omtrent de concrete
vertaling van meetgegevens naar de gezondheidstoestand van een brug toe. Hierbij speelt
een "ingenieursbeoordeling" blijkbaar een niet te onderschatten rol.

Bij het gebruik van trillingen voor gezondheidscontrole worden nogal wat meetgegevens
gegenereerd. Daarom is het nodig om de essentie van deze hoeveelheid gegevens te vatten
in een experimenteel model van de structuur. Dit proces wordt systeemidentificatie
genoemd. Algemene systeemidentificatie is een onderzoeksdomein uit de elektronica. Een
gezaghebbende referentie is het boek van Ljung [LJUN99]. Actuele ontwikkelingen
situeren zich op het domein van deelruimte methodes [VANO96] en maximale
waarschijnlijkheid frequentie-domein methodes1 [SCHO91].

Het toepassen van systeemidentificatie op trillende structuren leverde een nieuw
onderzoeksdomein op in de mechanica: de experimentele modale analyse. Het
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2Modaal heeft hier (uiteraard) niet de betekenis van middelmatig, maar wel van bestaande uit modes.

geïdentificeerde model is in dit geval een modaal model2, bestaande uit eigenfrequenties,
dempingsverhoudingen, modevormen en modale participatiefactoren. Het eerste modale
analyse boek was geschreven door Ewins [EWIN84]. Een meer recente stand-van-zaken
vindt men in [HEYL95, MAIA97, ALLE99].

Gewoonlijk is schade-identificatie gebaseerd op het volgen van veranderingen in het
modale model. Een alternatief bestaat erin om slechts een model van de gezonde structuur
te identificeren. Nadien worden statistische hypothese tests aangewend om te beoordelen
of nieuwe meetgegevens nog steeds kunnen verklaard worden door het oorspronkelijke
"gezonde" model. Deze methodes werden ontwikkeld in INRIA, Frankrijk [MOUS86a,
MOUS86b, MOUS88, BASS93a, BASS93b, MEVE00]. Het voordeel van dergelijke
methodes is dat geen nieuw experimenteel model hoeft geïdentificeerd te worden wanneer
nieuwe gegevens beschikbaar komen. Dit is immers een procedure die soms moeilijk te
automatiseren is.

Focus van de thesis

Uit vorige afdeling blijkt dat er reeds heel wat gebeurd is op het vlak van
gezondheidscontrole van structuren met behulp van trillingsmetingen. Desalniettemin zijn
vele van de voorgestelde methodes blijven steken in het stadium van de numerieke
simulaties of de traditionele "zaagsneden" aangebracht in stalen profielen in het
laboratorium.

Deze thesis behandelt twee onmisbare elementen van een reëel controlesysteem. Het eerste
element is de bepaling van een experimenteel model van een trillende structuur louter op
basis van uitgangsmetingen (versnellingen). De kosten verbonden aan trillingstesten
kunnen in belangrijke mate gedrukt worden door het gebruik van vrij beschikbare & maar
onmeetbare & trillingsbronnen uit de omgeving. Hierdoor hoeft men geen dure
kunstmatige & maar meetbare & bronnen zoals shakers te gebruiken, wat trouwens
ondenkbaar zou zijn in een permanent controlesysteem. Reeds enkele decennia bestaan er
basismethodes om de modale parameters louter op basis van uitgangsmetingen te bepalen.
De basisoplossing bestaat uit het selecteren van pieken in de spectra van de
uitgangssignalen. Zoals aangetoond in Hoofdstuk 3 bestaan er meer gevorderde technieken
die de kwaliteit van het experimentele model in belangrijke mate verhogen.

Het tweede element dat behandeld wordt in deze thesis is de detectie van schade onder
veranderende omgevingsparameters. Het probleem is dat zowel schade als temperatuur de
eigenfrequenties van een structuur beïnvloeden. Er wordt een oplossing aangedragen die
het mogelijk maakt om beide invloeden te scheiden. Voor de goede orde vermelden we nog
dat enkel niveau 1 schade-identificatie behandeld wordt. De voorgestelde methode ontdekt
schade zonder er evenwel de plaats van te bepalen of ze te begroten. Echter, de
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3Het enkel meegeven van de Nederlandse term zou tot verwarring kunnen leiden. Poly-referentie tijdsdomein

is beter bekend als polyreference time domain, instrumentaal variabele staat voor instrumental variable, en
eigensysteem realisatie algoritme klinkt als eigensystem realization algorithm in het Engels. Covariantie-gedreven

deelruimte staat voor covariance-driven subspace.

4Tijdreeks-gedreven stochastische deelruimte wordt vertaald als data-driven stochastic subspace.

ontwikkeling van een permanente en automatische detectiemethode wordt beschouwd als
een zeer belangrijke stap. Het betekent immers dat een snel waarschuwingssysteem
beschikbaar komt dat slechts een handvol sensoren nodig heeft en geen analytisch model
van de structuur behoeft.

De meer gedetailleerde originele bijdragen van dit werk zijn de volgende.

� Eindige-elementenmodellen van trillende structuren geëxciteerd door witte ruis
worden in wiskundig verband gebracht met stochastische toestandsruimte en
modale modellen. De analyse van de modellen en hun onderlinge verbanden
maken duidelijk hoe ze geïdentificeerd kunnen worden uitgaande van
uitgangsmetingen en vervolgens gebruikt in modale en spectrum analyse. Modale
parameters worden beschouwd als belangrijke kenmerken om structurele schade
te bepalen.

� Bijna alle beschikbare stochastische systeemidentificatie methodes worden
kritisch ontleed. Ze worden geklasseerd naar de vorm waarin de meetgegevens
gegoten moeten worden: spectra, covarianties of de oorspronkelijke tijdreeksen.
De methodes worden niet alleen theoretisch vergeleken maar ook aan de hand van
een Monte-Carlo simulatiestudie. De theoretische vergelijking maakt onder
andere duidelijk dat & omwille van historische redenen & essentieel dezelfde
methodes verschillende namen hebben gekregen in de literatuur. Bijvoorbeeld de
bekende poly-referentie tijdsdomein methode toegepast op covarianties (in de
plaats van impulsresponsies) kan beschouwd worden als een instrumentaal
variabele methode. Evenzo is het eigensysteem realisatie algoritme toegepast op
covarianties gelijkwaardig aan de covariantie-gedreven deelruimte methode3. De
vergelijkende simulatiestudie licht het praktisch gebruik van de methodes toe en
maakt het mogelijk om de kwaliteit van de identificatieresultaten relatief te
beoordelen.

� De tijdreeks-gedreven stochastische deelruimte4 methode wordt aangepast en
uitgebreid om ze meer geschikt te maken als modale-analysemethode. De
aanpassing bestaat uit het beperken van de dimensies van de matrices (en de
rekentijd) door een deel van de overtolligheid weg te werken die typisch
aanwezig is bij modale-analyse-experimenten waar gewoonlijk vele sensoren
gebruikt worden. De uitbreiding bestaat uit een efficiënte combinatie van het
(klassieke) stabilisatiediagram met deelruimte methodes. Het stabilisatiediagram
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wordt gebruikt om de modale parameters te bepalen uit de geïdentificeerde
deelruimtemodellen. Een andere originele bijdrage is het splitsen van het totale
uitgangssignaal in modale responsies. De eerste toepassingen van de tijdreeks-
gedreven stochastische deelruimte methode op louter op uitgangssignalen
gebaseerde modale analyse dateert van 1995 [PEET95].

� Er wordt een methode ontwikkeld om normale omgevingseffecten te scheiden van
schade. Beide beïnvloeden de gemeten eigenfrequenties van de structuur. In het
kort bestaat de methode uit het identificeren van een dynamisch omgevingsmodel
van de "gezonde" structuur, uitgaande van temperatuur-eigenfrequentie
tijdreeksen. Een statistische test maakt het vervolgens mogelijk om te beslissen
of nieuwe metingen overeenkomen met het oorspronkelijke omgevingsmodel. De
originaliteit van de methode ligt hierin dat deelruimte-identificatie op een
automatische wijze aangewend wordt om de eigenfrequenties van de structuur te
bepalen uitgaande van een immense hoeveelheid versnellingsmetingen en dat
dynamische ARX omgevingsmodellen geïdentificeerd worden in plaats van de
gebruikelijke statische lineaire regressiemodellen.

� Wat de software-implementatie van de methodes betreft, werd de ontwikkeling
van een grafische gebruikersinterface in goede banen geleid. Daarenboven werd
een automatische modale-analyseprocedure ontwikkeld, gebaseerd op de
automatische interpretatie van stabilisatiediagrammen. Het is wellicht overbodig
te vermelden dat dergelijke procedure beslissend is voor het succes van een
permanent controlesysteem dat de evolutie van de modale parameters volgt

� Wat de praktische toepassingen betreft, werd nogal wat experimenteel werk
verzet. Vier gewapend betonnen balken werden onderworpen aan een
toenemende statische belasting en ondergingen voortschrijdende schade. Bij elke
belastingsstap vond een trillingsexperiment plaats. De bedoeling van de balktests
was niet enkel het opstellen van een gegevensbestand waaruit geput kan worden
om systeem identificatie methodes te valideren, maar ook om na te gaan of het
fundamenteel mogelijk is om veranderingen van dynamische eigenschappen
onder invloed van schade te meten. Buiten het laboratorium werden ook
trillingsmetingen uitgevoerd: op een stalen zendmast en op enkele Belgische
bruggen over de E19-autoweg. Deze metingen laten toe om gevoel te krijgen voor
realistische testomstandigheden en dito meetgegevens.

� Tenslotte werd een diepgaande analyse van de meetgegevens van de Zwitserse
Z24-Brug uitgevoerd. De meetgegevens zijn uniek door de combinatie van lange-
duur controlemetingen en de toepassing van realistische schadescenario’s. Er
wordt aangetoond dat de schade inderdaad ontdekt kan worden, ondanks de
veranderende omgevingsparameters.
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Organisatie van de tekst

In onze bijdrage tot gezondheidscontrole met behulp van trillingsmetingen komen twee
systeemidentificatie benaderingen naar voren. Het eerste (en grootste) deel handelt over
systeemidentificatie die louter gebaseerd is op uitgangssignalen. Er wordt beschreven hoe
belangrijke kenmerken van de structuur & de modale parameters & bepaald kunnen
worden uit trillingsmetingen. Hierbij hoeft men niet te beschikken over een exacte kennis
van de excitatie (de ingangen) die de oorzaak is van de trillingen van de structuur (de
uitgangen). De modale parameters bevatten nuttige informatie over de gezondheidstoestand
van de structuur.

Het tweede deel handelt over een toepassing van ingang-uitgang systeemidentificatie. Een
blijvend probleem na het eerste deel is dat de modale parameters niet enkel veranderen
onder invloed van schade, maar ook door variërende omgevingsparameters. Een
omgevingsmodel van de gezonde structuur maakt het mogelijk om beide invloeden te
scheiden. Het omgevingsmodel wordt geïdentificeerd op basis van gemeten
omgevingsparameters zoals temperaturen (de ingangen) en de in het eerste deel bepaalde
kenmerken, de eigenfrequenties (de uitgangen).

Een meer gedetailleerd hoofdstuk-per-hoofdstuk overzicht wordt nu gegeven (zie ook
Figuur N.3).

Hoofdstuk 1
is de algemene inleiding. Het onderwerp wordt gesitueerd, de eigen bijdragen worden
duidelijk gemaakt en de organisatie van de tekst wordt besproken

Hoofdstuk 2
behandelt modellen van trillende structuren. Stapsgewijs worden modellen die dicht
staan bij de fysische realiteit omgevormd tot algemene dynamische modellen die
nuttiger zijn voor systeemidentificatie. Dit hoofdstuk verbindt Eindige-
elementenmodellen van bouwkundige constructies, toestandsruimtemodellen
afkomstig uit de elektronica, en modale modellen oorspronkelijk ontwikkeld in de
mechanica. Een simulatiestudie verduidelijkt de modelleringsconcepten.

Hoofdstuk 3
gaat over stochastische systeemidentificatie methodes. Louter op basis van
uitgangsmetingen identificeren deze methodes de modellen van Hoofdstuk 2.
Spectrum-gedreven, covariantie-gedreven en tijdreeks-gedreven methodes worden
achtereenvolgens besproken. Om de theorie te verduidelijken en het praktisch gebruik
toe te lichten, worden de besproken methodes toegepast op een gesimuleerd
voorbeeld.
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Hoofdstuk 4
beschrijft de implementatie van een grafische gebruikersinterface naar stochastische
systeemidentificatie methodes. Naast identificatie algoritmes werden ook
voorbehandelings- en visualisatiefuncties in het programma opgenomen.
Daarenboven werd een automatische modale-analyseprocedure ontwikkeld die het
mogelijk maakt om een groot aantal gegevensbestanden te doorworstelen zonder
tussenkomst van de gebruiker.

Hoofdstuk 5
behandelt twee voorbeelden. Trillingstests op betonnen balken die onderworpen zijn
aan voortschrijdende schade halen de schadedetectie mogelijkheden van de modale
parameters naar boven. De tests werden uitgevoerd in optimale
laboratoriumomstandigheden. In het tweede voorbeeld worden de modale parameters
van een door de wind geëxciteerde stalen mast bepaald. Dit is een test in reële
omstandigheden waarin de mogelijkheden van stochastische systeemidentificatie
kunnen verkend worden.

Hoofdstuk 6
is opnieuw een theoretisch hoofdstuk. Het gebruik van ingang-uitgang
systeemidentificatie ter bepaling van een omgevingsmodel dat het verband beschrijft
tussen temperaturen en eigenfrequenties wordt aangetoond. Er wordt ook aangegeven
hoe het model kan gebruikt worden om temperatuurseffecten uit de
trillingsmeetgegevens te filteren.

Hoofdstuk 7
stelt systeemidentificatie en schadedetectie resultaten voor die bekomen zijn uit de
meetgegevens van de Z24-Brug. Het interessante van dit voorbeeld is dat alle
ontwikkelingen van deze thesis erop kunnen toegepast worden. Verschillende
kunstmatige en natuurlijke trillingsbronnen worden vergeleken; de evolutie van de
modale parameters van de brug onder toenemende schade wordt beschreven en een
omgevingsmodel voor de Z24-Brug wordt geïdentificeerd dat met succes aangewend
kan worden om schade te ontdekken.

Hoofdstuk 8
bevat de gevolgtrekkingen van dit werk. Ook worden de onopgeloste problemen
overlopen en suggesties aan de hand gedaan voor verder onderzoek in het domein van
de gezondheidscontrole van structuren met behulp van trillingsmetingen.
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Hoofdstuk 5

Toepassingen

Hoofdstuk 6
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Implementatie
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Figuur N.3: Organisatie van de tekst. De linkerkant van de grafiek gaat over de identificatie van een model van
een trillende structuur. De rechterkant geeft aan hoe omgevingsparameters dit model beïnvloeden. Alle theoretische
ontwikkelingen komen samen in de Z24-Brug toepassing van hoofdstuk 7.



234 NEDERLANDSE SAMENVATTING



235


����
�������	�

Bart Peeters was born in Herentals, Belgium, on April 2, 1971. He is married to Hilde De
Beuckeleer and has one son, Karel (° January 2, 2000).

Education
1994 � 2000
PhD student at the Department of Civil Engineering, K.U.Leuven.

1989 � 1994
Degree of Civil Engineering, K.U.Leuven

1983 � 1989
Secondary Education, Mathematics % Latin, Sint-Pieters College, Leuven.

Work
September 2000 � Today
Manager RTD projects and training, LMS International, Leuven

October 1994 � August 2000
Research and teaching assistant, Department of Civil Engineering, K.U.Leuven.

Summer holidays 1991 � 1994
Steward on night trains, Wagons-Lits, Brussels.

Publications
Theses

[PEET00g] Peeters B. System Identification and Damage Detection in Civil Engineering.
PhD thesis, Department of Civil Engineering, K.U.Leuven, Belgium, December
2000.

[PEET94] Peeters B., and Schaerlaekens S. Nonlinear Multi-material 2D Beam Element
with Initial Curvature: Development % Implementation % Verification. MSc thesis,



236 CURRICULUM VITAE

Department of Civil Engineering, K.U.Leuven, Belgium and EPFL, Lausanne,
Switzerland, July 1994.

International journal papers

[PEET00f]  Peeters B., Maeck J., and De Roeck G. Vibration-based damage detection in
civil engineering: excitation sources and temperature effects. Smart Materials and
Structures, Submitted for publication, 2000.

[PEET00e]  Peeters B. and De Roeck G. One-year monitoring of the Z24-Bridge:
environmental effects versus damage events. Earthquake Engineering and Structural
Dynamics, Accepted for publication, 2000.

[PEET00a]  Peeters B. and De Roeck G. Reference based stochastic subspace identification
in civil engineering. Inverse Problems in Engineering, 8(1), 47-74, 2000.

[PEET99f]  Peeters B. and De Roeck G. Reference-based stochastic subspace identification
for output-only modal analysis. Mechanical Systems and Signal Processing, 13(6),
855-878, 1999.

Conference proceedings

[DERO00b]  De Roeck G., Peeters B., and Maeck J. Dynamic monitoring of civil
engineering structures. In Proceedings of IASS-IACM 2000, Computational Methods
for Shell and Spatial Structures, Chania, Greece, June 2000.

[DERO00a]  De Roeck G., Peeters B., and Ren W.-X. Benchmark study on system
identification through ambient vibration measurements. In Proceedings of IMAC 18,
the International Modal Analysis Conference, pp. 1106-1112, San Antonio, TX,
USA, February 2000.

[PEET00d]  Peeters B., Maeck J., and De Roeck G. Excitation sources and dynamic system
identification in civil engineering. In Proceedings of the European COST F3
Conference on System Identification and Structural Health Monitoring, pp. 341-350,
Madrid, Spain, June 2000.

[PEET00c]  Peeters B., Maeck J., and De Roeck G. Dynamic monitoring of the Z24-
Bridge: separating temperature effects from damage. In Proceedings of the European
COST F3 Conference on System Identification and Structural Health Monitoring, pp.
377-386, Madrid, Spain, June 2000.



CURRICULUM VITAE 237

[PEET00b]  Peeters B. and De Roeck G. One-year monitoring of the Z24-Bridge:
environmental influences versus damage events. In Proceedings of IMAC 18, the
International Modal Analysis Conference, pp. 1570-1576, San Antonio, TX, USA,
February 2000.

[PEET99e]  Peeters B. and De Roeck G. Experimental dynamic analysis of a steel mast
excited by wind load. In Proceedings of the 4th European Conference on Structural
Dynamics: Eurodyn '99: A.A. Balkema, Rotterdam, pp. 1075-1080, Prague, Czech
Republic, June 7-10 1999.

[PEET99d]  Peeters B. and De Roeck G. Reference based stochastic subspace
identification in civil engineering. In Proceedings of the 2nd International
Conference on Identification in Engineering Systems, pp. 639-648, Swansea, UK,
March 1999.

[PEET99c]  Peeters B., Van den Branden B., and De Roeck G. Output-only modal
analysis: a GUI for Matlab. In Proceedings of the 2nd Benelux Matlab
Usersconference, Brussels, Belgium, March 1999.

[PEET99b]  Peeters B., Van den Branden B., Laquière A., and De Roeck G. Output-only
modal analysis: development of a GUI for Matlab. In Proceedings of IMAC 17, the
International Modal Analysis Conference, pp. 1049-1055, Kissimmee, FL, USA,
February 1999.

[PEET99a]  Peeters B., De Roeck G., and Andersen P. Stochastic system identification:
uncertainty of the estimated modal parameters. In  Proceedings of IMAC 17, the
International Modal Analysis Conference, pp. 231-237, Kissimmee, FL, USA,
February 1999.

[PEET98b]  Peeters B., De Roeck G., Hermans L., and Wauters T. Comparison of system
identification methods using operational data of a bridge test. In Proceedings ISMA
23, Noise and Vibration Engineering, pp. 923-930, Leuven, Belgium, September
1998.

[PEET98a]  Peeters B. and De Roeck G. Stochastic subspace system identification of a
steel transmitter mast. In Proceedings of IMAC 16, the International Modal Analysis
Conference, pp. 130-136, Santa Barbara, CA, USA, February 1998.

[PEET97]  Peeters B. and De Roeck G. The performance of time domain system
identification methods applied to operational data. In Proceedings DAMAS '97,
Structural Damage Assessment Using Advanced Signal Processing Procedures, pp.
377-386, Sheffield, UK, June-July 1997.



238 CURRICULUM VITAE

[PEET96]  Peeters B., Abdel Wahab M.M., De Roeck G., De Visscher J., De Wilde W.P.,
Ndambi J.-M., and Vantomme J. Evaluation of structural damage by dynamic system
identification. In Proceedings ISMA 21, Noise and Vibration Engineering, pp. 1349-
1361, Leuven, Belgium, September 1996.

[PEET95]  Peeters B., De Roeck G., Pollet T., and Schueremans L. Stochastic subspace
techniques applied to parameter identification of civil engineering structures. In
Proceedings of the International Conference MV2 on New Advances in Modal
Synthesis of Large Structures, Non-Linear, Damped and Non-Deterministic Cases,
pp. 151-162, Lyon, France, October 1995.

Internal reports

[PEET98d]  Peeters B. and De Roeck G. Brite-EuRam Project SIMCES, Task B1:
Stochastic Subspace Identification Applied to Progressive Damage Test Vibration
Data From the Z24-Bridge. Internal report BWM-1998-07, Department of Civil
Engineering, K.U.Leuven, November 1998.

[PEET98c]  Peeters B. and De Roeck G. Brite-EuRam Project SIMCES, Task B1:
Stochastic Subspace Identification: Context, Theory, Application. Internal report
BWM-1998-04, Department of Civil Engineering, K.U.Leuven, May 1998.


