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1. INTRODUCTION

Today’s engineers are faced with many complex noise and vibration problems associated with

the design and troubleshooting of structures. Never before have structures had so many

constraints, such as legislative, cost, and durability, imposed upon them. Because of these

constraints, present day structures are typically more complex in terms of design and materials.

Therefore, the engineering that goes into these structures must be more exact than ever before.

The structural analyst must design with accurate and realistic models and the experimentalist

must be able to accurately define a structure’s dynamic response to specified input forces.

Recently, tools have been developed to assist the structural engineer in these areas. The analyst

now uses sophisticated finite element programs, such as Nastran, to aid in the understanding and

the design of structures. The experimentalist has sophisticated digital signal analysis equipment

that aids him in quantifying and understanding a structure’s dynamic and input forces. However,

there is little communication between the analyst and experimentalist. Due to the complexity of

todays problems, the need for communication and exchange of ideas is even more critical.

The major reason for this lack of communication is that the analytical and experimental

engineers do not understand each other’s terminology and methods of problem solution. The

discussion that will follow will attempt to fill this void.

The major point of the text is to show how frequency response function (FRF) measurements are

related to the structure’s mode shapes and vibrational frequencies. This overall objective will be

accomplished by building a mathematical foundation from the analytical and experimental point

of view.

The material is divided into two sections: single degree of freedom, and multiple degree of

freedom systems. The single degree of freedom system will be used as a means for defining

some standard terminology. The multiple degree of freedom material is further divided into:

undamped, proportionally damped, and non-proportionally damped systems. Throughout the

discussion emphasis will be placed on the relationship of frequency response measurements to

modal vectors. Furthermore, the following concepts will be presented:
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• Modal Frequencies, Eigenvalues, System Poles, Characteristic Roots (λ r )

• Modal Vectors, Eigenvectors ({ψ r } , {φ r } )

• Modal Coefficients (ψ pr ), Residues (Apqr )

• Real Modal Vectors, Complex Modal Vectors

• Physical Coordinates, Generalized Coordinates

• Principal Coordinates, Modal coordinates

• Modal Mass, Damping, and Stiffness (Mr ,Cr , Kr )

• Modal A, Modal B (MAr
, MBr

)

1.1 Degrees of Freedom

The development of any theoretical concept in the area of vibrations, including modal analysis,

depends upon an understanding of the concept of the number of degrees of freedom (N) of a

system. This concept is extremely important to the area of modal analysis since the number of

modes of vibration of a mechanical system is equal to the number of degrees of freedom. From a

practical point of view, the relationship between this theoretical definition of the number of

degrees of freedom and the number of measurement degrees of freedom (No, Ni ) is often

confusing. For this reason, the concept of degree of freedom will be reviewed as a preliminary to

the following modal analysis material.

To begin with, the basic definition that is normally associated with the concept of the number of

degrees of freedom involves the following statement: The number of degrees of freedom for a

mechanical system is equal to the number of independent coordinates (or minimum number of

coordinates) that is required to locate and orient each mass in the mechanical system at any

instant in time. As this definition is applied to a point mass, three degrees of freedom are

required since the location of the point mass involves knowing thex, y, andz translations of the

center of gravity of the point mass. As this definition is applied to a rigid body mass, six degrees

of freedom are required sinceθ x, θ y, andθ z rotations are required in addition to thex, y, andz

translations in order to define both the orientation and location of the rigid body mass at any

instant in time. This concept is represented in Figure 1-1. As this definition is extended to any

general deformable body, it should be obvious that the number of degrees of freedom can now be
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considered as infinite. While this is theoretically true, it is quite common, particularly with

respect to finite element methods, to view the general deformable body in terms of a large

number of physical points of interest with six degrees of freedom for each of the physical points.

In this way, the infinite number of degrees of freedom can be reduced to a large but finite

number.

x,θ x

y,θ y

z,θ z

Figure 1-1. Degrees of Freedom of a Rigid Body

When measurement limitations are imposed upon this theoretical concept of the number of

degrees of freedom of a mechanical system, the difference between the theoretical number of

degrees of freedom (N) and the number of measurement degrees of freedom (No, Ni ) begins to

ev olve. Initially, for a general deformable body, the number of degrees of freedom (N) can be

considered to be infinite or equal to some large finite number if a limited set of physical points of

interest is considered as discussed in the previous paragraph. The first measurement limitation

that needs to be considered is that there is normally a limited frequency range that is of interest to
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the analysis. For example, most dominant structural modes of vibration for an automobile would

be located between 0 and 200 Hertz. As this limitation is considered, the number of degrees of

freedom of this system that are of interest is now reduced from infinity to a reasonable finite

number. The next measurement limitation that needs to be considered involves the physical

limitation of the measurement system in terms of amplitude. A common limitation of

transducers, signal conditioning and data acquisition systems results in a dynamic range of 80 to

100 db (104 to 105) in the measurement. This means that the number of degrees of freedom is

reduced further due to the dynamic range limitations of the measurement instrumentation.

Finally, since few rotational transducers exist at this time, the normal measurements that are

made involve only translational quantities (displacement, velocity, acceleration, force) and thus

do not include rotational effects, or RDOF. In summary, even for the general deformable body,

the theoretical number of degrees of freedom that are of interest are limited to a very reasonable

finite value (N = 1 − 50). Therefore, this number of degrees of freedom (N) is the number of

modes of vibration that are of interest.

Finally, then, the number of measurement degrees of freedom (No, Ni ) can be defined as the

number of physical locations at which measurements are made times the number of

measurements made at each physical location. For example, ifx, y, and z accelerations are

measured at each of 100 physical locations on a general deformable body, the number of

measurement degrees of freedom would be equal to 300. It should be obvious that since the

physical locations are chosen somewhat arbitrarily, and certainly without exact knowledge of the

modes of vibration that are of interest, that there is no specific relationship between the number

of degrees of freedom (N) and the number of measurement degrees of freedom (No, Ni ). In

general, in order to defineN modes of vibration of a mechanical system,No, Ni must be equal to

or larger thanN. Note also that even thoughNo, Ni is larger thanN, this is not a guarantee that

N modes of vibration can be found fromNo, Ni measurement degrees of freedom. TheNo, Ni

measurement degrees of freedom must include physical locations that allow a unique

determination of theN modes of vibration. For example, if none of the measurement degrees of

freedom are located on a portion of the mechanical system that is active in one of theN modes of

vibration, portions of the modal parameters for this mode of vibration can not be found.

In the development of the single and multiple degree of freedom information in the following

Sections, the assumption is made that a set ofN measurement degrees of freedom (No, Ni = N)

exist that will allow for N modes of vibration to be determined. In reality,No, Ni is always
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chosen much larger thanN since a prior knowledge of the modes of vibration is not available. If

the set ofNo, Ni measurement degrees of freedom is large enough and if theNo, Ni measurement

degrees of freedom are distributed uniformly over the general deformable body, theN modes of

vibration will normally be found.

1.2 Basic Assumptions

Before proceeding, the basic assumptions must be established before the theory can be

developed. The first assumption is that the structure is a linear system whose dynamics may be

represented by a set of linear, second order, differential equations. The second assumption is that

the structure during the test can be considered as time invariant. This assumption implies that the

coefficients in the linear, second order, differential equations are constants and do not vary with

time. The third assumption is that the structure is observable. While this may seem trivial, this

means that the system characteristics that are affecting the dynamics can be measured and that

there are sufficient sensors to adequately describe the input-output characteristics of the system.

Another assumption that is often made is that the structure obeys Maxwell’s reciprocity theorem.

Maxwell’s reciprocity theorem, in terms of frequency response function measurements, implies

the following: if one measures the frequency response function between pointsp and q by

exciting at p and measuring the response atq, the same frequency response function will be

measured by exciting atq and measuring the response atp 

H pq = Hqp



.
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