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2. SINGLE DEGREE OF FREEDOM SYSTEM

2.1 Theory

The general mathematical representation of a single degree of freedom system is expressed using
Newton’s second law in Equation 2.1:

M X(t) + C x(t) + K x(t) = f(t) 2.1)

and is represented schematically in Figure (2-1).

X(t)
f(t)

C (@) (@)

Figure 2-1. Single Degree of Freedom System

Equation 2.1 is a linear, time invariant, second order differential equation. The total solution to
this problem involves two parts as follows:

(2-1)
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X(t) = x(t) + xp(t)

where:
+ X.(t) = Transient portion
* Xp(t) = Steady state portion
By settingf (t) = 0, the homogeneous (transient) form of Equation 2.1 can be solved.

MX(t) + Cx(t) + Kx() =0 (2.2)

From differential equation theory, the solution can be assumed to be of thefd)ynF Xe*,
where s is a constant to be determined. Taking appropriate derivatives and substituting into
Equation 2.2 yields:

(Ms®> + C s+ K) X(s) e$'=0

Thus, for a non-trivial squtio%((s) etz 0 g:
F+(C/M)s+(K/M)=0 (2.3)

Equation 2.3 is the system’s characteristic equation, whose Ap@iisd A, ( A = system pole )
are:

C ,-JoCTT oKD

Ajr=— — + i
127 oM O2M O OM O

Thus the homogeneous solution of Equation 2.1 is:
Xc(t) = X &'t + X6t

where X; and X, are constants determined from the initial conditions imposed on the system at
t=0.

The particular solution (steady state) is a function of the form of the forcing function. If the

(2-2)
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forcing function is a pure sine wave of a single frequency, the response will also be a sign wave
of the same frequency. If the forcing function is random in form, the response is also random.

2.2 Laplace Domain Theory

Equation 2.1 is the time domain representation of the system in Figure (2-1). An equivalent
equation of motion may be determined for the Laplacedmmain. This representation has the
advantage of converting a differential equation to an algebraic equation. This is accomplished
by taking the Laplace transform of Equation 2.1, thus:

L{MX+Cx+Kx}=M (s X(s)-s x0) - x(0))
+C (s X(s) - x(0) ) + K X(s)
L{MX+Cx+Kx}=(Ms+C s+K) X(s)- Ms x0)- M x(0) - C x(0)
L {f(t)} =F(9)
Thus Equation 2.1 becomes:

[M &2+ C s+ K] X(s) = F(s) + (M s+ C) x(0) + Mx(0) (2.4)

where:
+ X(0) is the initial displacement at time= 0.
+ X(0) is the initial velocity attimé = 0.

If the initial conditions are zero, Equation 2.4 becomes:

[M s?+C s+ K] X(s) = F(s) (2.5)

Let B(s)= M s>+ C s+ K. B(9) is referred to as the system impedance. Then Equation 2.5
becomes:

B(s) X(s) = F(9) (2.6)

(2-3)
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Equation 2.6 is an equivalent representation of Equation 2.1 in the Laplace domain. The Laplace
domain § domain) can be thought of as complex frequeny § + j w). Therefore, the
guantities in Equation 2.6 can be thought of as follows:

+ F (s) - the Laplace domain (complex frequency) representation of the forcing function
f(t)
+ X (s) - the Laplace domain (complex frequency) representation of the system response

X (t)

Equation 2.6 states that the system respoké&® is directly related to the system forcing
function F(s) through the quantity(s). If the system forcing functiofir(s) and its response
X(s) are known B(s) can be calculated. That is:

F(s)

B(S) = @

More frequently one would like to know what the system response is going to be due to a known
input F(s), or:
F(s)

1
By definingH (s) = @ Equation 2.7 becomes:

X(s) = H(s) F(s) (2.8)

The quantityH(s) is known as the systetransfer function In other words, a transfer function
relates the Laplace transform of the system input to the Laplace transform of the system
response. From Equations 2.5 and 2.8, the transfer function can be defined as:

_X(s) _ 1M

HO = Eg T2+ (CIM) s+ (K/ M)

(2.9)

assuming initial conditions are zero.

(2-4)
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The denominator term is referred to as the system characteristic equation. The roots of the
characteristic equation are:

A1,==(CI2M) =/ (CI2M)Y2=(KTM) (2.10)

Note that the adbve definition of the transfer function establishes a form of an analytical model
that can be used to describe the transfer function. This analytical model involves a numerator
and denominator polynomial with scalar coefficients. For the single degree of freedom case, the
numerator polynomial is zeroeth order and the denominator polynomial is second order.

2.3 Definition Of Terms

2.3.1 Critical Damping

Critical damping C. is defined as being the damping which reduces the radical in the
characteristic equation to zero.

(C./2M)?>-(K/M)=0
(Ce/2M)=VKTM = Q
C. = 2M Q, = critical damping coefficient

Q, = undamped natural frequencyad / sec)

2.3.2 Fraction of Critical Damping - Damping Ratio (Zeta)

The fraction of critical damping or damping rat{g,is the ratio of the actual system damping to
the critical system damping.

7,=C/C,

The roots of characteristic Equation 2.10 can now be written as:

(2-5)
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0l —=-— . U
/\1’2 = = Zl + '\/?Iz -1 Ql (2113)
0 0
O C—pm—— , O
M= T O*jVI-¢2 O (2.11b)
U U
2.4 System Classification

Systems can be classified depending on their damping ratios. That is:

« Overdamped system: H>1
« Critically damped system: J1=1

« Underdamped system: <1

Figures (2-2) through (2-4) illustrate typical the time domain response of these 3 different cases.
The following plots illustrate the location of the roots of the characteristic equation 8 the
plane. Figure (2-2) (overdamped) shows two real roots that lie an dixes, if damping were to
increase the roots wouldave apart. For Figure (2-3) (critically damped), there are two identical

real roots. For Figure (2-4) (underdamped), there are two complex roots, complex conjugates of
each other. As the damping and/or the frequency changes, these roots stay in the second and
third quadrant of the graph. It should be pointed out that if any roots of the characteristic
equation lie to the right of thg w axis, the system would be unstable.

(2-6)
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Overdamped SDOF System

Displacement
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Time(sec.)

Figure 2-2. Overdamped SDOF System Response: Initial Displacement

(-7



+UC-SDRL-RJA

Magnitude

CN-20-263-662 Revision: February 19, 1999 +
Critically Damped SDOF System
15 2 25 35 4
Time(sec.)

Figure 2-3. Critically Damped SDOF System Response: Initial Displacement
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Underdamped SDOF System
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Figure 2-4. Underdamped SDOF System Response: Initial Displacement

Figures (2-5) through (2-7) show the location of the roots, instler Laplace plane, of the
characteristic equation for each of the three cases.

(2-9)
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Overdamped SDOF System
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Figure 2-5. Overdamped SDOF System
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Critically Damped SDOF System
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Figure 2-6. Critically Damped SDOF System
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Underdamped SDOF System
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Figure 2-7. Underdamped SDOF System
For most real structures, unless active damping systems are present, the damping ratio is rarely
greater than ten percent. For this reason, all further discussion will be restricted to underdamped

systems{; < 1. For an underdamped system, the roots of the characteristic equation can be
written as:

AMp=01 % Jan

where:

+ 0, = damping factor (units of rad/sec)

(2-12)
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+ w; =damped natural frequency

Note that for this casg, is always the complex conjugate bf. Therefore, thel, notation will
be replaced in further equations by

Using Equation 2.11 the abe parameters can be related to the damping rdiio @nd the
undamped natural frequend@) as follows:

01
Vi +of

op== {1 Q

{1=-

iy A
QO =Vax + 03

The transfer functioH (s) can now be rewritten as a product of the roots (in factored) form as
follows:

UM
(s=41)(s—17)

H(s) = (2.12)

where:
+ A =pole of the transfer function
c A =0t

* A1 =01~ Jwy

The poles of the single degree of freedom system can also be viewed, looking dowrson the
plane as shown in Figure (2-8) :

(2-13)
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jw
pole location

__________ € W

\ r

EERNF

[ B,

| o

s =0+ jQ

conjugate pole 1

O, - damping coefficient
w -damped natural frequency

r
Q , -resonant (undamped natural frequency)

{, =cos Br - damping factor (or percent of critical damping)

Figure 2-8. Laplace Plane Pole Location

Figures (2-9) through (2-11) illustrate a 3-dimensional plot of Equation 2.12. Figure (2-9) views
the surface in real/imaginary format, Figure (2-10) represents the same data in a magnitude/phase
format and Figure (2-11) uses a log magnitude/phase format. Remember that the saniable
Equation 2.12 is a complex variable, that is, it has a real part and an imaginary part. Therefore, it
can be viewed as a function of two variables which represent a surface. Note also that the FRF
measurement that is typically estimated is the slice through these surfaces where

(2-14)
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10

Figure 2-9. Transfer Function (Real-Imaginary), Surface Representation

(2-15)
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Figure 2-10. Transfer Function (Magnitude-Phase), Surface Representation
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Figure 2-11. Transfer Function (Log Magnitude-Phase), Surface Representation
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2.5 Analytical Model - Scalar Polynomial

One popular method of representing the transfer function involves a scalar polynomial
representation in the numerator and denominator. For the single degree of freedom case, this is
very simple concept that is directly based upon the physical characteristics (M,C,K) of the
system. Generalizing Equation (2.9) yields:

_ Bo
1O = o (9 + a0 (9 2.19)
This can be rewritten:
H(s) = ZL (2.14)
2 ay ()
k=0

This model serves as the basis for many modal parameter estimation methods and is a common
formulation utilzed in control theory applications..

2.6 Analytical Model - Partial Fraction

The concept of residues can now be discussed in terms of the partial fraction expansion of the
transfer function equation. This is just one common approach to determining the residues.
Another popular method involves a polynomial representation in the numerator and denominator.

Equation 2.12 can be expressed in terms of partial fractions:

1M C, C,

= iy =) " 5-20 " (5= 1)

(2.15)

The residues of the transfer function are defined as being the constaamsl c, . The

(2-18)
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terminology and development of residues comes from the evaluation of analytic functions in
complex analysis. As will be shown later, the residues of the transfer function are directly
related to the amplitude of the impulse response function. The constamdc, (residues) can

be found by multiplying both sides of Equation 2.15 By (1;) and evaluating the result at
s=A,;. Thus:

N X CEp I
(s-Ap =TT S s—ap g
1/M —c
(/‘1_/\1) !
Thus:
1/M 1/M
1= . . = - = Al
(1% ]w)—(01-jw) 2w
Similarly:
oo WM
2 = ~j 2w, - M

In general, for a multiple degree of freedom system, the regiduwan be a complex quantity.
But, as shown for a single degree of freedom syg#iem purely imaginary.

Therefore:

(2.16)

2.7 Frequency Response Function Representation

The frequency response function is the transfer function (surface) evaluated alopgthe
(frequency) axis. Thus, from the previously dervied equations:

(2-19)
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Polynomial Model

_ _ Bo
H(S)lsjw = H(w) = 0 (0 +ar () +aq (i) (2.17a)
Partial Fraction Model
A A
Olso = H@) = 70255 G- 1y
A A
H(w) = — . + — -
(@) (jw—01 - jw) (jw—o0y+ jan)
H(w) = i i (2.17b)

- + -
jw-—w)-0 j(w+w)-o0y

From an experimental point of view, when one talks about measuring a transfer function, the
frequency response function is actually being measured.

The value of the frequency response function at the damped natural frequency of the system is:

A A
H(w)=- =+ —1 (2.18)
g, J 2 W, — 0,
which can be approximated as:
A
H(w) == 2
41

The second term on the right of Equation 2.18 approaches zexogass large. In other words,
the contribution of the negative frequency portion of the frequency response function is

negligible.

Therefore, many single degree of freedom models are represented as:

A

_— 2.19
(jo - A7) (2:49)

H(w) =

(2-20)
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Another way of interpreting Equation 2.17 is that the value of the transfer function, for a single
degree of freedom system, at a particular frequeagyiq a function of the residue, damping,
and damped natural frequency.

2.8 Impulse Response Function Representation

The impulse response function of the single degree of freedom system can be determined from
Equation 2.17 assuming that the initial conditions are zero andFi{fsat=1 for a system
impulse. Thus:

A A
(s=11) (S - A1)

X(s) =
X(t) =L {X(s) }
x(t) = Aje’ ! + Ale!t = h(t) = impulse response

X UltDA ][A)lt +A J(A.J]_t D
(t) =€ e e -

Thus, using Euler’s formula fa“' ande1“:!, the residueA; controls the initial amplitude of

the impulse response, the real part of the pole is the decay rate and the imaginary part of the pole
is the frequency of oscillation. Figures (2-12) and (2-13) illustrate the frequency response and
impulse response functions respectively, for a single degree of freedom system.

(2-21)
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Figure 2-12. Frequency Response Function: SDOF System
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Figure 2-13. Impulse Response Function: SDOF System

2.9 Change of Physical Parameters

While it is not always possible to alter the physical parameter (mass, stiffness and/or damping) of
a system and is very difficult to practically alter one physical parameter (mass, for example)
without altering another physical parameter (stiffness, for example), it is still important to
understand how a change in physical parameter will affect the system characteristics. Figures
(2-14), (2-15) and (2-16) show how the frequency response function will be affected due to a
change in one physical parameter at a time.

(2-23)
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Figure 2-14. Change of Stiffness: SDOF System

Note that a change in stiffness affects both the resonant frequency as well as the system
characteristic at low frequency. This dominance of stiffness at low frequency is the reason that
this region of the frequency response function is known as the stiffness, or more accurately,

compliance line.

(2-24)
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Effect of Changing Damping

Log Magnitude

Figure 2-15. Change of Damping: SDOF System

Note that a change in damping has no apparant effect on the resonant frequency. The only
noticable change involves a change in frequency response function in the region of the resonant

frequency.

(2-25)
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Figure 2-16. Change of Mass: SDOF System

Note that a change in mass affects both the resonant frequency as well as the system
characteristic at high frequency. This dominance of mass at high frequency is the reason that this
region of the frequency response function is known as the mass line. Also note that as the mass
changes, the apparant damping (sharpness of the resonant frequency) changes accordingly. A
change in mass affects both the resonant frequency, the system characteristic at high frequency as

(2-26)
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C C
well as the fraction of critical damping’{ = C = MO ).
c 1

2.10 Estimating Partial Fraction Parameters

Assuming that a lightly damped single degree of freedom (SDOF) system is being evaluated, the
parameters needed for a partial fraction model can be quickly estimated directly from the
measured frequency response function. While this approach is based upon a SDOF system, as
long as the modal frequencies are not too close together, the method can be used for multiple
degree of freedom (MDOF) systems as well.

Starting with the partial fraction model formulation of a SDOF frequency response function

(2.20)

only the constantd; and A; must be estimated. Sincg =0, + jw;, the estimation process
begins by estimating,. The damped natural frequenoy is estimated in one of three ways:

+ The frequency where the magnitude of the FRF reaches a maximum.
« The frequency where the real part of the FRF crosses zero.

« The frequency where the imaginary part of the FRF reaches a relative minima (or
maxima).

Of these three methods, the last approach gives the most reliable results under all conditions.

Once the damped natural frequenrgyhas been estimated, the real part of the modal frequency,
the damping factoo,, can be estimated. The damping faatgrcan be estimated by using the
half-power bandwidtimethod. This method uses the data from the FRF in the region of the
resonance frequency to estimate the fraction of critical damping from the following formula:

(l.)bz - wa2

0T T Qay

(2.21)

(2-27)
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In the alove equation,w; is the damped natural frequency as previously estimatgds the
frequency, beloww;, where the magnitude is 0.707 of the peak magnitude of the FRF. This
corresponds to a half power point,, is the frequency, abowe;, where the magnitude is 0.707

of the peak magnitude of the FRF. This also corresponds to a half power point.

For lightly damped systems, theaade equation can be approximated by the following:

wp — W
= 22 (2.22)
2wy

Onced, is estimated, the damping factoy can be estimated from the following equation.

o1 = -4 (2.23)

Again, assuming that the system is lightly damg&ds w,, the damping factor can be estimated
from the following equation:

o, = —{w (2.24)

Once the modal frequenay; has been estimated, the resicdhjecan be estimated by evaluating
the partial fraction model at a specific frequency. If the specific frequency is choses iahe
following result is obtained.

Ay Ay

H(w) = — - + — . (2.25)
() (jowr = (o1 + jwr) (jowr = (o1~ jwr)
Ay Ay

H(w,) = + - (2.26)

@)= o) T 2w o)

As long asw, is not too small, the alveequation can be approximated by:
A
H(w,) = 1 (2.27)
(-o1)

Therefore, the residul; can be estimated from the following relationship:

(2-28)
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A = (—o1) H(w) (2.28)
In the alove relationship, H(w;) is very close to being a purely imaginary value for the

displacement over force FRF. This means that the residueill be very close to a purely
imaginary value as well.

VIBRATING

MEASUREMENT

Figure 2-17. Modal Vectors from the Imaginary Part of the FRF

(2-29)
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2.10.1 Example

For the following SDOF case, (M=10, K=1600, C=2), the data can be estimated from the FRF as
shown in the following plots. The exact answers are= -0.1000 + j 12.6487 and; = -

0.0040. Note that the digitized data, in the neighborhood of the damped natural frequency, is
tabulated in Table 2-1.

(2-30)
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Figure 2-18. Frequency Response Function: SDOF System
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Figure 2-19. Frequency Response Function: SDOF System
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Figure 2-20. Frequency Response Function: SDOF System
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Frequency (rad/sec) Real Imag Magnitude Phase (deg)
12.2705 0.0099 -0.0026 0.0103 -14.578
12.3205 0.0112 -0.0034 0.0117 -16.717
12.3706 0.0127 -0.0045 0.0135 -19.549
12.4207 0.0147 -0.0064 0.0160 -23.452
12.4708 0.0170 -0.0095 0.0195 -29.109
12.5209 0.0193 -0.0150 0.0245 -37.804
12.5710 0.0193 -0.0246 0.0313 -51.903
12.6210 0.0103 -0.0367 0.0381 -74.301
12.6711 -0.0083 -0.0376 0.0385 -102.401
12.7212 -0.0186 -0.0259 0.0319 -125.711
12.7713 -0.0192 -0.0158 0.0249 -140.565
12.8214 -0.0170 -0.0099 0.0197 -149.696
12.8715 -0.0146 -0.0066 0.0160 -155.597
12.9215 -0.0126 -0.0047 0.0135 -159.646
12.9716 -0.0110 -0.0035 0.0115 -162.569

TABLE 2-1. Discrete SDOF Data from Plot

This example also illustrates a common problem with simplified modal parameter estimation. In
this example, referring to Figure 2-20, it is apparent that the damped natural frequency occurs
between two of the measured frequencies in the frequency respone function. In Figure 2-20, the
apparent truncation, or clip, of the frequency response function near the peak frequency is a
result of this lack of resolution. For a lightly damped situation, the true magnitude at the
resonance may be 2 to 20 times higher. This means that finding the half-power frequencies in
order to estimate damping will be impossible since the true magnitude of the resonance is
unknown. In this situation, the damping estimate will be in error (too high) which will cause the
residue to be in error (too high).

Note that there are a number of other more robust SDOF, and MDOF, modal parameter
estimation algorithms that do not require knowledge of the half-power frequencies. These
techniques depend only upon the data being accurate at the measured frequencies in order for an
accurate estimate of the damping estimate. These methods do not have the accuracy problem of
the simplified SDOF case utilized in this example.

(2-34)
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2.11 Why Study/Emphasize SDOF Systems?

Frequently, there is some concern that the amount of time studying SDOF systems is not
warranted. Many multiple degree-of-freedom (MDOF) systems can be simplified as single
degree-of-freedom systems. More often, the MDOF system can be broken down, on a frequency
range basis, into frequency regions that are dominated by only one degree-of-freedom. This is
the situation with SDOF modal parameter esimation algorithms.

Even though a continuous beam has an infinite number of modes, the evaluation of these modes
(estimation of frequency, damping, modal vector and modal scaling) can often be accomplished
with essentially single degree-of-freedom (SDOF) concepts. The primary assumption is that
each mode of vibration is well separated in frequency from the other modes. This is often the
case for lightly damped structures. Different modes of vibration of the beam can be visulaized in
Figure 2-17 by noting the solid black line connecting the peaks of the imaginary parts of each
frequency response. Normally, these modes are plotted in a wireframe model showing the
extrema of the modal vector so that the motion can be easily understood. Figures 2-21 and 2-22
show the first two bending modes of a uniform beam that is pinned at each end.
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Figure 2-21. First Bending Mode at First Damped Natural Frequengy (
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Figure 2-22. Second Bending Mode at Second Damped Natural Frequepcy (
In order to understand why this information can be determined from the imaginary part of the
frequency response functions, SDOF theory must be reviewed and extended slightly, primarily

from a notational point of view.

The general mathematical representation of a single degree of freedom system is expressed using
Newton’s second law in Equation 2-29:

M X(t) + C x(t) + K x(t) = f(t) (2-29)

For the general case with a forcing function that can be represented as a summation of sin and
cosine terms, the forcing function can be represented as:

f(t) = 5 F(w) e (2-30)
w=0

Assuming that the system is underdamped and that enough time has passed that any transient
response of the system due to initial condition or startup of the excitation has decayed to zero,
the response of the system can be represented as:

X(t) = 5 X(w) e (2-31)
w=0

(2-36)
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Note that, whilex(t) and f(t) are real valued functions{(w) and F(w) are complex valued.
Working with any arbitrary frequency term in Equations 2-30 and 2-31, Equation 2-30, Equation
2-31 and the derivatives of Equation 2-31 can substituted into Equation 1 yielding the following
frequency response function (FRF) relationship for a SDOF system:

_ X(w) _ 1
CFlw) -Mw?+C jw+K

H(w)

(2-32)

Note the characteristic of the @t frequency response function when it is evaluated (measure)
at the undamped natural frequency. At the undamped natural frequency, the mass and stiffness
terms cancel each other and the FRF is purely imaginary valued.

The first extension that is necessary provides a description for the casex{thara f (t) are

not located at the same point. On a single degree-of-freedom system, this would provide
redundant information (no new information) but it becomes important as the extension to multple
degrees-of-freedom occurs. For example, assume that the particular point (and direction) on the
mass where the force is applied is referred to as P@Rd the particular point (and direction)

on the mass where the response is measured is referred to ap [EQ&ation 2-32 now can be
written as follows to note this information.

Xq(w) B 1
Folw) -Ma?2+C jw+K

Hp(@) = (2-33)

The system is still a SDOF system Big, = H,, = Hqq = Hgs = -+ - but the input and output
location can now be described. This clearly demonstrates that the number of modes (one in this
case) is unrelated to the number of input and output sensors that are used to measure the system.

The second extension that is necessary provides a way to indicate that the modal characteristics
(modal coefficients) of both the input and output are represented in the frequency response
function model. The modal frequency is already represented by noting that the denominator is
related to the characteristic equation. A form of modal scaling is already represented by noting
the the mass term in the denominator scales the equation. Modal coefficient information, which
is relative not absolute information, can be added by changing the numerator to reflect this.

Xq(w) _ Yq ¥p

H = =
w) = @) M2 +C jw+ K

(2-34)
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Note that, since the system is still a SDOF system, the relative motion at each DOF would be
normalized to 1 such that, =y, =y =1 which shows that Equation 2-33 and 2-34 still
represent the same information. Note as before, if the FRF is evaluated (measured) at the
undamped natural frequency), the FRF is once again imaginary valued and is a function of the
modal coefficients and damping. Assuming the damping is unknown but constant means that the
product of the modal coefficients is proportional to the imaginary part of the FRF.

Finally, the third extension that is necessary provides for the change from SDOF to MDOF. Note
that for a linear system, linear superposition can be used in the frequency domain to add the
information associated with each mode together to represent the frequency response function of a
MDOF system. To desribe this, every term in Equation 2-34 will need a sulygriptigdicate

which mode the information is associated with. The final form of the frequency response
function is:

xq(w) — % wqr l//pr

Hoo(@) = ,
o () Fo@) &-M, 0?+C, jw+K,

(2-35)

Equation 2-35 is one common representation of the FRF of a MDOF system. Note tat the

C, andK, terms in the denominator are the modal or generalized mass, damping and stifness
parameters, not the physical mass, damping and stiffness parameters. The modal or generalized
parameters can be found analytically from the physical mass, damping and stiffness parameters
or experimentally using more complicated parameter estimation algorithms.

Note that, as long as the modes are well separated in frequency, the information in the
neighborhood of the undamped natural frequency for a given mode can be found from:

Xq(w) _ Yar Yor

H = =
() Folw M, a?+C, jo+K,

(2-36)

Note that, if the output DOF (point and location) is held fixed while the input DOF is moved, the
only information that changes in Equation 2-36 as different FRFs are measured is the
information relative to the modal coefficient for the particular mode of interest. If Equation 2-36

is evaluated (measured) near the undamped natural frequency, this means that the imaginary part
of the FRF will be proportional to the modal coefficient. The proportionality constaig:

(2-38)
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‘//pr

TIM, 2 +C, jo+K,

a, (2-37)

Since mode shapes are relative patterns, not absolute motions, the value of the constant is not
important unless damping or modal scaling is required.

Therefore, modal vectors can be estimated from the imaginary part of the frequency response
functions at the damped natural frequencies (or from the magnitude and phase information of the
frequency response functions at the damped natural frequencies). This will be reasonably
accurate as long as the undamped natural frequencies are well separated and the damping is

small (undamped and damped natural frequencies nearly equal).

This result is consistent with the expansion theorem concept (the response of the system at any
instant in time or at any frequency is a linear combination of the modal vectors):

Expansion Theorem - Time Domain:
N
{Mm}=§ﬂdwd (2-38)
r=
Expansion Theorem - Frequency Domain:
N
{an=§ﬁdwd (2-39)
r=

Using the frequency domain form of the expansion theorem, if the response is evaluated at the
undamped natural frequency of modgethe expansion coefficieng, will dominate and be
approximately equal to alpha defined in Equation 2-37.

(2-39)



