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4. FREQUENCY RESPONSE FUNCTION DEVELOPMENT

4.1 Theory

All of the techniques discussed previously are useful if an analytical model of the system
already exists. From an experimental point, this is rarely the case. Typically, solving problems
on real systems or pieces of systems must be accomplished without the aid of a theoretical model
or in order to verify a theoretical model.

In this chapter, frequency response function measurements will begin to be used as the basis for
defining modal frequencies and damping values, modal vectors, modal mass, modal stiffness, and
modal damping of real life structures. To accomplish this task, an analytical model will be
developed to represent the transfer function between any possible measurement locations on the
structure. Frequency response functions will be directly related to the transfer functions that
have been theoretically developed.

The transfer function representation of an undamped multiple degree of freedom system can be

formulated by starting with the differential equations of motion in terms of mass, stiffness, and
damping matrices.

[M I{Xx }+[K ]{x}={"f} (4.2)
Taking the Laplace transform of Equation 4.1, assuming all initial conditions are zero, yields:
SSIM I+[K 1 X(9 }={F(© } 42)
Let:
[B( 1=5S[M 1+[K 15

Then Equation 4.2 becomes:

[B(S 1{ X(9 }={ F(9 } (4.3)

(4-1)
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where [B(s) ] is referred to as theystem impedance matox just thesystem matrix.
Pre-multiplying Equation 4.3 byB(s) ] yields:
[B(S I'{ F(9 }={ X(9 }
Defining:
[H(s) 1=[B( I
Then:
[H() 1{ F(s) }={ X(s) } (4.4)

Equation 4.4 relates the system respofigqs) } to the system forcing functiongF (s) }
through the matrix H(s) ]. The matrix [H(s) ] is generally referred to as theansfer function
matrix.

Figure 4-1. Two Input-Output Model

Equations 4.2-4.4 can be expanded for a two degree of freedom system in order to view in detail
the components of each position in the system matrix.

(4-2)
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Taking the Laplace transform of Equation 4.5 yields:

O0Mm M,, O, 0OK,;; Ky, 000X, (s) O OF,(s) O
DMll I\/Ilz O + DKll K12 00O Xl( ) —_ 2 Fu(s)
noM21 M2z 0Ka1 Koz gogXes) g gF9

Thus,
[B(s) 1{ X(9 }={F(9 }

where:

OM;; S+ Kyy M, &+Kpp U

-[B(9 1=0O 0
DM2152+K21 Mz, & + Kz, 0

Defining the transfer function as the inverse of the impedance matrix:
[B(S) I'=[H( ]

The inverse of the impedance matrix can be found for this analytical case as the adjoint of the
impedance matrix divided by the determinant of the impedance matrix as follows:

B My, 8 + Ky, ~(M,8*+Kygp) O
(B9 = 0 Mp1 &+ Kpyp) M1 8+ Kyg 0
(My; 82+ Kpg) (Mpp 82+ Kyp) = (M 2+ Kyp) (Mg 82+ Kyp)

(4.6)

Note that the denominator of Equation 4.6 B(g) | which is the characteristic or frequency
equation for the system. This highlights the fact that the complex-valued modal frequépcies (
are global properties of the system since this characteristic equation appears in every term of
[ H(s) ]. This characteristic equation can be expressed as a product of its roots, thus:

|B()[=E(s-41)(s=42)(s-43) (s~ 14)

where:

(4-)
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« E = Constant coeficient of the highest order term in the polynomial (Product/Sum of the
mass terms)

« A1, Ay, Az @ndA, are the 4 roots of the characteristic equation.

Equation 4.6 for a two degree of freedom system can then be written as:

O My, &+ Ky, (M, +Kypp) O

UXi(s) O E_( My, 8 +Kpy) Mg $*+ Ky BD Fi(s) O wn
2% O E(5-41)(5-45)(5-23) (S-A3) OFa9 O |

[ H(s) ], the transfer function matrix, can be defined as:

_DH11(5) Hix(s) O
LRO 12009 Hae B

where, for instance:

M, & + Ky,
Hiq(s) = (4.8)
T E (s (5= 42) (5-45) (- )
Equation 4.4 can now be expressed as:
UH,4(s) Hq,(s) UOF,(s) U OX,(s) U
DHll( ) le( ) 0o Fl( ) 0=0 Xl( ) 0 4.9)
oH21(8) Haas) goFas) g X9 [
Multiplying out Equation 4.9 yields:
H11(s) F1(s) + H1a(s) Fa(s) = Xi(9)
(4.10)

H21(S) F1(8) + Hao(8) Fa(s) = Xy(9)

If, in Equation 4.10,F,(s) =0, then:

(4-5)
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H11(s) Fa(s) = Xy(9)

H21(8) F1(s) = X2(9)

(4-6)
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This results in the familiar relationships for the transfer function (output over input):

X1(9)
Hia(s) = Fl(s)
1
X2(9)
H,4(s) = —Fi(s)
In general
X
Hpq = F_;)
where :

+ pis the output degree of freedom (physical location and orientation).

+ gis the input degree of freedom (physical location and orientation).

Therefore, measuring a column of thél[] matrix is accomplished by using a single, fixed
input (excitor system) with a roving response and measuring a row is accomplished by using a
roving input (hammer) and a single fixed response. It should be reiterated that the subscript
notation ofp or g refers to both a physical location and also direction or orientation.

Thus, H,4(s) is the transfer function measured by exciting the systemFyits) and measuring
the responseX,(s). Similarly H,,(s) is the transfer function measured by exciting the system
with F,(s) and measuring the responseXafs). Likewise, H,,(s) andH,,(s) can be measured
by exciting the system witlfr,(s), letting F4(s) =0, and measuring the responsegs) and
X5(S).

As in the single degree of freedom case, the denominator polynominal in Equation 4.8 is called
the characteristic equation. Notice that all of the transfer functions that are represented in
Equation 4.6 have the same denominator polynomial. The roots of this denominator polynomial
(characteristic equation) are the modal frequencies of the system.

Since the coefficients of the characteristic equation are real, the roots will appear as complex
conjugate pairs. Rewriting Equation 4.8 with this in mind gives the following result:

(4-7)
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My, & + Ky,

Ml = B ) (5-43) (5-42) (5 13)

(4.11)

where A;, A1, A,, and A, are theroots of the characteristic equationThe roots of the
characteristic equation are also referred to apales of the transfer function,K(s).

4.2 Analytical Model - Scalar/Matrix Polynomial (MDOF)

The general formulation of Equation 4.11 or of any of the transfer functions defined by an
anlytical mass, damping and stiffness matrix model can be written as a numerator polynomial of
the independent variabkedivided by a denominator polynomial of the independent varisible

Both polynomials involve coefficients that are different numerical combinations of the discrete
values of mass, damping, stiffness of the system. The roots of the denominator polynomial are
the modal frequencies of the system and are considered global properties of the system. The
roots of the numerator polynomial are the zeroes of the system and are local properties of the
system that depend upon the specific input-output relationship of the transfer function. The
general polynomial model for a single transfer function can be written as follows using scalar
coefficients:

Xo(S) _ (g (D" B (9" + -+ B (9 + B (9)°
Fo(9) ™ A ()™ + Aoy (™ +- -+ ay ()L + g (5)°

(4.12)

The previous model can be rewritten in a more concise form as follows:

4 K
Xp(S) _ kgoﬂk (S)
Fa® 5 ay (o)
k=0

Further rearrranging yields the following equation that is linear in the unkacand 3 terms:
i k 4 k
kZO ay ()" Xp(s) = kZO B () Fq(9) (4.13)

This model can be generalized to represent the general multiple input, multiple output case as

(4-8)
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follows using a matrix polynomial formulation:
i k — 4 k
2 {ad (94X} = 3 dad (9 {F (s} (4.14)

The previous models can be used to represent frequency response function (FRF) data by
limiting the svariable 6 = ] w) and applying a few matrix operations. If both sides of the above
equation are post multiplied by the hermitian (complex conjugate transpose) of the force vector
{F(s)}™), the following equation results.

> Hod (9 GXOH FO = 3 {81 (9 HFOH F(9)"
k=0 k=0

In the alove equation note that the vector products are the definition of the cross power
([Gx(9)] = {X(9K F(s)}") and auto power spectrun@}; (s)] = {F(s){ F(s)}") whens = jw
(after averaging).

> Jod (9 Bb(97= 2 {41 (964 (9]

k=0

The almve equation can be post multipled by the inverse of the auto power spectrum matrix.
u k[ O 0o _ 3 k
2 {ad(9 a9 S = 2 (91l

Finally, the albve equation can be put in final form by noting that the product of the cross
spectrum matrix and the inverse of the auto spectrum ma®ix(§)] [G«(s)] ) is the definition
of the FRF matrix (f (s)]) for the multiple input, multiple output case whes jw.

2 i) GH@)] = 3 jw)<HI 4.15
2 dad (i@ dH @) = 2 {ad (i) 1] (4.15)
For a single input, single output case thewed®equation yields:

> ay (jw)Hpg(w) = X Be(jw) (4.16)
k=0 k=0

(4-9)
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4.3 Analytical Model - Partial Fraction (Residue)

Equation 4.11 can be represented very generally by expansion in terms of its partial fractions.
That is:

Xa(s) _ C1 Co Cs Cy

= E 9 T Gsman) T sm ) T s a) T (s- Ay

(4.17)

The constants,; - ¢, can be found in a similar fashion as in the single degree of freedom case.
Equating Equation 4.11 and Equation 4.17 yields:

M, $* + Ky, __ G + ) + C3 + Cq
E(s—A) (5-2)(s-A) (5-13) (s—A) (s—41) (5—13) (5—4)

(4.18)

Note thatc, can be evaluated by multiplying Equation 4.18 % A; and evaluating the
expression a¢ = A;. Thus:

My, AT + Ky,

C, = . — = A (4.19)
E(A1-21) (A1 22) (A1~ 43)
In a similar fashion:
Mo, A5+ K
22 11 22 — X _ A%
=c = A

C: * * * *
2T E(AL A1) (A= Ay) (AL —4%)

My, A5 + Ky,
= * i~ = A
E(A2=21) (A= A1) (22— 43)

Cs

X2
Moo A, + Ky,

C: * * * *
YTE(M- A1) (A —AL) (A5 - A5)

* *
=C3= A

Equation 4.17 becomes:

* *
Alll + Alll + A112 + A112

M= s T s T 5= a0) T (5= )

(4.20)

(4-10)
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Thus, the transfer function of a two degree of freedom system has been represented by the sum
of two single degree of freedom systems (Section 2.5). This result can now be extrapolated to
apply to any number of degrees of freedom.

Rewriting Equation 4.20 in terms of this summation:

Allr + A’ilr
- s=A

2 [ O]
Hia(s) = Z O3 0 (4.21)
r=1 S 0

As in a single degree of freedom case, Ahg's are again referred to as the residues associated
with the polesi, .

The rest of the transfer functions of the system can be expressed, using the same logic as the
development of Equation 4.21.

2 U A A
Hai(9) = 3 O— + 225 O (4.22)
r=1 DS_AI- S_Ar D
2 O A Al O
Hix(8) = 3 O—o + —2- O (4.23)
r=1 DS_AI- S_Ar D
2 O A A O
Hoo(S) = 3 O + —22 (4.24)
r=1 DS_AI- S_Ar D
Equation 4.9 can now be rewritten in terms of thevalpartial fraction expansion
02 0 A A O 20A A OO0
Oxg 0 OZ 0oy v ooy 0 2025 ¥ o2y 000 o O
O~ O or=tg r rgorlg r roood Y O
0 0o=0 OO 0 (425
U O 020 ; 0 20 0 0d U
0% g DZDA_M/{ + A_Zl/{ 0 ZDA_ZZ;]r + A_zj 0o g
gtgS~ A STA g EipgSTA STA g

The transfer function matrixHi (s) ] can also be rewritten in terms of partial fractions combining
Equations 4.21 through 4.24.

(4-12)
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EAlll Ao U UA A O OA, A, O OA, Ay, B
[ H (9 ]_DA211 Azz1 D+DA211 Azz1 D+DA212 A2z D+DA212 Az22
(s=11) (s=21) (s-12) (s=43)
_ (4.26)

The numerator matrices in each term of thevalequation are called the residue matrices. Note
that there is a separate matrix associated with each of the modal frequencies (poles) of the

system. Note also that the residue matrices associated with complex conjugate modal
frequencies are also complex conjugates.

Previously, the constami; ; ; has been evaluated (Equation 4.19). The constants A;,,, and
A,, 1 can now be evaluated in a similar fashion. Once this is done, the form of the first residue
matrix can be evaluated for pole.

— (M1 A2 +Ky1)

Aqq= — .
ST E (A= A1) (A= A) (A - A5)
A= = (M A7 +Kyy)
121~ z .

E(Al_/\l)(/]l_AZ)(/ll_/\Z)
Agyy = = (M1 AT +Kyy)

E (A1 =41) (A= 42) (1= A7)
The first term on the right of Equation 4.27 can be rewritten as follows:

BA111 A B 0 My ai+Ky, (M Af+Ky,) O
0f11 Ac2r g g Moy AT+ Kz1)  MppAi+ Ky
(s—41) E(A1=A1)(A1=22) (A1 =23) (5= A1)

(4.27)

Note that the numerator matrix on the right side of Equation 4.27 is the adjoint of the system
matrix discussed in Section 3.8. Therefore, from Equation 3.41:

B Moz AT+ Ky, =( My, A5 +Kyp) B_V 81//11//1 VN7 B 4.28)
= .
0~ May AT+ Kop) My AT+Kyy O %% Y42

(4-12)
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Plugging Equation 4.28 into Equation 4.27 gives:

A A 0 0 O

A111 A121 0 " D‘/’l‘/’l N 0

Ofe1r Ae2r %41 292 g 4.29)
(s—411) E(A1=A1)(A1=22) (A1 =23) (s= A1) .

Finally, the relationship between the transfer function data (via the residue matrices) and the
modal vectors of the system can be established. Equation 4.29 shows that the residue matrix has
the same structure as the adjoint matrix: each column contains a redundant estimate of the same
modal vector, different only by a constant. This relationship is normally stated as follows:

For poleA; :

OA ;1 A O Uy gy WLy, U
O A A D7 Q.0
nfeir Ao g O%:41 Y. g

In general, for pold, :

.
OA,, A, O Oy OO0p O O 0
DA11 A12 =0, D‘/’l 0 D‘/’l 0=0, D‘/’l Y 0 (4.30)
e Mo 0% gno¥% g O¥2¥1 ¥

where:
+ Q; is a constant that is a function of the modal vector scaling and the absolute units of the
residue matrix.

Oy, O
. 0 = mode shape for polg,

0¥ 0

Equation 4.30 indicates that, with respect to the residue matrix, every row and column of the
residue matrix contains the same modal vector multiplied by a component of the modal vector
and the scaling constant. This is an important result for the experimental case. Therefore,
assuming that all of the residues within a row or column are not perfectly zero, the modal vector
can be estimated from only one row or column of the residue matrix. This will completely define

(4-13)
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the modal vector for that particular pole. In terms of the experimental requirements, in order to
estimate a particular element in the residue matrix, a frequency response function must be
measured. Under the assumption that every element in a particular row or column is not zero,
only N measurements will be required rather tiham N. Once this information is measured, all
other terms in the residue matrix could be synthesized.

This previous discussion represents the MINIMUM requirements in terms of measurements. In
order to be certain that modal vectors are not missed or to utilize the redundant information in
different rows or columns, more measurements than one row or column are typically taken.

It should be pointed out that the constant of proportionglityn Equation 4.30 is not unique

since the constant will depend upon the choice of how the modal vector is scaled. This is
consistent with the concept that modal vectors represent relative motion between the degrees of
freedom. Note however that the residues are scaled quantities that depend upon the units of the
frequency response function(s).

4.4 Modal Vector Example

The transfer function matrix for the two degree of freedom system example used previously can
now be used to determine the modal vectors.

Substituting mass and stiffness values into Equation 4.6 gives:

0(10s?+6) 2 O
g 2 (58 +4) O
[HO 1= 5gva)(109+6)-(2) 2)
5(1032+6) 2 B
2 (58°+4)
[H( 1=1 =

50 (s*+7/582+2/5)
The roots of the characteristic equation have previously been calculated as:
A1 = jV2/5 (rad/sec) A1 =-jV2/5 (rad/sec)

(4-14)
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A, =j (rad/sec) A, =—| (rad/sec)
Therefore:
BUD§+6) 2 B
CH(e ] 1 2 (65°+4) g

50(s=jV2/5)(s+jVv2I5)(s—j)(s+])

The transfer functiom ;(S) can now be represented in terms of its partial fraction expansion:

Hyy(S) = 10+ 6
MY B0 (s jV25) (s+jV25) (s—j)(s+])
H11(S): Alll + Alll + A112 + A112

(s-jVv2I5) (s+jVv2I5) (s—-j) (s-1])

j V2/5 . j V25
A1 = 12 A= 12
Aiqo= -l A= iE
112~ ¢ 112~ 75

In a similar fashion, the rest of the residues for the remaining transfer functions can also be
determined.

(4-15)
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The system transfer function matrix[(s) ] can now be expressed in terms of partial fractions.

O jv2i5  jV2/5 O O jv2l5 V25 O

T p T oo nof

[H(s) 1="F — =+ =0

(s—jV2I5) (s+jVv2/5)

0= ] O 0O -j d

U3 20 U U3 2 U

D1j5 E%(J) U D.lSJ 3j0 U

,0% 6 [ % 6

. + :
(s=1) (s+1])

Recall that the modal vector associated with the pole frequinisyproportional to the residue
matrix for poleA;. Notice that the first two residue matrices are just the complex conjugate of
each other. Therefore, the modal vector for polés just the complex conjugate of the modal
vector for poled;. The same is true for the last two residue matrices. This will always be the
case for conjugate pairs of poles.

The modal vector for the polg = V2/5 can be extracted from the first residue matrix.

Using Equations 4.29 and 4.30, the modal vectors can be related to the residue matrix for the first
pole.

Oy Y, U
Q{v hiv h QleZ‘/’l Uolls Ei

B j V2/5 jVv2I5 0O
0 12 12 O
T
Q{vw }{vw }1—8 ) i V25 ) i VoI5 S
0 12 12 g

i V2/5 . . . .
The constan@Q; =+ J can now be factored out of the residue matrix. The choice of this

(4-16)
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constant at this point is purely arbitrary by virtue of the fact that the absolute amplitudes of the
modal vectors are purely arbitrary.

O O 01 1 0
Dlﬂllﬂl ) 0=Q 0
%41 Yatp> El Dl 1 O
Hence, the modal vector for the first mode is:
O O 01 0O
a% o =0, O
o% 0 o'nog
Similarly, the modal vector for the second mode:
0= j O
Ogywn gy, O_U75 30 U
Q{w hAy =o't "2 =g 390
QW Wb g gL 1 [
0 30 0 E!

The constantQ, =+ _6_(1) can now be factored from this residue matrix in the same arbitrary

manner as before.

Blﬂll//l y, O 84 -2
o%1 W g g72 1

Equating elements of the two matrices yields:

Y =i =4 Y =2

Yoy = =2 w,=-1

Thus:
Ogy. O O 2 O
%t =g 5,
Dl//Z D O B!

(4-17)
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Both of these modal vectors could have been obtained directly by just using either a row or a
column of the residue matrix as the modal vector directly.

4.5 Analytical Model - General Partial Fraction (Residue)

Recalling Equation 4.21 for a two degree of freedom system:

2 Allr + Al 1r

N EEYR AR TV

Equation 4.21 can now be generalized foNxdegree of freedom system as the following:

*
N A11r + Al 1r

Hiq(s) = - 4.31
WO 5200 TG (3
O A O 0O A* O]
N par par
Ony O— 0, 0 R 4.32
ae® =2 550y T s=a) (432)
Furthermore, the entire system transfer function matiXd) ] can be generalized as:
N[A] [A],
H = + 4.33
[H© 1=3 o+ oy (@33
In terms of the modal vectors of the system directly:
Qi{gk{v)  QG{vk{yg}
H(s) ]= + - 4.34
RO I= 2 0= (s=7) (43

Equation 4.34 is the general form of the system transfer function matrix. As will be shown later,
this form does not change when a system with damping is considered. Remember, though, that
the complete transfer function can not be measured. Not once again that the frequency response
function measurement, which is just Equation 4.34 evaluatexk=gt w, is actually what is
measured.

(4-18)
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4.6 Residue Relationship to Modal Vectors

The relationship established in Section 4.3 between the residue matrix and the modal vector can
be developed in a more formal or rigorous manner. It is important to understand that the residue
defined in the previous section is the key to the relationship between modal vectors and modal
scaling (modal mass) for the experimental case. At the present time, the following discussion is
limited to the undamped and/or proportionally damped cases. The relationship for the case of
general damping is discussed in a later section.

The development of the relationship between the residue matrix and the modal vectors proceeds
along a similar path as the development of the relationship between the residue matrix and the
adjoint of the system matrix (Section 3.8). Beginning with the definition of the impedance
matrix:

[BEI=dM IS+[C Is+[K ] (4.35)

where:

« [ B(s)] = System Impedance Matrix

From matrix algebra:
[B(S) [B(S™ =11 (4.36)
Noting that the inverse of the impedance matrix is the transfer function matrix gives:
[B(s)] [H(9)] =1I] (4.37)

Replacing the transfer function matrix with the equivalent partial fraction representation from
Equation 4.33 yields:

[I]:g[B(S)][A]r L [BOITAT,

A (4.38)
r=1 S— /‘r S— AI’

Premultiplying each term of the @e equation by ¢ — A,) and evaluating the equationsat A,

(4-19)
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for any specific mode (all of the terms drop out except the term associatedAy)th
[0] =B Al (439)

Note that the alwve equation proves that each column of the residue mafjx must be
proportional to the modal vector associated withjust as it did in the adjoint matrix case
(Section 3.8). Likewise the structure of the residue matrix must be the same as the structure of
the adjoint matrix.

A, =Q{ ¢ }, {v } (4.40)
Bll/l Y Y4 . . . . Y1 Yn B
D‘l’z Y Y4 0
[Al, =Qr O : O
D . . . . . . . D
O |
OWNn Y1 YN Y2 . . . . InOn o

where:

+ Q, = constant associated with the scalindj, relative to the absolute scaling (units) of
the residue matrix.

« Q, = is proportional, but not generally equal to, the proportionality congtatgfined in
Section 3.8.

4.7 Residue Relationship to Modal Mass

For the proportionally damped case, which includes the undamped case as a trivial form, the
relationship between the residue and the modal mass can also be established consistent with the
modal mass found analytically from the mass matrix. Starting with Equation 4.38 and 4.40:

* *

gl:l
ﬂ*EDD

[B(s)] Q

0go
oo,

[I] = % [ B(s)] Qr{l//}r {l//}rT +

r=1 S_/‘r S

(.

(4.41)

(4-20)
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Note that, for proportionally damped systems, the modal vectors are always real (normal) modes.

0.0
Therefore, the conjugate of a modal vector is the same as the modal Yegtor (w ).

o o
Making this substitution and premultiplying both sides of Equation 4.41by:
N T T T * T
(w7 = 3 WIIBOIQLWY (W), (¥} [B9) Qiw) (), w2
r=1 S— A, S /\r
Substitute Equation 4.35 into Equation 4.42:
v Q el HIMIS+[CTs+[K] el (v}
T _
{o}i =2 — +
r=1 S Ar
Q {w} HIMIS+[CTs+[K] v} {w}
(4.43)

S— Ay

Applying the orthogonality relationships between the modal vectors and the mass, damping and
stiffness matrices eliminates all terms except for those associated with:mode

T * T
{‘l/}tT _ Q (M, & +SC_:t5+ Ki {u}y + Q (M, s’ -;?t/‘s*+ K ok (4.44)
. t

Eliminating{y}{ from each term of Equation 4.44 leaves the following scalar equation:

:Qt(Mt32+Ct5+Kt)+Q:(Mt32+CtS+Kt)

1 *
S_At S_At

(4.45)

Clearing the fractions from the previous equation:
(5= 2)(5=2)=Q (M F+Cs+K)(s—A)+Q (M F+Cys+Ki)(s5—A)

(4.46)
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Note that, by definition:

(M +C,s+K)=M,(s—A) (S— 4A) (4.47)

Substituting Equation 4.47 into Equation 4.46 and eliminating the common terms on both sides
of the equationg - A,) (s — A;):

1=Q M (5= 1) +Q M, (s—4y) (4.48)

Evaluating Equation 4.49 at= A, gives the final relationship:

1=Q My (A - ) (4.49)

1=0Q M{ (2] w) (4.50)
1

M, = —— 4.51

2w Q (@51

Equation 4.51 represents the relationship between modal mass and the scaling involved between
the residues and the modal vectors (Recall Equation 4.40). Therefore, once the residue
information is found for modeand some convenient form of modal vector scaling is chosen for
modet, the scaling consta®, can be determined. Equation 4.51 can then be used to determine
modal mass for modeconsistent with the modal vector scaling. This means that as long as the
modal vector is chosen consistently, modal mass can be compared between different solution
approaches (analytical versus experimental, for example).
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