
+UC-SDRL-RJA CN-20-263-662 Revision: Febr uary 19, 1999 +

4. FREQUENCY RESPONSE FUNCTION DEVELOPMENT

4.1 Theory

All of the techniques discussed previously are useful if an analytical model of the system

already exists. From an experimental point, this is rarely the case. Typically, solving problems

on real systems or pieces of systems must be accomplished without the aid of a theoretical model

or in order to verify a theoretical model.

In this chapter, frequency response function measurements will begin to be used as the basis for

defining modal frequencies and damping values, modal vectors, modal mass, modal stiffness, and

modal damping of real life structures. To accomplish this task, an analytical model will be

developed to represent the transfer function between any possible measurement locations on the

structure. Frequency response functions will be directly related to the transfer functions that

have been theoretically developed.

The transfer function representation of an undamped multiple degree of freedom system can be

formulated by starting with the differential equations of motion in terms of mass, stiffness, and

damping matrices.

[ M ] { ẍ } + [ K ] { x } = { f } (4.1)

Taking the Laplace transform of Equation 4.1, assuming all initial conditions are zero, yields:




s2 [ M ] + [ K ] 


{ X (s) } = { F (s) } (4.2)

Let:

[ B (s) ] = 


s2 [ M ] + [ K ] 


Then Equation 4.2 becomes:

[ B (s) ] { X (s) } = { F (s) } (4.3)

(4-1)
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where [B(s) ] is referred to as thesystem impedance matrixor just thesystem matrix.

Pre-multiplying Equation 4.3 by [B(s) ]−1 yields:

[ B (s) ]−1 { F (s) } = { X (s) }

Defining:

[ H (s) ] = [ B (s) ]−1

Then:

[ H (s) ] { F (s) } = { X (s) } (4.4)

Equation 4.4 relates the system response{ X (s) } to the system forcing functions{ F (s) }

through the matrix [H(s) ]. The matrix [H(s) ]  is generally referred to as thetransfer function

matrix.

Figure 4-1. Tw o Input-Output Model

Equations 4.2-4.4 can be expanded for a two degree of freedom system in order to view in detail

the components of each position in the system matrix.

(4-2)
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(4.5)
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Taking the Laplace transform of Equation 4.5 yields:









M1 1

M2 1

M1 2

M2 2





s2 +




K1 1

K2 1

K1 2

K2 2













X1(s)

X2(s)





=




F1(s)

F2(s)





Thus,

[ B (s) ] { X (s) } = { F (s) }

where:

• [ B (s) ] =




M1 1 s2 + K1 1

M2 1 s2 + K2 1

M1 2 s2 + K1 2

M2 2 s2 + K2 2





Defining the transfer function as the inverse of the impedance matrix:

[ B (s) ]−1 = [ H (s) ]

The inverse of the impedance matrix can be found for this analytical case as the adjoint of the

impedance matrix divided by the determinant of the impedance matrix as follows:

[ B (s) ]−1 =





M2 2 s2 + K2 2

−( M2 1 s2 + K2 1 )

−( M1 2 s2 + K1 2 )

M1 1 s2 + K1 1





(M1 1 s2 + K1 1) (M2 2 s2 + K2 2) − (M2 1 s2 + K2 1) (M1 2 s2 + K1 2)
(4.6)

Note that the denominator of Equation 4.6 is |B(s) |  which is the characteristic or frequency

equation for the system. This highlights the fact that the complex-valued modal frequencies (λ r )

are global properties of the system since this characteristic equation appears in every term of

[ H(s) ]. This characteristic equation can be expressed as a product of its roots, thus:

| B (s) | = E ( s − λ1 ) ( s − λ2 ) ( s − λ3 ) ( s − λ4 )

where:

(4-4)
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• E = Constant coeficient of the highest order term in the polynomial (Product/Sum of the

mass terms)

• λ1, λ2, λ3 andλ4 are the 4 roots of the characteristic equation.

Equation 4.6 for a two degree of freedom system can then be written as:





X1(s)

X2(s)





=





M2 2 s2 + K2 2

−( M2 1 s2 + K2 1 )

−( M1 2 s2 + K1 2 )

M1 1 s2 + K1 1





E ( s − λ1 ) ( s − λ2 ) ( s − λ3 ) ( s − λ4 )





F1(s)

F2(s)





(4.7)

[ H(s) ], the transfer function matrix, can be defined as:

[ H (s) ] =




H1 1(s)

H2 1(s)

H1 2(s)

H2 2(s)





where, for instance:

H1 1(s) =
M2 2 s2 + K2 2

E ( s − λ1 ) ( s − λ2 ) ( s − λ3 ) ( s − λ4 )
(4.8)

Equation 4.4 can now be expressed as:





H1 1(s)

H2 1(s)

H1 2(s)

H2 2(s)









F1(s)

F2(s)





=




X1(s)

X2(s)





(4.9)

Multiplying out Equation 4.9 yields:

H1 1(s) F1(s) + H1 2(s) F2(s) = X1(s)

H2 1(s) F1(s) + H2 2(s) F2(s) = X2(s)

(4.10)

If, in Equation 4.10,F2(s) = 0, then:

(4-5)
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H1 1(s) F1(s) = X1(s)

H2 1(s) F1(s) = X2(s)

(4-6)
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This results in the familiar relationships for the transfer function (output over input):

H1 1(s) =
X1(s)

F1(s)

H2 1(s) =
X2(s)

F1(s)

In general

H pq =
Xp

Fq

where :

• p is the output degree of freedom (physical location and orientation).

• q is the input degree of freedom (physical location and orientation).

Therefore, measuring a column of the [H ] matrix is accomplished by using a single, fixed

input (excitor system) with a roving response and measuring a row is accomplished by using a

roving input (hammer) and a single fixed response. It should be reiterated that the subscript

notation ofp or q refers to both a physical location and also direction or orientation.

Thus, H1 1(s) is the transfer function measured by exciting the system withF1(s) and measuring

the responseX1(s). Similarly H2 1(s) is the transfer function measured by exciting the system

with F1(s) and measuring the response atX2(s). Likewise, H1 2(s) andH2 2(s) can be measured

by exciting the system withF2(s), letting F1(s) = 0, and measuring the responsesX1(s) and

X2(s).

As in the single degree of freedom case, the denominator polynominal in Equation 4.8 is called

the characteristic equation. Notice that all of the transfer functions that are represented in

Equation 4.6 have the same denominator polynomial. The roots of this denominator polynomial

(characteristic equation) are the modal frequencies of the system.

Since the coefficients of the characteristic equation are real, the roots will appear as complex

conjugate pairs. Rewriting Equation 4.8 with this in mind gives the following result:

(4-7)
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H1 1(s) =
M2 2 s2 + K2 2

E ( s − λ1 ) ( s − λ *
1 ) ( s − λ2 ) ( s − λ *

2 )
(4.11)

where λ1, λ *
1, λ2, and λ *

2 are the roots of the characteristic equation.The roots of the

characteristic equation are also referred to as thepoles of the transfer function H1 1(s).

4.2 Analytical Model - Scalar/Matrix Polynomial (MDOF)

The general formulation of Equation 4.11 or of any of the transfer functions defined by an

anlytical mass, damping and stiffness matrix model can be written as a numerator polynomial of

the independent variables divided by a denominator polynomial of the independent variables.

Both polynomials involve coefficients that are different numerical combinations of the discrete

values of mass, damping, stiffness of the system. The roots of the denominator polynomial are

the modal frequencies of the system and are considered global properties of the system. The

roots of the numerator polynomial are the zeroes of the system and are local properties of the

system that depend upon the specific input-output relationship of the transfer function. The

general polynomial model for a single transfer function can be written as follows using scalar

coefficients:

Xp(s)

Fq(s)
= H pq(s) =

β n (s)n + β n−1 (s)n−1 + . . . + β1 (s)1 + β0 (s)0

α m (s)m + α m−1 (s)m−1 + . . . + α1 (s)1 + α0 (s)0
(4.12)

The previous model can be rewritten in a more concise form as follows:

Xp(s)

Fq(s)
=

n

k=0
Σ β k (s)k

m

k=0
Σ α k (s)k

Further rearrranging yields the following equation that is linear in the unknownα andβ terms:

m

k=0
Σ α k (s)k Xp(s) =

n

k=0
Σ β k (s)kFq(s) (4.13)

This model can be generalized to represent the general multiple input, multiple output case as

(4-8)
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follows using a matrix polynomial formulation:

m

k=0
Σ 


[α k] (s)k


{ X(s)} =

n

k=0
Σ 


[β k] (s)k


{ F(s)} (4.14)

The previous models can be used to represent frequency response function (FRF) data by

limiting the s variable (s = j ω ) and applying a few matrix operations. If both sides of the above

equation are post multiplied by the hermitian (complex conjugate transpose) of the force vector

({ F(s)} H ), the following equation results.

m

k=0
Σ 


[α k] (s)k


{ X(s)}{ F(s)} H =

n

k=0
Σ 


[β k] (s)k


{ F(s)}{ F(s)} H

In the above equation note that the vector products are the definition of the cross power

([Gxf (s)] = { X(s)}{ F(s)} H ) and auto power spectrum ([G ff (s)] = { F(s)}{ F(s)} H ) whens = jω
(after averaging).

m

k=0
Σ 


[α k] (s)k




Gxf (s)

=
n

k=0
Σ 


[β k] (s)k




G ff (s)

The above equation can be post multipled by the inverse of the auto power spectrum matrix.

m

k=0
Σ 


[α k] (s)k




Gxf (s)



G ff (s)

−1

=
n

k=0
Σ 


[β k] (s)k


[ I ]

Finally, the above equation can be put in final form by noting that the product of the cross

spectrum matrix and the inverse of the auto spectrum matrix ([Gxf (s)] [G ff (s)]
−1) is the definition

of the FRF matrix ([H(s)]) for the multiple input, multiple output case whens = jω .

m

k=0
Σ 


[α k] ( jω )k


[H(ω )] =

n

k=0
Σ 


[β k] ( jω )k


[ I ] (4.15)

For a single input, single output case the above equation yields:

m

k=0
Σ α k ( jω )kH pq(ω ) =

n

k=0
Σ β k ( jω )k (4.16)

(4-9)
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4.3 Analytical Model - Partial Fraction (Residue)

Equation 4.11 can be represented very generally by expansion in terms of its partial fractions.

That is:

H1 1(s) =
X1(s)

F1(s)
=

c1

( s − λ1 )
+

c2

( s − λ *
1 )

+
c3

( s − λ2 )
+

c4

( s − λ *
2 )

(4.17)

The constantsc1 → c4 can be found in a similar fashion as in the single degree of freedom case.

Equating Equation 4.11 and Equation 4.17 yields:

M2 2 s2 + K2 2

E (s − λ1) (s − λ *
1) (s − λ2) (s − λ *

2)
=

c1

(s − λ1)
+

c2

(s − λ *
1)

+
c3

(s − λ2)
+

c4

(s − λ *
2)

(4.18)

Note that c1 can be evaluated by multiplying Equation 4.18 bys − λ1 and evaluating the

expression ats = λ1. Thus:

c1 =
M2 2 λ2

1 + K2 2

E ( λ1 − λ *
1 ) ( λ1 − λ2 ) ( λ1 − λ *

2 )
= A111 (4.19)

In a similar fashion:

c2 =
M2 2 λ *

1
2 + K2 2

E ( λ *
1 − λ1 ) ( λ *

1 − λ2 ) ( λ *
1 − λ *

2 )
= c*

1 = A*
111

c3 =
M2 2 λ2

2 + K2 2

E ( λ2 − λ1 ) ( λ2 − λ *
1 ) ( λ2 − λ *

2 )
= A112

c4 =
M2 2 λ *

2
2 + K2 2

E ( λ *
2 − λ1 ) ( λ *

2 − λ *
1 ) ( λ *

2 − λ2 )
= c*

3 = A*
112

Equation 4.17 becomes:

H1 1(s) =
A1 1 1

( s − λ1 )
+

A*
1 1 1

( s − λ *
1 )

+
A1 1 2

( s − λ2 )
+

A*
1 1 2

( s − λ *
2 )

(4.20)

(4-10)
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Thus, the transfer function of a two degree of freedom system has been represented by the sum

of two single degree of freedom systems (Section 2.5). This result can now be extrapolated to

apply to any number of degrees of freedom.

Rewriting Equation 4.20 in terms of this summation:

H1 1(s) =
2

r=1
Σ





A1 1r

s − λ r
+

A*
1 1r

s − λ *
r





(4.21)

As in a single degree of freedom case, theA1 1r ’s are again referred to as the residues associated

with the polesλ r .

The rest of the transfer functions of the system can be expressed, using the same logic as the

development of Equation 4.21.

H2 1(s) =
2

r=1
Σ





A2 1r

s − λ r
+

A*
2 1r

s − λ *
r





(4.22)

H1 2(s) =
2

r=1
Σ





A1 2r

s − λ r
+

A*
1 2r

s − λ *
r





(4.23)

H2 2(s) =
2

r=1
Σ





A2 2r

s − λ r
+

A*
2 2r

s − λ *
r





(4.24)

Equation 4.9 can now be rewritten in terms of the above partial fraction expansion.







X1(s)

X2(s)







=









2

r=1
Σ





A1 1r

s − λ r
+

A*
1 1r

s − λ *
r





2

r=1
Σ





A2 1r

s − λ r
+

A*
2 1r

s − λ *
r





2

r=1
Σ





A1 2r

s − λ r
+

A*
1 2r

s − λ *
r





2

r=1
Σ





A2 2r

s − λ r
+

A*
2 2r

s − λ *
r



















F1(s)

F2(s)







(4.25)

The transfer function matrix [H(s) ] can also be rewritten in terms of partial fractions combining

Equations 4.21 through 4.24.

(4-11)
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[ H (s) ] =





A1 1 1

A2 1 1

A1 2 1

A2 2 1





( s − λ1 )
+





A*
1 1 1

A*
2 1 1

A*
1 2 1

A*
2 2 1





( s − λ *
1 )

+





A1 1 2

A2 1 2

A1 2 2

A2 2 2





( s − λ2 )
+





A*
1 1 2

A*
2 1 2

A*
1 2 2

A*
2 2 2





( s − λ *
2 )

. (4.26)

The numerator matrices in each term of the above equation are called the residue matrices. Note

that there is a separate matrix associated with each of the modal frequencies (poles) of the

system. Note also that the residue matrices associated with complex conjugate modal

frequencies are also complex conjugates.

Previously, the constantA1 1 1 has been evaluated (Equation 4.19). The constantsA2 1 1, A1 2 1, and

A2 2 1 can now be evaluated in a similar fashion. Once this is done, the form of the first residue

matrix can be evaluated for poleλ1.

A2 1 1 =
− ( M2 1 λ2

1 + K2 1 )

E ( λ1 − λ *
1 ) i( λ1 − λ2 ) (λ1 − λ *

2 )

A1 2 1 =
− ( M1 2 λ2

1 + K1 2 )

E ( λ1 − λ *
1 ) ( λ1 − λ2 ) (λ1 − λ *

2 )

A2 2 1 =
− ( M1 1 λ2

1 + K1 1 )

E ( λ1 − λ *
1 ) ( λ1 − λ2 ) (λ1 − λ *

2 )

The first term on the right of Equation 4.27 can be rewritten as follows:





A1 1 1

A2 1 1

A1 2 1

A2 2 1





( s − λ1 )
=





M2 2 λ2
1 + K2 2

−( M2 1 λ2
1 + K2 1 )

−( M1 2 λ2
1 + K1 2 )

M1 1 λ2
1 + K1 1





E ( λ1 − λ *
1 ) ( λ1 − λ2 ) ( λ1 − λ *

2 ) ( s − λ1 )
(4.27)

Note that the numerator matrix on the right side of Equation 4.27 is the adjoint of the system

matrix discussed in Section 3.8. Therefore, from Equation 3.41:





M2 2 λ2
1 + K2 2

−( M2 1 λ2
1 + K2 1 )

−( M1 2 λ2
1 + K1 2 )

M1 1 λ2
1 + K1 1





= γ1





ψ1 ψ1

ψ2 ψ1

ψ1 ψ2

ψ2 ψ2



1

(4.28)

(4-12)



+UC-SDRL-RJA CN-20-263-662 Revision: Febr uary 19, 1999 +

Plugging Equation 4.28 into Equation 4.27 gives:





A1 1 1

A2 1 1

A1 2 1

A2 2 1





( s − λ1 )
=

γ1





ψ1 ψ1

ψ2 ψ1

ψ1 ψ2

ψ2 ψ2



1

E ( λ1 − λ *
1 ) ( λ1 − λ2 ) ( λ1 − λ *

2 ) ( s − λ1 )
(4.29)

Finally, the relationship between the transfer function data (via the residue matrices) and the

modal vectors of the system can be established. Equation 4.29 shows that the residue matrix has

the same structure as the adjoint matrix: each column contains a redundant estimate of the same

modal vector, different only by a constant. This relationship is normally stated as follows:

For poleλ1 :





A1 1 1

A2 1 1

A1 2 1

A2 2 1





= Q1





ψ1 ψ1

ψ2 ψ1

ψ1 ψ2

ψ2 ψ2



1

In general, for poleλ r :





A1 1r

A2 1r

A1 2r

A2 2r





= Qr





ψ1

ψ2



r





ψ1

ψ2





T

r

= Qr





ψ1 ψ1

ψ2 ψ1

ψ1 ψ2

ψ2 ψ2



r

(4.30)

where:

• Q1 is a constant that is a function of the modal vector scaling and the absolute units of the

residue matrix.

•




ψ1

ψ2



1

= mode shape for poleλ1

Equation 4.30 indicates that, with respect to the residue matrix, every row and column of the

residue matrix contains the same modal vector multiplied by a component of the modal vector

and the scaling constant. This is an important result for the experimental case. Therefore,

assuming that all of the residues within a row or column are not perfectly zero, the modal vector

can be estimated from only one row or column of the residue matrix. This will completely define

(4-13)
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the modal vector for that particular pole. In terms of the experimental requirements, in order to

estimate a particular element in the residue matrix, a frequency response function must be

measured. Under the assumption that every element in a particular row or column is not zero,

only N measurements will be required rather thanN × N. Once this information is measured, all

other terms in the residue matrix could be synthesized.

This previous discussion represents the MINIMUM requirements in terms of measurements. In

order to be certain that modal vectors are not missed or to utilize the redundant information in

different rows or columns, more measurements than one row or column are typically taken.

It should be pointed out that the constant of proportionalityQr in Equation 4.30 is not unique

since the constant will depend upon the choice of how the modal vector is scaled. This is

consistent with the concept that modal vectors represent relative motion between the degrees of

freedom. Note however that the residues are scaled quantities that depend upon the units of the

frequency response function(s).

4.4 Modal Vector Example

The transfer function matrix for the two degree of freedom system example used previously can

now be used to determine the modal vectors.

Substituting mass and stiffness values into Equation 4.6 gives:

[ H (s) ] =





( 10 s2 + 6 )

2

2

( 5 s2 + 4 )





( 5 s2 + 4 ) ( 10 s2 + 6 ) − (−2) (−2)

[ H (s) ] =





( 10 s2 + 6 )

2

2

( 5 s2 + 4 )





50 ( s4 + 7/5 s2 + 2/5 )

The roots of the characteristic equation have previously been calculated as:

λ1 = j √ 2/5 ( rad/sec) λ *
1 = − j √ 2/5 ( rad/sec)

(4-14)
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λ2 = j ( rad/sec) λ *
2 = − j ( rad/sec)

Therefore:

[ H (s) ] =





( 10 s2 + 6 )

2

2

( 5 s2 + 4 )





50 ( s − j √ 2/5 ) ( s + j √ 2/5 ) ( s − j ) ( s + j )

The transfer functionH1 1(s) can now be represented in terms of its partial fraction expansion:

H1 1(s) =
10 s2 + 6

50 ( s − j √ 2/5 ) ( s + j √ 2/5 ) ( s − j ) ( s + j )

H1 1(s) =
A1 1 1

( s − j √ 2/5 )
+

A*
1 1 1

( s + j √ 2/5 )
+

A1 1 2

( s − j )
+

A*
1 1 2

( s − j )

A1 1 1 = −
j √ 2/5

12
A*

1 1 1 =
j √ 2/5

12

A1 1 2 =
− j

15
A*

1 1 2 =
j

15

In a similar fashion, the rest of the residues for the remaining transfer functions can also be

determined.
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The system transfer function matrix [H(s) ] can now be expressed in terms of partial fractions.

[ H (s) ] =







−
j √ 2/5

12

−
j √ 2/5

12

−
j √ 2/5

12

−
j √ 2/5

12







( s − j √ 2/5 )
+







j √ 2/5

12
j √ 2/5

12

j √ 2/5

12
j √ 2/5

12







( s + j √ 2/5 )

+







− j

15
j

30

j

30
− j

60







( s − j )
+







j

15
− j

30

− j

30
j

60







( s + j )

Recall that the modal vector associated with the pole frequencyλ1 is proportional to the residue

matrix for poleλ1. Notice that the first two residue matrices are just the complex conjugate of

each other. Therefore, the modal vector for poleλ *
1 is just the complex conjugate of the modal

vector for poleλ1. The same is true for the last two residue matrices. This will always be the

case for conjugate pairs of poles.

The modal vector for the poleλ1 = √ 2/5 can be extracted from the first residue matrix.

Using Equations 4.29 and 4.30, the modal vectors can be related to the residue matrix for the first

pole.

Q1 { ψ } 1 { ψ } T
1 = Q1





ψ1 ψ1

ψ2ψ1

ψ1ψ2

ψ2ψ2



1

Q1 { ψ } 1 { ψ } T
1 =







−
j √ 2/5

12

−
j √ 2/5

12

−
j √ 2/5

12

−
j √ 2/5

12





1

The constantQ1 = ±
j √ 2/5

12
can now be factored out of the residue matrix. The choice of this

(4-16)
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constant at this point is purely arbitrary by virtue of the fact that the absolute amplitudes of the

modal vectors are purely arbitrary.





ψ1ψ1

ψ2ψ1

ψ1ψ2

ψ2ψ2



1

=




1

1

1

1



1

Hence, the modal vector for the first mode is:





ψ1

ψ2



1

=




1

1



1

Similarly, the modal vector for the second mode:

Q2 { ψ } 2 { ψ } T
2 = Q2





ψ1 ψ1

ψ2ψ1

ψ1ψ2

ψ2ψ2



2

=







− j

15
j

30

j

30
− j

60





2

The constantQ2 = ±
− j

60
can now be factored from this residue matrix in the same arbitrary

manner as before.





ψ1 ψ1

ψ2ψ1

ψ1ψ2

ψ2ψ2



2

=




4

− 2

− 2

1



2

Equating elements of the two matrices yields:

ψ1ψ1 = ψ 2
1 = 4 ψ1 = 2

ψ2ψ1 = − 2 ψ2 = − 1

Thus:





ψ1

ψ2



2

=




2

− 1



2
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Both of these modal vectors could have been obtained directly by just using either a row or a

column of the residue matrix as the modal vector directly.

4.5 Analytical Model - General Partial Fraction (Residue)

Recalling Equation 4.21 for a two degree of freedom system:

H1 1(s) =
2

r=1
Σ A1 1r

( s − λ r )
+

A*
1 1r

( s − λ *
r )

Equation 4.21 can now be generalized for anN-degree of freedom system as the following:

H1 1(s) =
N

r=1
Σ A1 1r

( s − λ r )
+

A*
1 1r

( s − λ *
r )

(4.31)




H pq(s) 


=
N

r=1
Σ




Ap q r



( s − λ r )
+




A*
p q r




( s − λ *
r )

(4.32)

Furthermore, the entire system transfer function matrix [H(s) ] can be generalized as:

[ H (s) ] =
N

r=1
Σ [ A ] r

s − λ r
+

[ A* ] r

s − λ *
r

(4.33)

In terms of the modal vectors of the system directly:

[ H(s) ] =
N

r=1
Σ Qr { ψ }r { ψ }T

r

( s − λ r )
+

Q*
r { ψ }*

r { ψ }*T
r

( s − λ *
r )

(4.34)

Equation 4.34 is the general form of the system transfer function matrix. As will be shown later,

this form does not change when a system with damping is considered. Remember, though, that

the complete transfer function can not be measured. Not once again that the frequency response

function measurement, which is just Equation 4.34 evaluated ats = j ω , is actually what is

measured.

(4-18)
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4.6 Residue Relationship to Modal Vectors

The relationship established in Section 4.3 between the residue matrix and the modal vector can

be developed in a more formal or rigorous manner. It is important to understand that the residue

defined in the previous section is the key to the relationship between modal vectors and modal

scaling (modal mass) for the experimental case. At the present time, the following discussion is

limited to the undamped and/or proportionally damped cases. The relationship for the case of

general damping is discussed in a later section.

The development of the relationship between the residue matrix and the modal vectors proceeds

along a similar path as the development of the relationship between the residue matrix and the

adjoint of the system matrix (Section 3.8). Beginning with the definition of the impedance

matrix:

[B(s)] = 

[ M ]s2 + [ C ]s + [ K ] 


(4.35)

where:

• [ B(s) ] = System Impedance Matrix

From matrix algebra:

[B(s)] [ B(s)]−1 = [ I ] (4.36)

Noting that the inverse of the impedance matrix is the transfer function matrix gives:

[B(s)] [ H(s)] = [ I ] (4.37)

Replacing the transfer function matrix with the equivalent partial fraction representation from

Equation 4.33 yields:

[ I ] =
N

r=1
Σ [ B(s) ] [ A ] r

s − λ r
+

[B(s)] [ A* ] r

s − λ *
r

(4.38)

Premultiplying each term of the above equation by (s − λ r ) and evaluating the equation ats = λ r

(4-19)
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for any specific moder (all of the terms drop out except the term associated withλ r ):

[ 0 ] = 

B(λ r )

[ A ] r (4.39)

Note that the above equation proves that each column of the residue matrix [A]r must be

proportional to the modal vector associated withλ r just as it did in the adjoint matrix case

(Section 3.8). Likewise the structure of the residue matrix must be the same as the structure of

the adjoint matrix.

[ A]r = Qr { ψ } r { ψ } T
r (4.40)

[ A]r = Qr









ψ1 ψ1

ψ2 ψ1

.

.

ψ N ψ1

ψ1 ψ2

ψ2 ψ2

.

.

ψ N ψ2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ψ1 ψ N

.

.

.

ψ N ψ N







r

where:

• Qr = constant associated with the scaling of{ψ }r relative to the absolute scaling (units) of

the residue matrix.

• Qr = is proportional, but not generally equal to, the proportionality constantγ r defined in

Section 3.8.

4.7 Residue Relationship to Modal Mass

For the proportionally damped case, which includes the undamped case as a trivial form, the

relationship between the residue and the modal mass can also be established consistent with the

modal mass found analytically from the mass matrix. Starting with Equation 4.38 and 4.40:

[ I ] =
N

r=1
Σ [ B(s) ] Qr {ψ } r {ψ } T

r

s − λ r
+

[B(s)] Q*
r




ψ *



r




ψ *





T

r

s − λ *
r

(4.41)
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Note that, for proportionally damped systems, the modal vectors are always real (normal) modes.

Therefore, the conjugate of a modal vector is the same as the modal vector ({ψ } r =



ψ *



r

).

Making this substitution and premultiplying both sides of Equation 4.41 by{ψ } T
t :

{ψ } T
t =

N

r=1
Σ

{ψ } T
t [ B(s) ] Qr {ψ } r {ψ } T

r

s − λ r
+

{ψ } T
t [B(s)] Q*

r {ψ } r {ψ } T
r

s − λ *
r

(4.42)

Substitute Equation 4.35 into Equation 4.42:

{ψ } T
t =

N

r=1
Σ

Qr {ψ } T
t




[ M ] s2 + [ C ] s + [ K ] 


{ψ } r {ψ } T
r

s − λ r
+

Q*
r {ψ } T

t



[ M ] s2 + [ C ] s + [ K ] 


{ψ } r {ψ } T
r

s − λ *
r

(4.43)

Applying the orthogonality relationships between the modal vectors and the mass, damping and

stiffness matrices eliminates all terms except for those associated with modet:

{ψ } T
t =

Qt ( Mt s2 + Ct s + Kt ){ψ } T
t

s − λ t
+

Q*
t ( Mt s2 + Ct s + Kt ){ψ } T

t

s − λ *
t

(4.44)

Eliminating{ψ } T
t from each term of Equation 4.44 leaves the following scalar equation:

1 =
Qt ( Mt s2 + Ct s + Kt )

s − λ t
+

Q*
t ( Mt s2 + Ct s + Kt )

s − λ *
t

(4.45)

Clearing the fractions from the previous equation:

(s − λ t) (s − λ *
t ) = Qt ( Mt s2 + Ct s + Kt ) (s − λ *

t ) + Q*
t ( Mt s2 + Ct s + Kt )(s − λ t)

. (4.46)
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Note that, by definition:

( Mt s2 + Ct s + Kt ) = Mt (s − λ t) (s − λ *
t ) (4.47)

Substituting Equation 4.47 into Equation 4.46 and eliminating the common terms on both sides

of the equation (s − λ t) (s − λ *
t ):

1 = Qt Mt (s − λ *
t ) + Q*

t Mt (s − λ t) (4.48)

Evaluating Equation 4.49 ats = λ t gives the final relationship:

1 = Qt Mt (λ t − λ *
t ) (4.49)

1 = Qt Mt (2 j ω t) (4.50)

Mt =
1

2 j ω t Qt
(4.51)

Equation 4.51 represents the relationship between modal mass and the scaling involved between

the residues and the modal vectors (Recall Equation 4.40). Therefore, once the residue

information is found for modet and some convenient form of modal vector scaling is chosen for

modet, the scaling constantQt can be determined. Equation 4.51 can then be used to determine

modal mass for modet consistent with the modal vector scaling. This means that as long as the

modal vector is chosen consistently, modal mass can be compared between different solution

approaches (analytical versus experimental, for example).
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