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3. MULTIPLE DEGREE OF FREEDOM SYSTEMS

3.1 Theory

Generally, most structures are more complicated than the single mass, spring, and damper system
discussed in the previous section. The general case for a multiple degree of freedom system will
be used to show how the frequency response functions of a structure are related to the modal
vectors of that structure. Throughout the following section the following two degree of freedom
system will be used to illustrate the concepts discussed.

Xq(t) X(t)
f1(t) fa(t)
K K K
My M
—{ —{ —{
C; (@) (@) C, (@) (@) Cs

Figure 3-1. Two Degree of Freedom System

The equations of motion for the@le system are:
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My X, (t) + (Cyp + Cy) Xy (t) = Co Xo(t) + (Ky + Kp) Xq(t) = Ky Xp(t) = 1 (1)

M, X,(t) + (Cy + C3) Xo(t) = Co Xy (1) + (Ky + Kg) Xp(t) = Kp X4 (1) = 5 (1)

In matrix notation:

OM 0 OO0x@ O O(c,+C -C 00 x,(t) O
00 M DDxl((t)) i) 1—(: ? (Co+Cs) DD)’(l((t) .
0 2 qn*® oo & 2*C:) o [

+ E( Ky +Ky) -K5 0O %, (t) D_ O fyt) O

0d 0=0a H (3.1)
0O “Ka (K2+K3) o) g gl g

The alove equations are still second order, linear, time invariant, differential equations, but are
now coupled by the coordinate choice. Therefore, this system of equations must be solved
simultaneously. The process of solving the set of equations in Equation 3.1 will now be
reviewed in an analytical sense. The modal vectors and frequencies will result as the solution to
the homogeneous portion of the differential equations summarized in Equation 3.1.

The solution of the alve system of second order differential equations is first obtained for the
undamped system. Assuming tkgt=C, =C5 =0.

[M T{ x®) }+[ K I{x®) }={ f(©) } (3.2)
where:
O O
[ M ]=0 M, = Mass Matrix
5 0O M, 5
O(K;+K,) -K5 0 . .
[ K ]= ] = Stiffness Matrix
e B -K; (K2+Ks3) g
O O
{f }= M) o Forcing Vector

“0h® g
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Ox, (1) U
{x 1=t ®) = Response Vector
OX®) g

Since the forcing and response vectors are always functions of time, the functional notation (t)
will be dropped in further equations.

The system of equations represented by Equation 3.2 has the general solution of:

{x}={X}e'
Thus:
{x }=s{ X }et=sx
[ X }={ X }e'=5x (3.3)
where:

+ S=0 + ] w=complex valued frequency
Substituting Equation 3.3 into Equation 3.2 yields:
SIMI{X}+[KI{X}={F}
If there are no forcing function so tHat } ={ 0}, then:

SIMI{X}+[KI{X}={0}

CFIM I+IK 1 0{ X }={ 0} (3.4)

Equation 3.4 is nothing more than a set of simultaneous algebraic equatiofis ithe
unknowns are theX's and thes's. From the theory of differential equations, in order for
Equation 3.4 to have other than the trivial soluti¢rX } ={ 0}, the determinant of the
coefficients must equal zero. The determinant of the coefficients will be a polynomsfal in
The roots of this polynominal are called eigenvalues.
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In order to manipulate Equation 3.4 into a standard eigenvalue-eigenvector form, Equation 3.4
can be reformulated in a couple of different ways. First, divide Equation 3.4%gnd

premultiply by K]™.

0 1 N
oK I IM I+ 1o{ X }={0} (3.5)
0 S N

A different way of formulating the eigenvalue problem would be to premultiply Equation 3.4 by
[M]™ . Note that by doing this, the resulting dynamic matrik, J*[ M ] in Equation 3.5 or
[ M ]7Y[ K ]in Equation 3.6, is no longer symmetric.

AMITIK I+ Ta{ X }={ 0} (36)

. . 1 : : . :
In Equation 3.5 the eigenvalues aégeand in Equation 3.6 the eigenvalues streEquations 3.5

and 3.6 are really just the inverse of each other. In Equation 3.5 or Equation 3.6, the matrix on
the left hand side of the equation is often referred to as the dynamic matrix. Note that the
multiplication of Equation 3.4 by a matrix to obtain Equation 3.5 or 3.6 amounts to a coordinate
transformation.

The frequency of a mode of vibration is defined in terms of the eigenvalue. The solution vector
{X} of Equation 3.5 or 3.6 corresponding to a particular eigenvalue is called an eigenvector,
characteristic vector, mode shape, or modal vector. X’keepresent a deformation pattern of

the structure for a particular frequency of vibration. Since Equations 3.5 or 3.6 are homogeneous
there is not a unique solution for ti¥és; only a relative pattern or ratio among tk& can be
obtained. In other words, th€'s can only be solved for in terms of one of ¥is, which in turn

can be given any arbitrary value. Mathematically, the rank of the equation systems represented
by Equation 3.5 or 3.6 is always one less than the number of equations.

Therefore, the deflected deformation of a structure, which describes a natural mode of vibration,
is defined by known ratios of the amplitude of motion at the various points on the structure.
Thus, the actual amplitude of vibration of a structure is a combination of the modal vector and
the level, location, and characteristic of excitation forces and not a direct property of a natural
mode of vibration. The amplitude of vibration is really dependent on the placement and

(3-4)
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amplitude of the systems forcing functions along with any initial conditions of the system
together with the properties of the structure described by the eigenvalues and eigenvectors.

3.2 Solution of the Eigenvalue Problem

The solution of either Equation 3.5 or 3.6 is obtained by recognizing that these equations are a
set of homogeneous equations. Therefore, for a non-trivial solution, the determinant of the
coefficients must equal zero.

B[ K 1+€[ M ]S=O. (3.7a)
O - O_
D[|v| 1P [ K 1+ | ]D_o. (3.7b)
0 1 0
OLK 1M I+5 01 Io=0. 370
O S 0

The determinant in Equation 3.7 is referred to as the characteristic determinant. The expansion
of the characteristic determinant results in theharacteristic equation or the
frequency equatian

Equation 3.7 may be rewritten as:
a"+a, ot +a,a"?+... +a,=0. (3.8)

Equation 3.8 is the characteristic equation df-@legree of freedom system, where= s> for

: 1 . : :
Equation 3.7a or 3.7b ar = 7 for Equation 3.7c. The roots of Equation 3.8 are the eigenvalues

of the system. Note that the values otorresponding to the roots of Equation 3.8 are the
complex-valued modal frequencies € o, + | w,).
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3.2.1 Two Degree of Freedom Example: Undamped, Unforced

Given a two degree of freedom system (Equation 3.1), find its eigenvalues (undamped natural
frequencies) and the respective eigenvectors (modal vectors) for the undamped system.

Referring to Figure (3-1), let:

0M1:5 M2:10
e Ky=2 K, = 2 Ks =4

Substituting into Equation 3.1:

ge o B D04

D]]xl
mn
DDX

oo™
1
oo™
o o
oo™

2

The eigenvalue problem then becomes (Equation 3.5):

004 2585 05 101 0009 8 fo
o072 €6 g0 10g g0 1gBgX g pl g
003 1 0O 0
0075 1 005 0 0O 101 o O00x, 0 0o O
007 1 0Oy 49 0¥ g0, ; 000, 0=0, O
00— = 00 0 0 ooo* o 0% o
opl0 5 g 0
or.

03,1, O

05+ 00 x, O

0% S 1 oo, 0={ 0} (3.9)

X
0 - 2+- 00% O
o 2 O
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The determinant of the coefficient matrix of Equation 3.9 must equal zero for a non-trivial
solution.

3 1 1 1
“+Z)(2+=)-Z=0.
(2 52)( s? 2

. 1 : - :
Usinga = 2 as a change of variable, the characteristic equation becomes:

7 5
2+ _a+=-=0. 3.10
at+sats 0 (3.10)
The roots of Equation 3.10 are:
-1
— +V49/4-10 -7  Y9/4
2= 2 Tt 2
g = -5
)
0'2 = - 1
. . 1
Noting the change of variabte= = :
aq = ! a, = !
Y. 2722

SinceA, = g, £ | w,, the complex-valued modal frequencies are:
M=o tjw=tjw =%]V2/5

A=o,tjw=t]jw=%t]1
Now the frequencies; andw, can be used in Equation 3.9 to determine the modal vectors.

The modal vector foA; =+ | w; is determined using the following equations:

C)
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0 0

-1 1 S0Xx

U4 3 B9 g={ 0 }

02 2 0
or

- Xl + Xz = O
Xy = X4

Thus, the modal vector corresponding to the natural frequenisy

Ox, O
{‘//}1:DX1D
o™ 0

where:

« X, is arbitrary (depends on scaling method)

Similarly for A, = + | w,, the modal vector is:

01 . O
0> 1 oox O
01 oo, 0={ 0}
0O 10072 0
02 O
or
_X1+X2:
X,= 2 X
2_2 1
or.
O O
0O X, O
{v },=0-X%X, O
0 O
ald B

Revision: February 19, 1999 +
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If the deformation ofX; = 1, which is an arbitrary choice depending on the scaling method, then:

For w, =V2/5:
1 O
{w }1:D1 O
O+ 0
For w,=1:
0 0
01 0O
{w }2:D_1 O
0% O
0 )

3.3 Weighted Orthogonality of Modal Vectors

The solution of the eigenvalue problem as formulated in Equation 3.5 yildwmtural
frequenciesj,, andN modal vectorgy}, whereN is the number of degrees of freedom of the
system.

Note that any particular undamped natural frequency and the associated modaKygctor
satisfy Equation 3.4. Thus, substituting into Equations3:41, and{X} = {¢}, yields:

AIM Ny b=-[K I{y } (3.11)
Now pre-multiply Equation 3.11 by a different modal vectgs ' , thus:

N{w }IM H{y hh=—{yw }IK I{y } (3.12)

where the superscript T denotes a matrix transpose.

Using a rule of matrix algebra for the transpose of a product of matrices:

[[CIID]lI'=[D][CT

39
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Taking the transpose of both sides of Equation 3.12 yields:
A{e HIM H{y Y=-{y YK I{y }

where:
« [M]" =[ M ]since [M ]is a symmetric matrix.

« [ K]" =[ K ]since [K ]is a symmetric matrix.

(3.13)

Next, substitutes = A and{X} = {¢} into Equation 3.4 and pre-multiply both sides{}." .

This yields:
Mle HIM IH{w Y=-{y HIK I{y )
Subtracting Equation 3.14 from Equation 3.13 gives:
(=20 {¢ Y IMI{¢ }=0
If r #s(implying two different frequencies), it follows that:
{¢ YIM I{y }=0
From Equation 3.14, it follows that:

{v YIK 1{y }=0

Equations 3.16 and 3.17 are statements of the weighted orthogonality properties of the modal
vectors with respect to the system mass and stiffness matrices. The concept of orthogonality can
be looked at from a vector analysis standpoint. In vector analysis, two vectors are orthogonal if
their dot product equals zero. This means that the projection of one vector on the other is zero.
Therefore, the two vectors are perpendicular to each other. An obvious example is the
3-dimensional cartesian coordinate system. The, and k unit vectors for the cartesian
coordinate system are orthogonal to each other. Modal vectors of an n-degree of freedom system
can be viewed as being just a vector in n-dimensional space, which unfortunately cannot be

(3-10)

(3.14)

(3.15)

(3.16)

(3.17)



+UC-SDRL-RJA CN-20-263-662 Revision: February 19, 1999 +

visualized. In order for modal vectors to be orthogonal, though, a simple dot product will not
suffice. The concept of a weighted dot product, where the weighting matrix is the theoretical
mass or stiffness matrix, must be used. If, for instance, the mass matrix in Equation 3.16 was the
identity matrix, the weighted dot product would reduce to the simple dot product and result in a
direct analog of the orthogonality condition for the unit vectors in the cartesian coordinate
system. Because the mass and stiffness matrices in Equation 3.16 and 3.17 are not generally the
identity matrix, the orthogonality relationships in Equation 3.16 and Equation 3.17 are generally
referred to as weighted orthogonality.

If two modal vectors happen to have the same frequenhcy A (Equation 3.15) their
corresponding modal vectors are not necessarily orthogonal to one another. This condition is
known as aepeated roowor repeated poland will be discussed further in a later section. For
this condition, the modal vectors associated with the repeated roots will be orthogonal to the
other modal vectors and independent of one another.

In Equation 3.15, if the same modal vector is used to pre- and post-multiply the mass matrix,
then Equation 3.16 is equal to some scalar constant other than zero, commonly ridied as
Thus:

{¢ Y[ M 1{wy } =M, = Modal Mass (3.18)

Similarly, Equation 3.14 yields:

{yw YK 1{y }, =«?M, =K, = Modal Stiffness (3.19)

Since, as previously shown, the amplitude of any particular modal vector (eigenvector) is
completely arbitrary, the modal vector can be normalized in an arbitrary way. This means that
M, is not unique.

For instance, one common criteria used to normalize the modal vector is to scale the modal
vector such thaw, in Equation 3.18 is equal to unity.

The resulting scaled modal vectors normalized in this manner are generally referred to as
orthonormal modal vectors (eigenvectors).

(3-11)
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3.4 Modal Vector Scaling Example

Using the previous two degree of freedom example, normalize the modal {gctpend{y},
such that:

{¢ HIM I{y }y=M =1 (3.20)
and:
{y BIMI{y },=My=1 (3.21)

From the previous example:

O O
0x, O O X, O
{w}1=DX O {v },=0-X%X, O
O™ O 00— O

O (3

Substituting{¢/}, into Equation 3.20 yields:

Ox, 05 o 00X, O
O, 00, 4900, D=1
0% 0o on* o

:
Osx, 00Ox, O
Oox, B0y DO=1
gloX: g gX g

5X2+10X%=

X, =+ V1/15
Using the positive root, the modal vec{ar}, , normalized for unity modal mass, results:

(v h=D g=0% ¢
l_ - _—
Dxl 0 D71f15 0
(3-12)
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Similarly for {¢},:

0 d 0 0
0 X, 005 o 00 X O
0-X 005 19 00-% 0=1
0> 00 00— O
O O O O
O O
Os5x, OO X O
0 gy O00-X% 0=1
O 1005 O
O O
5
5x§+§x1:
2
X2=—
15
X, =+ V2/15

Thus,{¢'}, normalized to unity modal mass is:

o 0
0 V215 0O
{v },=0-v215 O
0— 0
U b

The normalized modal vectors will givd, = 1 for all the modes of vibration. The significance
of this normalization will be obvious later.

3.5 Principal Coordinates - Modal Coordinates

With reference to the equations of motion for an undamped system (Equation 3.2), the major
obstacle encountered when trying to solve for the system respdnsiie to a particular set of
forcing functions and initial conditions, is the coupling between the equations. In terms of the
system’s mass and stiffness matrices, coupling is represented in terms of non-zero off diagonal
elements. Generally two types of coupling can exist for an undamped system; (1) Static coupling

(3-13)
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(non-diagonal stiffness matrix); or (2) dynamic coupling (non-diagonal mass matrix). Equation
3.2 represents a system which is only statically coupled. If the system of equations in Equation
3.2 could be uncoupled, that is diagonal mass and stiffness matrices, then each equation in
Equation 3.2 could be solved independent of the other equations. Another way of looking at this
would be that each uncoupled equation would look just like the equation for a single degree of
freedom, whose solution can very easily be obtained. Therefore, if a set of coupled system
equations could be reduced to an uncoupled system, the solution would become
straightforward. Indeed, from an analytical sense, this is the whole point of what has become
known as modal analysis.

The procedure used to uncouple a set of coupled system equations is basically a coordinate
transformation. In other words, the goal is to find a coordinate transformation that transforms the
original coordinategx} into another equivalent set of coordinafg$ that renders the system
statically and inertially decoupled. This new set of coordinfdgss typically referred to as
principal coordinates, normal coordinates or modal coordinates.

A similar benefit of a coordinate transformation occurs in many other engineering problems.
One example of this situation is in the calculation of moments and products of inertia when the
inertia properties of a complex structure need to be defined. The first step in the calculation of
the inertia properties is to choose a set of axis to base the inertia properties on. Then, the
following properties would be measured or calculated:ly, 1,,, I, |, . In general, both
moments of inertia and products of inertia are required. However, if a different set of axis with
respect to the structure were defined such that these axis happened to coincide with the structures
principle axis, the result would be moments of ineffial ,, and |, but the products of inertia

would all be zero I, =1,,=1,,=0). Therefore, by changing the coordinate system, the
products of inertia have been eliminated.

Another example of the benefit of a coordinate transformation is noticed when computing

principle strains at a point on a structure. Typically, a strain gage rosette is used to determine the
normal and shearing strains at a point of interest. From this information, a new coordinate

system can be determined (strain element orientation) such that only principal normal strains
exist; the shear strains are equal to zero for the new coordinate system. To determine the
orientation of this new coordinate system that renders the shearing strain to zero, MOHR's circle
techniques are commonly used. Once again, a simple coordinate transformation is used to

(3-14)
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eliminate the shearing strains.

The problem of finding a coordinate transformation that uncouples our original equations of
motion is very straightforward. It turns out that, due to the unique orthogonality properties of the
modal vectors, the required coordinate transformation is already available. Referring to
Equations 3.16-3.19, if either the mass or stiffness matrix is pre- and post- multiplied by
different modal vectors (Equations 3.16 and 3.17), the result is zero. However, if the same modal
vector is used to pre- and post- multiply the mass or stiffness matrix (Equations 3.18 and 3.19),
the result is a constant.

Therefore, the new coordinate system can be defined by the following transformation:
-0, d
{x}=q¢ Fa} (3.22)

where:

+ [¢] is the transformation matrix (matrix whose columns are the modal vectors of the
original system).

This matrix is generally referred to as ttmedal matrixor matrix of modal vectorsRecall the
general form of the undamped system of equations with forcing functions:

[M I{x }+[K J{x}={11} (3.23)

Substituting Equation 3.22 into Equation 3.23 gives:

O, O & o, O -
[M ¢ glar+IK1q¢ glar={f} (3.24)
Pre-multiplying by%uﬂ yields:
l
o, o O, O # 140, O 0, O _o, O
Jw BEIM 18¢ Hay+0e 5IK I8¢ Hral=0e 5{f}
Equation 3.25 is the equivalent of Equation 3.23 but in a different coordinate system. Analyzing

(3-15)
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Equation 3.25, noting the orthogonality properties of the modal vectors (Equation 3.16-3.19):

0, O 0, O
DI,UD[M]DI,U =M

[l
and:
o, o 0, O
0% g [ K ]D"” 0 K O
where:

« [M s a diagonal matrix.

« [K [is a diagonal matrix.

Therefore, Equation 3.25 becomes:

Mola )+ olar=0u B @329

From inspection, since both the new mass and stiffness matrices are diagonal, the coordinate
transformatio{x} = [¢] {q} has completely uncoupled the set of equations. Now each equation
in Equation 3.26 is an equation for a single degree of freedom oscillator which is easily solved.

Ther-th Equation of Equation 3.26 is:
Mg +Kog ={yg }{fl}=AH (3.27)

This is the equation of motion for the single degree of freedom system shown below.

(3-16)
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ar (t)
f(t)

(@) (@)

Figure 3-2. Single Degree of Freedom System

The quantityM, is called the modal mass or generalized mass for-themode of vibration.

The quantityK, is called the modal stiffness or generalized stiffness for-themodal vector of
vibration. While these quantities are viewed as mass and stiffness related, it is important to
remember that the magnitude of these quantities depends upon the scaling of the modal vectors.
Therefore, although both the modal vectors and the modal mass/stiffness quantities are computed
in a relative manner, only the combination of a modal vector together with the associated modal
mass represents a unique absolute characteristic concerning the system being described.

It has been shown previously that the modal vectors may be normalized sudh that If this
has been done, then Equation 3.27 can be rewritten fortthenodal vector as:

(3-17)
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G +Qfq = f (3.28)
where:
« M =1.0
° KI’ = Qrz

Once the solution (time responses) of Equation 3.26 farsalhas been computed, the solution
in terms of the original coordinates can then be obtained through the use of the coordinate
transformation equation in Equation 3.22.

3.6 Two Degree of Freedom Example: Undamped, Forced

Referring to the previous example, some forcing functions can now be included in the system of
equations.

Os5 o O 04 -2 0O
0y 10 ol X }+0_, 5 dx3r={f} (3.29)
O O O O

The natural frequencies and normalized modal vectors of the apstem are:

Forw, =V2/5:
(v} _871715 B
1_ ju—
DVlflS 0
Forw, =1:
U _ 0
O V215 [
{v }.=0 v2ns O
U T T 0

O [

(3-18)
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Forming the modal matrix:

O07ins vons O
O O- 0 [ — O
O 2 O

Now make the following coordinate transformation:

{x}=g¢ g{a)} (3.30)
Ox, O _gvVIA5 V245 cog, O
0. 0= > 0. O
0% EVZITlS - 727115 SD 42

Substituting Equation 3.30 into Equation 3.29 and pre-multiplyin@ by g yields:
0, o 0, O o, o 0, O _o, O
Jy EimM 18y Bay+Be DIk 180 Bay=Bp D{1m)

Jyins vins Sps o oEvIns v2ns C

o, o 0, 0-0 0 0 20
w =2 [ Moy == V2715 O O=_ V2715
R B 572&5 - BDO 10 5571&5 - B

01 o O
0, o 0, O
D"”D[M]D"’”DBOlE

(3-19)
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Uvytns vins Yo, _, obvins vois O

O d 0, OO O O S g
O¥ [ K] a¥ 0 O=__
o D72f15 _ VZT/_]'S BD -2 6 DBVJI:LS _ 7271_15 B

02/5 0
=1 E1[[K v =0 .

0
0
U pgo 0

Therefore, the new equations of motion are:

0
01 o0 O0g, O O2/5 0 O0q, O D71f15f1+71f15fz 0 Of O

0 0ot O+ 0 0o o=0 s 0=0.% O
0 1 ogn% g g% 1 ogo% g pvonst - L ook o
0 0

The matrix equation of Equation 3.31 can now be written in terms of algebraic differential
equations:

.2 ,
Gtz th= fy (3.32)
G, + gy = f, (3.33)

Hence, the system equations have been uncoupled by using the modal matrix as a coordinate
transformation.

The original system looked like:

(3-20)
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X4(t) Xo(t)
f1(t) fo(t)
2 2 4
(@) (@) (@) (@)

Figure 3-3. Original System

The transformed system can be pictured as:

(3-21)
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ga(t) 0a(t)

f(t) f'5(t)

2/5 1

(@) (@) (@) (@)

Figure 3-4. Transformed System

Onceq;(t) andg,(t) are known, Equation 3.30 can be used to comypyft¢ andx,(t). Thus:
X1 (t) = VI/15q,(t) + V2715 g,(t)

_ V2/15
Xo(t) = VI/15qy(t) - o ga(t)

Many points should be emphasized from the previous discussion. Modal vectors, along with
their frequencies, are a dynamic property of a structure. The amplitudes of a modal vector are
completely arbitrary; that is, only the ratios between the components of a particular modal vector
are unique. Because of the orthogonality properties of the modal vectors, with respect to the
system’s mass and stiffness matrices, modal mass and modal stiffness can be defined. These
guantities depend upon the scaling of the modal vectors, so that the absolute magnitudes of these
guantities are also arbitrary. Finally, a simple coordinate transformation (modal matrix) can be

(3-22)
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used to represent a complicated interconnection of springs and masses as a collection of single
degree of freedom oscillators.

3.7 Proportional Damping

In order to evaluate multiple degree of freedom systems that are present in the real world, the
effect of damping on the complex frequencies and modal vectors must be considered. Many
physical mechanisms are needed to describe all of the possible forms of damping that may be
present in a particular structure or system. Some of the classical types are:

* Structural Damping
* Viscous Damping

» Coulomb Damping

* Hysteretic Damping

It is generally difficult to ascertain which type of damping is present in any particular structure.
Indeed most structures exhibit damping characteristics that result from a combination of all the
above, plus others that have not been described here.

It will suffice to say that whenever a structure is modeled with a particular form of damping, for
example, viscous, that the damping model is an equivalent model to whatever type of damping
that may actually be present.

Rather than consider the many, different physical mechanisms, the probable location of each
mechanism, and the particular mathematical representation of the mechanism of damping that is
needed to describe the dissipative energy of the system, a model will be used that is only
concerned with the resultant mathematical form. This model will represent a hypothetical form
of damping, that is proportional to the system mass or stiffness matrix. Therefore:

[Cl=alM]

or.

[C ]

BLK ]

(3-23)
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The most common formulation for proportional damping is:

[Cl=alM ]+ B[K]

where:

« [ C ]=damping matrix

« a , B =constants
Note that the case of no damping is the trivial proportional damped case with both coefficients
equal to zero. While the afge definition is sufficient for most cases, the theoretical relationship
between mass, stiffness and damping matrices can be somewhat more complicated and still
qualify as proportional damping. Theoretically, any damping matrix that satisfies the following

relationship will yield proportional damping with all the qualifications (normal modes) involved
in subsequent discussion.

v Sqm kY = Gmr kB ey

where:

« r ands = integers.

For the purposes of most practical problems, the simpler relationship will be sufficient.

3.8 Modal Vectors from the System Matrix

The modal vectors can be determined in a somewhat more direct manner through a manipulation
of the system matrix. Understanding this approach to the evaluation of modal vectors is very
useful in relating measured frequency response function data to the system modal vectors.

Starting with Equation 3.4:

EM ]2+[C ]s+[ K ]S{ X }={ 0} (3.34)
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Define:

[B(s) 1= M IS+[C Is+[K ]

where:

« [ B(S)] = System Impedance Matrix

From matrix algebra:

[B(s) I[ B(s) I'=[1 1 (3.35)
4_ [B(s)]?
[ B(s) ] 1B ()] (3.36)

where:

. [ B(s) ]*is the adjoint of matrix B(S) ].
Substituting Equation 3.36 into Equation 3.35 yields:
[B(s) 1[ B(s) 1"=1B(s) N[ 1] (3.37)
If A, is a root of the characteristic equation from Equation 3.34, thé(/,) ] | = 0.

Evaluating Equation 3.37 at= A, gives:

0 00 o _
J8(a) BB (a) D=0 ] 339

Equation 3.38 can be rewritten using any column B{/;) ]*, thei —th column for example
{ B(A,) };*. Therefore:

0 O -
I8 (4) B B(A) }={0} 5:39)

(3-25)



+UC-SDRL-RJA CN-20-263-662 Revision: February 19, 1999 +

Equation 3.39 represents a set of homogeneous equatipiAn) };* which determines each
element of{ B(4,) };* to within an arbitrary constant. Note that the constant will be different
depending upon the column that is used.

Evaluating Equation 3.34 at one of the eigenvalues of the sy3{ém (

O O -
9B (4) B X h={0} (3.40)

Equation 3.40 (formerly Equation 3.34), just like Equation 3.39, represents a set of homogeneous
equations i{ X } Equation 3.34 is evaluated at a specific eigenvalue, the resulting solution is the
eigenvector coresponding to the specific eigenvalue. This eigenvector is determined to within an
arbitrary constant. Therefore, from Equation 3.39 and Equation BBIQY,) },* and{X}, are
proportional and both represent the eigenvector corresponding to the eigenvaRecall that

{X}, (Equation 3.40) has been previously shown to berttie modal vector of the system.
Therefore:

{ X }r:,Bir{ B(Ar) }|A

where:

+ B is a proportionality constant.

Note: One of the major points is that the columns of the adjoint maBq,) ]* are all
proportional to the-th modal vector.

Since the mass, damping and stiffness matrices are assumed to be symmetric when absolute
coordinates are used (and proportional damping is present), the system impedance matrix
[ B(s) ] is symmetric. Therefore, the adjoint matrix oB(A,) ] is also symmetric. Thus, the

rows of the adjoint matrix are also proportional to the modal vector. The adjoint matrix can now
be expressed for theth mode in terms of theth modal vector.

O8(1) B=plw ) (o ) @
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where:

+ ), = constant associated with the scalind @}, relative to the absolute scaling (units) of
the adjoint matrix.

Note that the adjoint matrix is not the same as the modal matrix since each column of the adjoint
matrix is proportional to the same modal vector. Therefore, the adjoint matrix needs to be
evaluated for each of the N eigenvalues to determine the N eigenvectors. Also note that, due to
the symmetry of the adjoint matrix, if one of the modal coefficients is zero, then a complete row
and column of the corresponding adjoint matrix will be zero. This phenomenon is normal and
corresponds to physically trying to excite (force) the system at the node (modal coefficient equal
to zero) of one of the modal vectors of the system. Theoretically, the corresponding mode of
vibration will not be observed in this situation. Analytically, this problem can be overcome by
evaluating a different row or column of the adjoint matrix. Experimentally, the configuration of
the input and/or output sensors may have to be altered to detect this case.

Equation 3.41 is extremely important and will be used in the next section to show that the
residues of a frequency response function for a particular plg ére directly related to the
elements of a modal vector. Also, the symmetry of the adjoint matrix is the justification for not
needing to evaluate the complete frequency response function matrix.
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