6. FREQUENCY RESPONSE FUNCTION SYNTHESIS

In this section, the approach for constructing the entire frequency response function matrix
[ H(w) ] will be explained. The frequency response function matrix [ H(w) ], which is made up
of Ny x N; frequency response functions, can be synthesized by using the data from N,
frequency response functions where N, is the number of measured response degrees of freedom
(physical response points times number of direction(s) at each physical point) on the structure.
For the following discussion, N, is assumed to be larger than N; and N, is assumed to include
the N; measurement degrees of freedom. For the case of fixed response degrees of freedom with
a large number of applied inputs (impact testing, for example), N; will be much larger than N,
but sincethe[ H(w) ] isreciprocal, the same assumption can be made concerning N;. These are
reasonable assumptions for all testing situations. There are two restrictions that apply to being
able to synthesize the complete matrix accurately from only N, or N; frequency response
functions. First of all, the N, or N; frequency response functions must consist of either a
complete row or complete column of frequency response function measurements from the
frequency response function matrix. Secondly, the N, or N; frequency response functions must
contain non-zero residue information for every modal vector present in the structure within the
frequency range of interest. This means that if the modal vector is entirely zero (due to
excitation at the node of a modal vector) proper frequency response function synthesis will not
be possible.

Recall the general form of the frequency response function matrix [ H(w) ] (Equation 4.25) in
terms of partial fractions.
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Assuming that only the k-th column of [ H(w)] has been measured by way of frequency
response functions, the k-th column can be represented as follows:
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where:

+ m = the number of measurements (N, or N;).

Equation 6.2 is the mathematical description of the N, frequency response function
measurements that were obtained during the test of the structure. For a particular mode of
vibration, the N modal frequencies and the N residues for each of the N, frequency response
functions can be determined through the use of amodal parameter estimation algorithm.

Once these modal parameters are known, frequency response functions from column k or any
other column in the frequency response function can be synthesized using a partia fraction
model with the correct residues for the particular input and output degrees of freedom desired.
The synthesis is formulated on a frequency by frequency basis for each mode - the response for
each mode is summed together to get the total frequency response function as is shown in the
following figures:
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Figure 6-1. Frequency Response Function Synthesis
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Figure 6-2. Frequency Response Function Synthesis
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Figure 6-3. Frequency Response Function Synthesis
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In order to construct all of the elements that make up [ H(w) ], all of the elements of [A], for
each mode will be required. Previously, the residue matrix [ A], for a particular mode has been
shown to be directly related to the modal vector according to the following equation:
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(6.3)

When the k-th column of [ H(w) ] has been measured, the k-th column of each residue matrix
[A], can be defined. Equation 6.3 can now be rewritten for only the k-th column of of the r-th

mode of vibration.
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In order to compute the residue for any position in the residue matrix for each mode of vibration,
Equation 6.4 can be used to compute the values of Q, and {w},. In order to do this, either Q, or
v, must be chosen according to a scaling criteria. At this point the individual elements of {y},
can now be found. Once these individual elements are known, any residue for a given mode can
be computed using the following equation:

qur =Q Vor Yar
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If modal mass will be calculated, the individua values of Q, and {y}, will be required.
Therefore, Equation 6.5 can be used easily to synthesize any arbitrary residue. Inreality, thereis
no need to know the individual values of Q, and {y}, in order to synthesize another residue. |f
the k-th column of the residue matrix [A] , isagain used to synthesize any arbitrary residue from
another location in the residue matrix, the following equation is all that is required:

_ Apkr Aqkr _ Q Vor Yir Q Va Vi
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(6.6)

Note that with Equation 6.6, any arbitrary residue can be synthesized if the proper elements of
the frequency response function matrix and, therefore, the proper elements of each residue
matrix [A], have been measured. For example, the driving point information for the k-th column
of any residue matrix need not be measured directly if the following elements have been
measured:

A
Akkr — pkr Aqkr

n (6.7)

par

When the errors involved with measuring the driving point frequency response function are taken
into account, Equation 6.7 may be a preferable way to estimate the driving point information
even though this method requires information from another column of the residue matrix. Note
that this will require that another excitation location be taken during the test of the structure.

In summary, one row or column of the frequency response function matrix, including driving
point information, must be measured in order to synthesize any arbitrary measurement in the
frequency response function matrix. A modal parameter estimation algorithm is then used on
these measurements to determine the modal parameters. With the driving point residue
information for a particular mode of vibration, any other required residue information can be
synthesized by Equation 6.5 or Equation 6.6.

6.1 Displacement, Velocity and/or Acceleration Data

In practice, frequency response functions are often measured using an accelerometer to measure
the response of the system and a load cell to measure the input to the system. Velocity or
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displacement transducers could aso be used to measure the response but have disadvantages with
respect to size, configuration or datum. Regardless, the mathematical model that has been
developed is a representation of displacement normalized to the force that caused the
displacement. Note that if velocity normalized to force is actualy measured, this data can be
synthetically integrated to displacement over force by dividing the velocity over force
measurement by jw. Likewise, if acceleration normalized to forceis actually measured, this data
can be synthetically integrated to displacement over force by dividing the acceleration over force
measurement by (jw)?. This approach has numerical problems near zero frequency but is
generally satisfactory elsewhere.

6.2 Skewed Sensor Orientation

While it is common and somewhat desirable to align all sensors (input and output) in directions
that are colinear with a set of orthogona axes (X, Y, z), this is not a requirement. Directiona
cosine information can be used to reorient the sensor information according to any desirable set
of axes. Note that the spatial subscripts used to this point (pq for example) do not imply any
specific constraint in this sense.

However, if modal scaling or the ability to synthsize arbitrary functions that may or may not have
been measured is desired, the measurment of the driving point information is very important. If
a skewed excitation is used with a set of essentially orthogonal response sensors, the ssimplest
solution to this problem is to add a skewed response sensor, at the excitation location, so that a
true driving point measurement can be estimated. With this in mind, the Equations 6.1 through
6.7 still apply when synthesis of residues and frequency response functions from data taken from
askewed input is the data represented by column k.

6.3 Simulation of Structural Response

Once al of the frequency response functions (transfer functions) for a particular system have
been measured or synthesized, the response of the structure to any arbitrary set of inputs can be
simulated or predicted. To illustrate the process, the two degree of freedom system that is
represented by the following equation can be used as an example.
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Xy (@) _ Hy1(w) H1o(w) F1(w) 6.9)
Xo(@) Hz1(w) Ho(w) Fo(w) '

Equation 6.8 is the frequency response function form of Equation 4.9 (s= ] » ). The matrix
equationsin Equation 6.8 can be expanded as follows:

Xi(@) = Hii(@) Fi(w) + Hiz(0) Fio)

Xo(@) = Ha (@) Fi(w) + Hyo(w) Fa(o)

Note that X;(w) and X,(w) are the response of the system (in the frequency domain) due to the
forces F1(w) and F,(w). Thus, X;(w) and X,(w) can be defined by the process of multiplication
and addition of the known frequency response function measurements and forcing functions.
The time domain response of the system, x;(t) and x,(t), can then be computed by taking the
inverse Fourier transform of X, (@) and X,(w).

This synthesis procedure can be extended to systems with more than two degrees of freedom. In
general, for an N-degree of freedom system:

[ Xi@) | [ Hu@) Hip@) ... Hiw@) 1| Fi) |
Xo(@) Hoi(w) Hyx(w) ... Hon(w) Fo(w)
_| - . e . > 69
_ Xn(w) |t Hyi(@) Hyo(w) ... Hyn(@) ‘ Fn(o) |

While Equation 6.9 is written in terms of the number of degrees of freedom N, this is the
limiting theoretical consideration. In general, Equation 6.9 can be written in terms of any
arbitrary number of inputs and responses such that [ H(s) ] isno longer a square matrix.

For instance, the time domain response x,(t) is just the inverse Fourier transform of X;(w)
where:

Xl(a)) = Hll Fl(a)) + Hll Fz(a)) +.... + HlN FN(G))
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Theoretically, the transfer function matrix [ H(s) ] consistsof N x N transfer functions for an N-
degree of freedom system. From a practical point of view, the measured portion of the transfer
function matrix (frequency response function matrix) will consist of N, x N; frequency response
functions regardless of the number of modes N.
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