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3. MULTIPLE DEGREE OF FREEDOM SYSTEMS

3.1 Theory

Generally, most structures are more complicated than the single mass, spring, and damper system

discussed in the previous section. The general case for a multiple degree of freedom system will

be used to show how the frequency response functions of a structure are related to the modal

vectors of that structure. Throughout the following section the following two degree of freedom

system will be used to illustrate the concepts discussed.

M1 M2

K1

C1

K2

C2

K3

C3

f1(t)

x1(t)

f2(t)

x2(t)

Figure 3-1. Tw o Degree of Freedom System

The equations of motion for the above system are:

(3-1)
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M1 ẍ1(t) + (C1 + C2) ẋ1(t) − C2 ẋ2(t) + (K1 + K2) x1(t) − K2 x2(t) = f1 (t)

M2 ẍ2(t) + (C2 + C3) ẋ2(t) − C2 ẋ1(t) + (K2 + K3) x2(t) − K2 x1(t) = f2 (t)

In matrix notation:





M1

0

0

M2









ẍ1(t)

ẍ2(t)





+




( C1 + C2 )

−C2

−C2

( C2 + C3 )









ẋ1(t)

ẋ2(t)





+




( K1 + K2 )

−K2

−K2

( K2 + K3 )









x1(t)

x2(t)





=




f1(t)

f2(t)





(3.1)

The above equations are still second order, linear, time invariant, differential equations, but are

now coupled by the coordinate choice. Therefore, this system of equations must be solved

simultaneously. The process of solving the set of equations in Equation 3.1 will now be

reviewed in an analytical sense. The modal vectors and frequencies will result as the solution to

the homogeneous portion of the differential equations summarized in Equation 3.1.

The solution of the above system of second order differential equations is first obtained for the

undamped system. Assuming thatC1 = C2 = C3 = 0.

[ M ] { ẍ(t) } + [ K ] { x(t) } = { f (t) } (3.2)

where:

• [ M ] =




M1

0

0

M2





= Mass Matrix

• [ K ] =




( K1 + K2 )

−K2

−K2

( K2 + K3 )





= Stiffness Matrix

• { f } =




f1 (t)

f2 (t)





= Forcing Vector

(3-2)
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• { x } =




x1 (t)

x2 (t)





= Response Vector

Since the forcing and response vectors are always functions of time, the functional notation (t)

will be dropped in further equations.

The system of equations represented by Equation 3.2 has the general solution of:

{ x } = { X } es t

Thus:

{ ẋ } = s { X } es t = s x

{ ẍ } = s2 { X } es t = s2 x (3.3)

where:

• s = σ + j ω = complex valued frequency

Substituting Equation 3.3 into Equation 3.2 yields:

s2 [ M ] { X } + [ K ] { X } = { f }

If there are no forcing function so that{ f } = { 0 }, then:

s2 [ M ] { X } + [ K ] { X } = { 0 }




s2 [ M ] + [ K ] 


{ X } = { 0 } (3.4)

Equation 3.4 is nothing more than a set of simultaneous algebraic equations inXi . The

unknowns are theX’s and thes’s. From the theory of differential equations, in order for

Equation 3.4 to have other than the trivial solution,{ X  } = { 0 }, the determinant of the

coefficients must equal zero. The determinant of the coefficients will be a polynominal ins2.

The roots of this polynominal are called eigenvalues.

(3-3)
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In order to manipulate Equation 3.4 into a standard eigenvalue-eigenvector form, Equation 3.4

can be reformulated in a couple of different ways. First, divide Equation 3.4 bys2 and

premultiply by [K ]−1.





[ K ]−1 [ M ] +
1

s2
[ I ]





{ X } = { 0 } (3.5)

A different way of formulating the eigenvalue problem would be to premultiply Equation 3.4 by

[M ]−1 . Note that by doing this, the resulting dynamic matrix, [K ]−1[ M ] in Equation 3.5 or

[ M ]−1[ K ] in Equation 3.6, is no longer symmetric.




[ M ]−1 [ K ] + s2 [ I ] 


{ X } = { 0 } (3.6)

In Equation 3.5 the eigenvalues are
1

s2
and in Equation 3.6 the eigenvalues ares2. Equations 3.5

and 3.6 are really just the inverse of each other. In Equation 3.5 or Equation 3.6, the matrix on

the left hand side of the equation is often referred to as the dynamic matrix. Note that the

multiplication of Equation 3.4 by a matrix to obtain Equation 3.5 or 3.6 amounts to a coordinate

transformation.

The frequency of a mode of vibration is defined in terms of the eigenvalue. The solution vector

{X } of Equation 3.5 or 3.6 corresponding to a particular eigenvalue is called an eigenvector,

characteristic vector, mode shape, or modal vector. TheX’s represent a deformation pattern of

the structure for a particular frequency of vibration. Since Equations 3.5 or 3.6 are homogeneous

there is not a unique solution for theX’s; only a relative pattern or ratio among theX’s can be

obtained. In other words, theX’s can only be solved for in terms of one of theX’s, which in turn

can be given any arbitrary value. Mathematically, the rank of the equation systems represented

by Equation 3.5 or 3.6 is always one less than the number of equations.

Therefore, the deflected deformation of a structure, which describes a natural mode of vibration,

is defined by known ratios of the amplitude of motion at the various points on the structure.

Thus, the actual amplitude of vibration of a structure is a combination of the modal vector and

the level, location, and characteristic of excitation forces and not a direct property of a natural

mode of vibration. The amplitude of vibration is really dependent on the placement and

(3-4)
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amplitude of the systems forcing functions along with any initial conditions of the system

together with the properties of the structure described by the eigenvalues and eigenvectors.

3.2 Solution of the Eigenvalue Problem

The solution of either Equation 3.5 or 3.6 is obtained by recognizing that these equations are a

set of homogeneous equations. Therefore, for a non-trivial solution, the determinant of the

coefficients must equal zero.




[ K ] + s2 [ M ]


= 0. (3.7a)




[ M ]−1 [ K ] + s2 [ I ]


= 0. (3.7b)





[ K ]−1 [ M ] +
1

s2
[ I ]





= 0. (3.7c)

The determinant in Equation 3.7 is referred to as the characteristic determinant. The expansion

of the characteristic determinant results in thecharacteristic equation or the

frequency equation.

Equation 3.7 may be rewritten as:

α n + a1 α n−1 + a2 α n−2 + . . . + an = 0. (3.8)

Equation 3.8 is the characteristic equation of aN-degree of freedom system, whereα = s2 for

Equation 3.7a or 3.7b orα =
1

s2
for Equation 3.7c. The roots of Equation 3.8 are the eigenvalues

of the system. Note that the values ofs corresponding to the roots of Equation 3.8 are the

complex-valued modal frequencies (λ r = σ r + j ω r ).

(3-5)
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3.2.1 Two Degree of Freedom Example: Undamped, Unforced

Given a two degree of freedom system (Equation 3.1), find its eigenvalues (undamped natural

frequencies) and the respective eigenvectors (modal vectors) for the undamped system.

Referring to Figure (3-1), let:

• M1 = 5 M2 = 10

• K1 = 2 K2 = 2 K3 = 4

Substituting into Equation 3.1:





5

0

0

10









ẍ1

ẍ2





+




4

−2

−2

6









x1

x2





=




0

0





The eigenvalue problem then becomes (Equation 3.5):










4

−2

−2

6





−1




5

0

0

10





+
1

s2





1

0

0

1














X1

X2





=




0

0

















3

10
1

10

1

10
1

5











5

0

0

10





+
1

s2





1

0

0

1















X1

X2





=




0

0





or:







3

2
+

1

s2

1

2

1

2 +
1

s2











X1

X2





= { 0 } (3.9)
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The determinant of the coefficient matrix of Equation 3.9 must equal zero for a non-trivial

solution.

(
3

2
+

1

s2
) ( 2 +

1

s2
) −

1

2
= 0.

Usingα =
1

s2
as a change of variable, the characteristic equation becomes:

α 2 +
7

2
α +

5

2
= 0. (3.10)

The roots of Equation 3.10 are:

α1,2 =

−7

2
± √ 49/4− 10

2
=

−7

4
±

√ 9/4

2

α1 =
−5

2

α2 = − 1

Noting the change of variableα =
1

s2
:

α1 =
1

λ2
1

α2 =
1

λ2
2

Sinceλ r = σ r ± j ω r , the complex-valued modal frequencies are:

λ1 = σ1 ± j ω1 = ± j ω1 = ± j √ 2/5

λ2 = σ2 ± j ω2 = ± j ω2 = ± j 1

Now the frequenciesω1 andω2 can be used in Equation 3.9 to determine the modal vectors.

The modal vector forλ1 = ± j ω1 is determined using the following equations:

(3-7)
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




−1
1

2

1
−1

2










X1

X2





= { 0 }

or

− X1 + X2 = 0

X2 = X1

Thus, the modal vector corresponding to the natural frequencyω1 is:

{ ψ } 1 =




X1

X1



1

where:

• X1 is arbitrary (depends on scaling method)

Similarly for λ2 = ± j ω2, the modal vector is:







1

2
1

2

1

1











X1

X2





= { 0 }

or

1

2
X1 + X2 = 0

X2 =
−1

2
X1

or:

{ ψ } 2 =







X1
− X1

2





2(3-8)
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If the deformation ofX1 = 1, which is an arbitrary choice depending on the scaling method, then:

For ω1 = √ 2/5 :

{ ψ } 1 =




1

1



1

For ω2 = 1 :

{ ψ } 2 =







1

−
1

2





2

3.3 Weighted Orthogonality of Modal Vectors

The solution of the eigenvalue problem as formulated in Equation 3.5 yieldsN natural

frequencies,λ r , andN modal vectors{ψ }r whereN is the number of degrees of freedom of the

system.

Note that any particular undamped natural frequency and the associated modal vector{ψ }r

satisfy Equation 3.4. Thus, substituting into Equation 3.4s = λ r and{X } = {ψ }r yields:

λ2
r [ M ]{ ψ } r = − [ K ] { ψ } r (3.11)

Now pre-multiply Equation 3.11 by a different modal vector,{ψ }s
T , thus:

λ2
r { ψ } T

s [ M ] { ψ } r = − { ψ } T
s [ K ] { ψ } r (3.12)

where the superscript T denotes a matrix transpose.

Using a rule of matrix algebra for the transpose of a product of matrices:

[ [ C ] [ D ] ]T = [ D ]T [ C ]T

(3-9)
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Taking the transpose of both sides of Equation 3.12 yields:

λ2
r { ψ } T

r [ M ] { ψ } s = − { ψ } T
r [ K ] { ψ } s (3.13)

where:

• [ M ]T = [ M ] since [ M ] is a symmetric matrix.

• [ K ]T = [ K ] since [K ] is a symmetric matrix.

Next, substitutes = λ s and{X } = {ψ }s into Equation 3.4 and pre-multiply both sides by{ψ }s
T .

This yields:

λ2
s { ψ } T

r [ M ] { ψ } s = − { ψ } T
r [ K ] { ψ } s (3.14)

Subtracting Equation 3.14 from Equation 3.13 gives:

( λ2
r − λ2

s ) { ψ } T
r [ M ] { ψ } s = 0. (3.15)

If r ≠ s (implying two different frequencies), it follows that:

{ ψ } T
r [ M ] { ψ } s = 0. (3.16)

From Equation 3.14, it follows that:

{ ψ } T
r [ K ] { ψ } s = 0. (3.17)

Equations 3.16 and 3.17 are statements of the weighted orthogonality properties of the modal

vectors with respect to the system mass and stiffness matrices. The concept of orthogonality can

be looked at from a vector analysis standpoint. In vector analysis, two vectors are orthogonal if

their dot product equals zero. This means that the projection of one vector on the other is zero.

Therefore, the two vectors are perpendicular to each other. An obvious example is the

3-dimensional cartesian coordinate system. Thei , j , and k unit vectors for the cartesian

coordinate system are orthogonal to each other. Modal vectors of an n-degree of freedom system

can be viewed as being just a vector in n-dimensional space, which unfortunately cannot be

(3-10)
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visualized. In order for modal vectors to be orthogonal, though, a simple dot product will not

suffice. The concept of a weighted dot product, where the weighting matrix is the theoretical

mass or stiffness matrix, must be used. If, for instance, the mass matrix in Equation 3.16 was the

identity matrix, the weighted dot product would reduce to the simple dot product and result in a

direct analog of the orthogonality condition for the unit vectors in the cartesian coordinate

system. Because the mass and stiffness matrices in Equation 3.16 and 3.17 are not generally the

identity matrix, the orthogonality relationships in Equation 3.16 and Equation 3.17 are generally

referred to as weighted orthogonality.

If two modal vectors happen to have the same frequencyλ r = λ s (Equation 3.15) their

corresponding modal vectors are not necessarily orthogonal to one another. This condition is

known as arepeated rootor repeated poleand will be discussed further in a later section. For

this condition, the modal vectors associated with the repeated roots will be orthogonal to the

other modal vectors and independent of one another.

In Equation 3.15, if the same modal vector is used to pre- and post-multiply the mass matrix,

then Equation 3.16 is equal to some scalar constant other than zero, commonly noted asMr .

Thus:

{ ψ } T
r [ M ] { ψ } r = Mr = Modal Mass (3.18)

Similarly, Equation 3.14 yields:

{ ψ } T
r [ K ] { ψ } r = ω 2

r Mr = Kr = Modal Stiffness (3.19)

Since, as previously shown, the amplitude of any particular modal vector (eigenvector) is

completely arbitrary, the modal vector can be normalized in an arbitrary way. This means that

Mr is not unique.

For instance, one common criteria used to normalize the modal vector is to scale the modal

vector such thatMr in Equation 3.18 is equal to unity.

The resulting scaled modal vectors normalized in this manner are generally referred to as

orthonormal modal vectors (eigenvectors).

(3-11)
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3.4 Modal Vector Scaling Example

Using the previous two degree of freedom example, normalize the modal vectors{ψ }1 and{ψ }2

such that:

{ ψ } T
1 [ M ] { ψ } 1 = M1 = 1. (3.20)

and:

{ ψ } T
2 [ M ] { ψ } 2 = M2 = 1. (3.21)

From the previous example:

{ ψ } 1 =




X1

X1



1

{ ψ } 2 =







X1
− X1

2





2

Substituting{ψ }1 into Equation 3.20 yields:





X1

X1





T




5

0

0

10









X1

X1





= 1





5 X1

10 X1





T




X1

X1





= 1

5 X2
1 + 10 X2

1 = 1

X2
1 =

1

15

X1 = ± √ 1/15

Using the positive root, the modal vector{ψ }1 , normalized for unity modal mass, results:

{ ψ } 1 =




X1

X1



1

=




√ 1/15

√ 1/15



1

(3-12)
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Similarly for {ψ }2:







X1
− X1

2







T





5

0

0

10











X1
− X1

2







= 1





5 X1

−5 X1





T 





X1
− X1

2







= 1

5 X2
1 +

5

2
X2

1 = 1

X2
1 =

2

15

X1 = ± √ 2/15

Thus,{ψ }2 normalized to unity modal mass is:

{ ψ } 2 =







√ 2/15
− √ 2/15

2





2

The normalized modal vectors will giveMr = 1 for all the modes of vibration. The significance

of this normalization will be obvious later.

3.5 Principal Coordinates - Modal Coordinates

With reference to the equations of motion for an undamped system (Equation 3.2), the major

obstacle encountered when trying to solve for the system response{x}, due to a particular set of

forcing functions and initial conditions, is the coupling between the equations. In terms of the

system’s mass and stiffness matrices, coupling is represented in terms of non-zero off diagonal

elements. Generally two types of coupling can exist for an undamped system; (1) Static coupling

(3-13)
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(non-diagonal stiffness matrix); or (2) dynamic coupling (non-diagonal mass matrix). Equation

3.2 represents a system which is only statically coupled. If the system of equations in Equation

3.2 could be uncoupled, that is diagonal mass and stiffness matrices, then each equation in

Equation 3.2 could be solved independent of the other equations. Another way of looking at this

would be that each uncoupled equation would look just like the equation for a single degree of

freedom, whose solution can very easily be obtained. Therefore, if a set of coupled system

equations could be reduced to an uncoupled system, the solution would become

straightforward. Indeed, from an analytical sense, this is the whole point of what has become

known as modal analysis.

The procedure used to uncouple a set of coupled system equations is basically a coordinate

transformation. In other words, the goal is to find a coordinate transformation that transforms the

original coordinates{x} into another equivalent set of coordinates{q } that renders the system

statically and inertially decoupled. This new set of coordinates{q } is typically referred to as

principal coordinates, normal coordinates or modal coordinates.

A similar benefit of a coordinate transformation occurs in many other engineering problems.

One example of this situation is in the calculation of moments and products of inertia when the

inertia properties of a complex structure need to be defined. The first step in the calculation of

the inertia properties is to choose a set of axis to base the inertia properties on. Then, the

following properties would be measured or calculated:I xx, I yy, I zz, I xy, I yz, I xz. In general, both

moments of inertia and products of inertia are required. However, if a different set of axis with

respect to the structure were defined such that these axis happened to coincide with the structures

principle axis, the result would be moments of inertiaI x, I y, and I z but the products of inertia

would all be zero (I xy = I yz = I xz = 0). Therefore, by changing the coordinate system, the

products of inertia have been eliminated.

Another example of the benefit of a coordinate transformation is noticed when computing

principle strains at a point on a structure. Typically, a  strain gage rosette is used to determine the

normal and shearing strains at a point of interest. From this information, a new coordinate

system can be determined (strain element orientation) such that only principal normal strains

exist; the shear strains are equal to zero for the new coordinate system. To determine the

orientation of this new coordinate system that renders the shearing strain to zero, MOHR’s circle

techniques are commonly used. Once again, a simple coordinate transformation is used to

(3-14)
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eliminate the shearing strains.

The problem of finding a coordinate transformation that uncouples our original equations of

motion is very straightforward. It turns out that, due to the unique orthogonality properties of the

modal vectors, the required coordinate transformation is already available. Referring to

Equations 3.16-3.19, if either the mass or stiffness matrix is pre- and post- multiplied by

different modal vectors (Equations 3.16 and 3.17), the result is zero. However, if the same modal

vector is used to pre- and post- multiply the mass or stiffness matrix (Equations 3.18 and 3.19),

the result is a constant.

Therefore, the new coordinate system can be defined by the following transformation:

{ x } = 


ψ 


{ q } (3.22)

where:

• [ψ ] is the transformation matrix (matrix whose columns are the modal vectors of the

original system).

This matrix is generally referred to as themodal matrixor matrix of modal vectors. Recall the

general form of the undamped system of equations with forcing functions:

[ M ] { ẍ } + [ K ] { x } = { f } (3.23)

Substituting Equation 3.22 into Equation 3.23 gives:

[ M ] 


ψ 


{ q̈ } + [ K ] 


ψ 


{ q } = { f } (3.24)

Pre-multiplying by

ψ 



T

yields:




ψ 


T

[ M ] 


ψ 


{ q̈ } + 


ψ 


T

[ K ] 


ψ 


{ q } = 


ψ 


T

{ f }

Equation 3.25 is the equivalent of Equation 3.23 but in a different coordinate system. Analyzing
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Equation 3.25, noting the orthogonality properties of the modal vectors (Equation 3.16-3.19):




ψ 


T

[ M ] 


ψ 


= M 

and:




ψ 


T

[ K ] 


ψ 


= K 

where:

• M  is a diagonal matrix.

• K  is a diagonal matrix.

Therefore, Equation 3.25 becomes:

M  { q̈ } + K  { q } = 


ψ 


T

{ f } (3.26)

From inspection, since both the new mass and stiffness matrices are diagonal, the coordinate

transformation{x} = [ψ ] {q } has completely uncoupled the set of equations. Now each equation

in Equation 3.26 is an equation for a single degree of freedom oscillator which is easily solved.

Ther -th Equation of Equation 3.26 is:

Mr q̈r + Kr qr = { ψ } T
r { f } = fr (3.27)

This is the equation of motion for the single degree of freedom system shown below.
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Mr

Kr

f ′(t)

qr (t)

Figure 3-2. Single Degree of Freedom System

The quantityMr is called the modal mass or generalized mass for ther -th mode of vibration.

The quantityKr is called the modal stiffness or generalized stiffness for ther -th modal vector of

vibration. While these quantities are viewed as mass and stiffness related, it is important to

remember that the magnitude of these quantities depends upon the scaling of the modal vectors.

Therefore, although both the modal vectors and the modal mass/stiffness quantities are computed

in a relative manner, only the combination of a modal vector together with the associated modal

mass represents a unique absolute characteristic concerning the system being described.

It has been shown previously that the modal vectors may be normalized such thatMr = 1. If this

has been done, then Equation 3.27 can be rewritten for ther -th modal vector as:
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q̈r + Ω2
r qr = f ′ (3.28)

where:

• Mr = 1. 0

• Kr = Ωr
2

Once the solution (time responses) of Equation 3.26 for allq’s has been computed, the solution

in terms of the original coordinates can then be obtained through the use of the coordinate

transformation equation in Equation 3.22.

3.6 Two Degree of Freedom Example: Undamped, Forced

Referring to the previous example, some forcing functions can now be included in the system of

equations.





5

0

0

10





{ ẍ } +




4

−2

−2

6




{ x } = { f } (3.29)

The natural frequencies and normalized modal vectors of the above system are:

Forω1 = √ 2/5 :

{ ψ } 1 =




√ 1/15

√ 1/15



1

Forω2 = 1 :

{ ψ } 2 =







√ 2/15

−
√ 2/15

2





2
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Forming the modal matrix:




ψ 


= 


{ ψ } 1 { ψ } 2



=





√ 1/15

√ 1/15

√ 2/15

−
√ 2/15

2






Now make the following coordinate transformation:

{ x } = 


ψ 


{ q } (3.30)





x1

x2





=





√ 1/15

√ 1/15

√ 2/15

−
√ 2/15

2










q1

q2





Substituting Equation 3.30 into Equation 3.29 and pre-multiplying by


ψ 


T

yields:




ψ 


T

[ M ] 


ψ 


{ q } + 


ψ 


T

[ K ] 


ψ 


{ q } = 


ψ 


T

{ f (t) }




ψ 


T

[ M ] 


ψ 


=





√ 1/15

√ 2/15

√ 1/15

−
√ 2/15

2










5

0

0

10










√ 1/15

√ 1/15

√ 2/15

−
√ 2/15

2









ψ 


T

[ M ] 


ψ 


=




1

0

0

1




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


ψ 


T

[ K ] 


ψ 


=





√ 1/15

√ 2/15

√ 1/15

−
√ 2/15

2










4

−2

−2

6










√ 1/15

√ 1/15

√ 2/15

−
√ 2/15

2









ψ 


T

[ K ] 


ψ 


=




2/5

0

0

1





Therefore, the new equations of motion are:





1

0

0

1









q̈1

q̈2





+




2/5

0

0

1









q1

q2





=







√ 1/15f1 + √ 1/15f2

√ 2/15f1 −
√ 2/15

2
f2







=




f ′
1

f ′
2





The matrix equation of Equation 3.31 can now be written in terms of algebraic differential

equations:

q̈1 +
2

5
q1 = f ′

1 (3.32)

q̈2 + q2 = f ′
2 (3.33)

Hence, the system equations have been uncoupled by using the modal matrix as a coordinate

transformation.

The original system looked like:
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5 10
2 2 4

f1(t)

x1(t)

f2(t)

x2(t)

Figure 3-3. Original System

The transformed system can be pictured as:
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1
2/5

f ′
1(t)

q1(t)

1
1

f ′
2(t)

q2(t)

Figure 3-4. Transformed System

Onceq1(t) andq2(t) are known, Equation 3.30 can be used to computex1(t) andx2(t). Thus:

x1(t) = √ 1/15q1(t) + √ 2/15q2(t)

x2(t) = √ 1/15q1(t) −
√ 2/15

2
q2(t)

Many points should be emphasized from the previous discussion. Modal vectors, along with

their frequencies, are a dynamic property of a structure. The amplitudes of a modal vector are

completely arbitrary; that is, only the ratios between the components of a particular modal vector

are unique. Because of the orthogonality properties of the modal vectors, with respect to the

system’s mass and stiffness matrices, modal mass and modal stiffness can be defined. These

quantities depend upon the scaling of the modal vectors, so that the absolute magnitudes of these

quantities are also arbitrary. Finally, a simple coordinate transformation (modal matrix) can be

(3-22)
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used to represent a complicated interconnection of springs and masses as a collection of single

degree of freedom oscillators.

3.7 Proportional Damping

In order to evaluate multiple degree of freedom systems that are present in the real world, the

effect of damping on the complex frequencies and modal vectors must be considered. Many

physical mechanisms are needed to describe all of the possible forms of damping that may be

present in a particular structure or system. Some of the classical types are:

• Structural Damping

• Viscous Damping

• Coulomb Damping

• Hysteretic Damping

It is generally difficult to ascertain which type of damping is present in any particular structure.

Indeed most structures exhibit damping characteristics that result from a combination of all the

above, plus others that have not been described here.

It will suffice to say that whenever a structure is modeled with a particular form of damping, for

example, viscous, that the damping model is an equivalent model to whatever type of damping

that may actually be present.

Rather than consider the many, different physical mechanisms, the probable location of each

mechanism, and the particular mathematical representation of the mechanism of damping that is

needed to describe the dissipative energy of the system, a model will be used that is only

concerned with the resultant mathematical form. This model will represent a hypothetical form

of damping, that is proportional to the system mass or stiffness matrix. Therefore:

[ C ] = α [ M ]

or :

[ C ] = β [ K ]

(3-23)
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The most common formulation for proportional damping is:

[ C ] = α [ M ] + β [ K ]

where:

• [ C ] = damping matrix

• α , β = constants

Note that the case of no damping is the trivial proportional damped case with both coefficients

equal to zero. While the above definition is sufficient for most cases, the theoretical relationship

between mass, stiffness and damping matrices can be somewhat more complicated and still

qualify as proportional damping. Theoretically, any damping matrix that satisfies the following

relationship will yield proportional damping with all the qualifications (normal modes) involved

in subsequent discussion.



[M ]−1[C]



s


[M ]−1[K ]



r

= 

[M ]−1[K ]



r


[M ]−1[C]



s

where:

• r ands = integers.

For the purposes of most practical problems, the simpler relationship will be sufficient.

3.8 Modal Vectors from the System Matrix

The modal vectors can be determined in a somewhat more direct manner through a manipulation

of the system matrix. Understanding this approach to the evaluation of modal vectors is very

useful in relating measured frequency response function data to the system modal vectors.

Starting with Equation 3.4:



[ M ]s2 + [ C ]s + [ K ] 


{ X } = { 0 } (3.34)
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Define:

[ B ( s ) ] = 

[ M ]s2 + [ C ]s + [ K ] 



where:

• [ B(S) ] = System Impedance Matrix

From matrix algebra:

[ B ( s ) ] [ B ( s ) ]−1 = [ I ] (3.35)

[ B ( s ) ]−1 =
[ B ( s ) ] A

| [ B ( s ) ] |
(3.36)

where:

• [ B(s) ] A is the adjoint of matrix [B(s) ].

Substituting Equation 3.36 into Equation 3.35 yields:

[ B ( s ) ] [ B ( s ) ] A = |[ B ( s ) ]| [ I ] (3.37)

If λ r is a root of the characteristic equation from Equation 3.34, then | [B(λ r ) ] | = 0.

Evaluating Equation 3.37 ats = λ r gives:




B ( λ r ) 





B ( λ r ) 


A

= [ 0 ] (3.38)

Equation 3.38 can be rewritten using any column of [B(λ r ) ] A, the i − th column for example

{ B(λ r ) }i
A. Therefore:




B ( λ r ) 


{ B ( λ r ) } A
i = { 0 } (3.39)
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Equation 3.39 represents a set of homogeneous equations in{ B(λ r ) }i
A which determines each

element of{ B(λ r ) }i
A to within an arbitrary constant. Note that the constant will be different

depending upon the column that is used.

Evaluating Equation 3.34 at one of the eigenvalues of the system (λ r ):




B ( λ r ) 


{ X } r = { 0 } (3.40)

Equation 3.40 (formerly Equation 3.34), just like Equation 3.39, represents a set of homogeneous

equations in{ X  } Equation 3.34 is evaluated at a specific eigenvalue, the resulting solution is the

eigenvector coresponding to the specific eigenvalue. This eigenvector is determined to within an

arbitrary constant. Therefore, from Equation 3.39 and Equation 3.40,{ B(λ r ) }i
A and {X }r are

proportional and both represent the eigenvector corresponding to the eigenvalueλ r . Recall that

{X }r (Equation 3.40) has been previously shown to be ther -th modal vector of the system.

Therefore:

{ X } r = β ir { B ( λ r ) } A
i

where:

• β ir is a proportionality constant.

Note: One of the major points is that the columns of the adjoint matrix [B(λ r ) ] A are all

proportional to ther -th modal vector.

Since the mass, damping and stiffness matrices are assumed to be symmetric when absolute

coordinates are used (and proportional damping is present), the system impedance matrix

[ B(s) ]  is symmetric. Therefore, the adjoint matrix of [B(λ r ) ]  is also symmetric. Thus, the

rows of the adjoint matrix are also proportional to the modal vector. The adjoint matrix can now

be expressed for ther -th mode in terms of ther -th modal vector.




B ( λ r ) 


A

= γ r { ψ } r { ψ } T
r (3.41)
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


B ( λ r ) 


A

= γ r









ψ1 ψ1

ψ2 ψ1

.

.

ψ N ψ1

ψ1 ψ2

ψ2 ψ2

.

.

ψ N ψ2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ψ1 ψ N

.

.

.

ψ N ψ N







r

where:

• γ r = constant associated with the scaling of{ψ }r relative to the absolute scaling (units) of

the adjoint matrix.

Note that the adjoint matrix is not the same as the modal matrix since each column of the adjoint

matrix is proportional to the same modal vector. Therefore, the adjoint matrix needs to be

evaluated for each of the N eigenvalues to determine the N eigenvectors. Also note that, due to

the symmetry of the adjoint matrix, if one of the modal coefficients is zero, then a complete row

and column of the corresponding adjoint matrix will be zero. This phenomenon is normal and

corresponds to physically trying to excite (force) the system at the node (modal coefficient equal

to zero) of one of the modal vectors of the system. Theoretically, the corresponding mode of

vibration will not be observed in this situation. Analytically, this problem can be overcome by

evaluating a different row or column of the adjoint matrix. Experimentally, the configuration of

the input and/or output sensors may have to be altered to detect this case.

Equation 3.41 is extremely important and will be used in the next section to show that the

residues of a frequency response function for a particular pole (λ r ) are directly related to the

elements of a modal vector. Also, the symmetry of the adjoint matrix is the justification for not

needing to evaluate the complete frequency response function matrix.
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