
6. FREQUENCY RESPONSE FUNCTION SYNTHESIS

In this section, the approach for constructing the entire frequency response function matrix

[ H(ω ) ]  will be explained. The frequency response function matrix [ H(ω ) ], which is made up

of N0 × Ni frequency response functions, can be synthesized by using the data from No

frequency response functions where No is the number of measured response degrees of freedom

(physical response points times number of direction(s) at each physical point) on the structure.

For the following discussion, No is assumed to be larger than Ni and No is assumed to include

the Ni measurement degrees of freedom. For the case of fixed response degrees of freedom with

a large number of applied inputs (impact testing, for example), Ni will be much larger than No

but since the [ H(ω ) ] is reciprocal, the same assumption can be made concerning Ni. These are

reasonable assumptions for all testing situations. There are two restrictions that apply to being

able to synthesize the complete matrix accurately from only No or Ni frequency response

functions. First of all, the No or Ni frequency response functions must consist of either a

complete row or complete column of frequency response function measurements from the

frequency response function matrix. Secondly, the No or Ni frequency response functions must

contain non-zero residue information for every modal vector present in the structure within the

frequency range of interest. This means that if the modal vector is entirely zero (due to

excitation at the node of a modal vector) proper frequency response function synthesis will not

be possible.

Recall the general form of the frequency response function matrix [ H(ω ) ]  (Equation 4.25) in

terms of partial fractions.

[ H( ω ) ] =









H11 ( ω )

H21 ( ω )

.

.

Hm1 ( ω )

H12 ( ω )

.

.

.

.

.

.

.

.

.

.

.

.

.

.

H1m ( ω )

.

.

.

Hmm ( ω )









(6.1)

(6-1)



+UC-SDRL-RJA CN-20-263-662 Revision: March 2, 2000 +

Assuming that only the k-th column of [ H(ω ) ]  has been measured by way of frequency

response functions, the k-th column can be represented as follows:
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(6.2)

where:

• m = the number of measurements (No or Ni).

Equation 6.2 is the mathematical description of the No frequency response function

measurements that were obtained during the test of the structure. For a particular mode of

vibration, the N modal frequencies and the N residues for each of the No frequency response

functions can be determined through the use of a modal parameter estimation algorithm.

Once these modal parameters are known, frequency response functions from column k or any

other column in the frequency response function can be synthesized using a partial fraction

model with the correct residues for the particular input and output degrees of freedom desired.

The synthesis is formulated on a frequency by frequency basis for each mode - the response for

each mode is summed together to get the total frequency response function as is shown in the

following figures:
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Figure 6-1. Frequency Response Function Synthesis
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Figure 6-2. Frequency Response Function Synthesis

(6-4)



+UC-SDRL-RJA CN-20-263-662 Revision: March 2, 2000 +

−500 −400 −300 −200 −100 0 100 200 300 400 500
−110

−100

−90

−80

−70

−60

−50

−40

Frequency (Hertz)

Lo
g 

M
ag

ni
tu

de
 (d

B)

−500 −400 −300 −200 −100 0 100 200 300 400 500
−200

−150

−100

−50

0

50

100

150

200

Frequency (Hertz)

Pha
se (

Deg
)

Figure 6-3. Frequency Response Function Synthesis
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In order to construct all of the elements that make up [ H(ω ) ], all of the elements of [A]r for

each mode will be required. Previously, the residue matrix [A]r for a particular mode has been

shown to be directly related to the modal vector according to the following equation:




Ar



= Qr { ψ }r { ψ }T
r = Qr









ψ 1 ψ 1

ψ 2 ψ 1

.

.

ψ m ψ 1

ψ 1 ψ 2

ψ 2 ψ 2

.

.

ψ m ψ 2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ψ 1 ψ m

.

.

.

ψ m ψ m







r

. (6.3)

When the k-th column of [ H(ω ) ]  has been measured, the k-th column of each residue matrix

[A]r can be defined. Equation 6.3 can now be rewritten for only the k-th column of of the r-th

mode of vibration.
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where:

• m = Number of measurements (No or Ni).

• r = Mode number

In order to compute the residue for any position in the residue matrix for each mode of vibration,

Equation 6.4 can be used to compute the values of Qr and {ψ }r . In order to do this, either Qr or

ψ kr must be chosen according to a scaling criteria. At this point the individual elements of {ψ }r

can now be found. Once these individual elements are known, any residue for a given mode can

be computed using the following equation:

Apqr = Qr ψ pr ψ qr (6.5)
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If modal mass will be calculated, the individual values of Qr and {ψ }r will be required.

Therefore, Equation 6.5 can be used easily to synthesize any arbitrary residue. In reality, there is

no need to know the individual values of Qr and {ψ }r in order to synthesize another residue. If

the k-th column of the residue matrix [A] r is again used to synthesize any arbitrary residue from

another location in the residue matrix, the following equation is all that is required:

Apqr =
Apkr Aqkr

Akkr
=

Qr ψ pr ψ kr Qr ψ qr ψ kr

Qr ψ kr ψ kr
(6.6)

Note that with Equation 6.6, any arbitrary residue can be synthesized if the proper elements of

the frequency response function matrix and, therefore, the proper elements of each residue

matrix [A]r have been measured. For example, the driving point information for the k-th column

of any residue matrix need not be measured directly if the following elements have been

measured:

Akkr =
Apkr Aqkr

Apqr
(6.7)

When the errors involved with measuring the driving point frequency response function are taken

into account, Equation 6.7 may be a preferable way to estimate the driving point information

ev en though this method requires information from another column of the residue matrix. Note

that this will require that another excitation location be taken during the test of the structure.

In summary, one row or column of the frequency response function matrix, including driving

point information, must be measured in order to synthesize any arbitrary measurement in the

frequency response function matrix. A modal parameter estimation algorithm is then used on

these measurements to determine the modal parameters. With the driving point residue

information for a particular mode of vibration, any other required residue information can be

synthesized by Equation 6.5 or Equation 6.6.

6.1 Displacement, Velocity and/or Acceleration Data

In practice, frequency response functions are often measured using an accelerometer to measure

the response of the system and a load cell to measure the input to the system. Velocity or

(6-7)
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displacement transducers could also be used to measure the response but have disadvantages with

respect to size, configuration or datum. Regardless, the mathematical model that has been

developed is a representation of displacement normalized to the force that caused the

displacement. Note that if velocity normalized to force is actually measured, this data can be

synthetically integrated to displacement over force by dividing the velocity over force

measurement by jω . Likewise, if acceleration normalized to force is actually measured, this data

can be synthetically integrated to displacement over force by dividing the acceleration over force

measurement by ( jω )2. This approach has numerical problems near zero frequency but is

generally satisfactory elsewhere.

6.2 Skewed Sensor Orientation

While it is common and somewhat desirable to align all sensors (input and output) in directions

that are colinear with a set of orthogonal axes (x, y, z), this is not a requirement. Directional

cosine information can be used to reorient the sensor information according to any desirable set

of axes. Note that the spatial subscripts used to this point ( pq for example) do not imply any

specific constraint in this sense.

However, if modal scaling or the ability to synthsize arbitrary functions that may or may not have

been measured is desired, the measurment of the driving point information is very important. If

a skewed excitation is used with a set of essentially orthogonal response sensors, the simplest

solution to this problem is to add a skewed response sensor, at the excitation location, so that a

true driving point measurement can be estimated. With this in mind, the Equations 6.1 through

6.7 still apply when synthesis of residues and frequency response functions from data taken from

a skewed input is the data represented by column k.

6.3 Simulation of Structural Response

Once all of the frequency response functions (transfer functions) for a particular system have

been measured or synthesized, the response of the structure to any arbitrary set of inputs can be

simulated or predicted. To illustrate the process, the two degree of freedom system that is

represented by the following equation can be used as an example.
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Equation 6.8 is the frequency response function form of Equation 4.9 ( s = j ω ). The matrix

equations in Equation 6.8 can be expanded as follows:

X1(ω ) = H1 1(ω ) F1(ω ) + H1 2(ω ) F2(ω )

X2(ω ) = H2 1(ω ) F1(ω ) + H2 2(ω ) F2(ω )

Note that X1(ω ) and X2(ω ) are the response of the system (in the frequency domain) due to the

forces F1(ω ) and F2(ω ). Thus, X1(ω ) and X2(ω ) can be defined by the process of multiplication

and addition of the known frequency response function measurements and forcing functions.

The time domain response of the system, x1(t) and x2(t), can then be computed by taking the

inverse Fourier transform of X1(ω ) and X2(ω ).

This synthesis procedure can be extended to systems with more than two degrees of freedom. In

general, for an N -degree of freedom system:
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While Equation 6.9 is written in terms of the number of degrees of freedom N , this is the

limiting theoretical consideration. In general, Equation 6.9 can be written in terms of any

arbitrary number of inputs and responses such that [ H(s) ] is no longer a square matrix.

For instance, the time domain response x1(t) is just the inverse Fourier transform of X1(ω )

where:

X1(ω ) = H1 1 F1(ω ) + H1 1 F2(ω ) + . . . . + H1N FN (ω )

(6-9)
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Theoretically, the transfer function matrix [ H(s) ] consists of N × N transfer functions for an N -

degree of freedom system. From a practical point of view, the measured portion of the transfer

function matrix (frequency response function matrix) will consist of No × Ni frequency response

functions regardless of the number of modes N .
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