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8. ADVANCED MODAL ANALYSIS CONCEPTS

8.1 Introduction

As the theoretical basis of expermental modal analysis is extended to real world problems,

several clarifications of the theory developed to the present time must be made. The

development of more general and/or concise models to represent the entire frequency response

function matrix [H(ω )] or impulse response function matrix [h(t)] is the primary concern. These

models must be consistent with the single reference concepts developed previously but must be

compatible with multiple reference concepts as well. Therefore, the general concept of

measurement degree of freedom must be extended to account for the multiple input, multiple

output nature of the problem. Tw o other concepts must also be discussed in order to fully

develop the theoretical basis for experimental modal analysis. These concepts include systems

that have repeated modal frequencies (repeated roots) and systems that can not be considered

reciprocal.

8.2 Measurement Degrees of Freedom

For the general situation of a multiple input, multiple output model of a system, the experimental

definition of the mechanical system is generated from the frequency, or impulse, response

function matrix. The size of this matrix is a function of the locations where forces are applied to

the mechanical system (inputs) and a function of the locations where responses of the mechanical

system (outputs) are measured. This general concept is often referred to asmeasurement degrees

of freedomto distinguish the size of the matrix from the number of modal frequenciesN of the

mechanical system. Obviously, since there is no reason to assume that the number of inputs will

be the same as the number of outputs, this general concept of measurement degrees of freedom

needs to be extended to properly reflect that the dimension of the frequency, or impulse, response

function matrix is rectangular. With this in mind, the number of inputs can be defined byNi and

the number of outputs can be defined byNo. Therefore, the dimension of the frequency, or

impulse, response function matrix isNo × Ni .

(8-1)



+UC-SDRL-RJA CN-20-263-662 Revision: Febr uary 19, 1999 +

8.3 Mathematical Models

The mathematical model that represents the relationship between the modal parameters and the

measured frequency, or impulse, response functions can be represented as follows:

Fr equency Response Function Model

Single Measurement:

m

k=0
Σ α k ( jω )kH pq(ω ) =

n

k=0
Σ β k ( jω )k (8.1)

H pq(ω ) =
N

r=1
Σ

Apqr

jω − λ r
+

A*
pqr

jω − λ *
r

(8.2)

Multiple Measurement:

m

k=0
Σ 


[α k] ( jω )k


[H(ω )] =

n

k=0
Σ 


[β k] ( jω )k


[ I ] (8.3)

[H(ω ) ]No×Ni
=

N

r=1
Σ



Ar




jω − λ r
+



A*

r



jω − λ *
r

(8.4)
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Impulse Response Function Model

Single Measurement:

hpq(t) =
N

r=1
Σ Apqr eλ r t + A*

pqr eλ *
r t (8.5)

Multiple Measurement:

[h(t) ]No×Ni
=

N

r=1
Σ 


Ar




eλ r t + 

A*

r



eλ *
r t (8.6)

where:

• s = Laplace variable

• s = σ + jω = Angular damping variable (rad/sec)

• ω = Angular frequency variable (rad/sec)

• p = Measured degree-of-freedom (response)

• q = Measured degree-of-freedom (input)

• r = Modal vector number

• m = Number of poles or modal frequencies (2N)

• n = Number of zeroes (2N-2 or less)

• N = Number of positive modal frequencies

• Apqr = Residue= Qrψ prψ qr

• Qr = Complex modal scaling coefficient for mode r

• ψ pr = Modal coefficient for measured degree-of-freedom p and mode r

• [ Ar ] = Residue matrix for mode r (No × Ni )

• λ r = System pole= σ r + jω r

While these models are perfectly appropriate for the multiple input, multiple output case, by a
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slight alteration of these models a more appropriate form of the models can be developed which

will facilitate the development of parameter estimation algorithms.

First of all, the summation form of the equations can be simplified from two terms to one term as

follows:

[H(ω ) ] =
2N

r=1
Σ



Ar




jω − λ r
(8.7)

[h(t) ] =
2N

r=1
Σ 


Ar




eλ r t (8.8)

If these forms of the mathematical models are used, no assumption is made in the model

concerning the complex conjugate nature of the solution for modal frequencies (λ r ) or modal

vectors ( {ψ r } ). When the modal parameters are estimated, the evaluation of modal parameters

can include a comparison of these terms to determine whether the complex conjugate nature of

the solution is found.

Finally, the summation in the mathematical models can be eliminated completely if a different

form of the residue is used. In order to do this, the concept ofmodal participation factor( Lqr )

is introduced. Physically, the modal participation factor is a relative indication of how well a

particular mode of vibration is excited from a specific measurement degree of freedom. If all of

the modal participation factors for a specific modal vector are represented in a row, this vector is

referred to as the modal participation vector and has dimension of 1× Ni . The modal

participation vector is not unique (has properties of an eigenvector) but in combination with the

modal coefficient defines the residue in the following way.

Apqr = Qrψ prψ qr (8.9)

Apqr = Lqrψ pr (8.10)

{ A } qr = Lqr{ψ } r (8.11)

Lqr = Qrψ qr (8.12)
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Equations 8.10 and 8.11, therefore, are the general statements relating the residue, the modal

participation factor, and the modal coefficient. For the general case, the modal coefficient can be

thought of as an element from the right eigenvector of the system; the modal participation factor

can be thought of as an element from the left eigenvector of the system. With this in mind, when

a system obeys Maxwell’s Reciprocity, the right and left eigenvectors represent the same modal

vector, Equations 8.9 and 8.12 are valid. For the general (nonsymmetric) case, though, only

Equations 8.10 and 8.11 will be valid.

From the above equations it is important to note that only the residue can be absolutely and

uniquely defined. Both the modal coefficientψ pr and the modal participation factorLqr are a

function of one another and can take on any value; only the combination of the two terms is

unique.

Since the termmodal masscan be defined in terms of the modal scalingQr , the modal mass can

also be defined in terms of the modal participation factorLqr .

Mr =
ψ qr

2 jL qrω r
(8.13)

If this simplification is made, the frequency response function model can now be written in the

following form:

[H(ω ) ]No×Ni
= 


ψ 

No×2N
[Λ ]2N×2N [L ]2N×Ni

(8.14)

where:

[Λ ]2N×2N =













1

jω − λ1
0

0

0

0

0

0
1

jω − λ2
0

0

0

0

0

0

. . . . . . . .

0

0

0

0

0

0
1

jω − λ r
0

0

0

0

0

0

. . . . . . . .

0

0

0

0

0

0
1

jω − λ2N












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Likewise, a similar simplification can be developed for the impulse response function matrix:

[h(t)]No×Ni
= 


ψ 

No×2N



eλ r t 

2N×2N
[L ]2N×Ni

(8.15)

where:



eλ r t 

2N×2N
=










eλ1t

0

0

0

0

0

0

eλ2t

0

0

0

0

0

0

. . . . . . . .

0

0

0

0

0

0

eλ r t

0

0

0

0

0

0

. . . . . . . .

0

0

0

0

0

0

eλ2Nt










Since the modal participation vector{ L } r is unique only to within a complex scaling constant,

several other definitions of the modal participation factors are possible. One common form can

be defined by scaling the modal participation such that a specific element of the vector,L pr , is

unity. If this normalization is used, the following definition of modal participation factor will

apply:

L pqr =
Lqr

L pr
=

Qrψ qr

Qrψ pr
=

ψ qr

ψ pr
(8.16)

This form of the definition of modal participation factor is used in the development of the theory

for the Polyreference Time Domain modal parameter estimation algorithm.

8.4 Repeated Modal Frequencies

Repeated modal frequenciesoccur whenever two or more modes of the system occur at exactly

the same modal frequencyλ r . This condition is often also referred to as repeated roots or

repeated poles. Analytically, the presence of repeated roots is determined directly from the

characteristic equation just as in any other case. The modal vectors, associated with the repeated

roots, now come from a system of equations (the homogeneous equations evaluated at a repeated

root) which will be rank deficient by more than one. This means that rather than choosing one of

the physical coordinates, as is the case for the non-repeated root situation, a number of physical
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coordinates, equal to the number of repeated roots, must be assumed. This process is repeated

once for each of the repeated roots. Each of the vectors found in this manner will in general be

independent to one another and orthogonal to all other modal vectors. Each vector within this

set, however, will not necessarily be orthogonal to each other. While this is not a problem

mathematically, it may be more consistent to find a set of vectors that are also orthogonal to one

another. This can be accomplished by additionally imposing the cross-orthogonality constraints

between the vectors. Using any mathematical procedure to determine a set of orthogonal vectors

from a set of independent vectors will also work as long as the weighting matrix (mass and/or

stiffness) is utilized in the procedure. Note that there is an infinite number of modal vector sets

that will satisfy repeated root situation, whether the orthogonality constraint is enforced or not.

Experimentally, it is important to detect the presence of repeated roots in order to build a

complete modal model of the mechanical system that will accurately represent the dynamic

response of the mechanical system to any set of forcing conditions. The most common cause of

this situation is symmetry in the mechanical system. For example, in the case of a flagpole, there

are two modes of vibration occurring at the same frequency for each lateral bending mode of the

flagpole. Any time one or more axes of symmetry exist in the mechanical system, this condition

will exist. The important consideration, though, is that, in order to detect the repeated root

condition, more than one row or column of the frequency, or impulse, response function matrix

must be measured. Therefore, to detect a repeated root of order two, twoindependentrows or

columns of the frequency, or impulse, response function matrix must be used. Note that it is

possible to choose two rows or columns that are not independent and thus miss the repeated root.

The modal vectors that are associated with repeated modal frequencies are independent of one

another and each is orthogonal (weighted) to the other modal vectors of the set. Even so, the

modal vectors associated with the repeated modal frequencies do not individually have fixed

patterns even in the relative sense that modal vectors associated with nonrepeated modal

frequencies do. Only when the set of modal vectors associated with repeated modal frequencies

are considered as a set, are the modal vectors unique in any way. In the case of a repeated modal

frequency of multiplicity two, two independent modal vectors will be required to describe the

modal space but any two independent modal vectors will do. An analogy in three dimensional

graphics involves using two vectors to define a plane. There is an infinite set of vectors that can

be used to describe the same plane. Any two vectors lying in that plane can be used to uniquely

define the plane and yet the two vectors are not unique but only independent from one another.

(8-7)
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In this case, independent simply means that the two vectors are not scalar multiples of one

another.

Therefore, there are an infinite number of combinations of modal vectors which will serve as the

modal vectors for the repeated modal frequencies. In this case, the exact characteristic of each

modal vector is unimportant since the set of modal vectors will always be considered together.

The modal vectors associated with the repeated modal frequencies often appear to be exactly the

same at first glance. This is due to the symmetry and on close inspection using physical

coordinates and directions, the distinction can be easily detected. Again consider the flagpole

example. Since there is no way to define a unique x and y direction with respect to the circular

cross section of the flagpole, there will not be a single set of modal vectors that will describe the

modal deformation at a repeated modal frequency.

At this point, repeated modal frequencies may seem to be only a theoretical concept that does not

have much impact on real structures that are not symmetric. Actually, due to the discrete nature

of the frequency response function, a very real problem often exists where several modal

frequencies occur between the frequency resolution that is used. Sincea priori knowledge of the

modal density is not normally possible, this condition happens quite frequently. This is referred

to aspsuedo-repeated modal frequencies.While the modal vectors do not theoretically have the

same attributes as in the repeated root case, for all practical purposes, the result is the same.

For the case of a mechanical system with repeated roots, or psuedo-repeated roots, Leuridan[1]

has shown that the same mathematical model can be used to represent the relationship between

measured frequency, or impulse, response function data and modal parameters. For a mechanical

system with repeated modal frequencies of orderNr the following basic relationship for

frequency response functions will apply.

H pq(ω ) =
2N

r=1
Σ

Apqr

jω − λ r
(8.17)

H pq(ω ) =
Apq1

jω − λ1
+

Apq2

jω − λ2
+ . . . . . . . .+

Nr

s=1
Σ

Apqs

jω − λ s
+ . . . . . . . .+

Apqr

jω − λ r
+ . . . . . . . .

. (8.18)
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With the above model, several poles could be repeated; the multiplicity of any pole can be at

mostN.

In order to understand the implications of the repeated modal frequency on the residue

information, the above equation can be rewritten in terms of column q of the frequency response

function matrix.

{ H } q =
Q1ψ q1{ψ } 1

jω − λ1
+

Q2ψ q2{ψ } 2

jω − λ2

+ . . . . . . . .+
Nr

s=1
Σ

Qsψ qs{ψ } s

jω − λ s

+ . . . . . . . .+
Qrψ qr{ψ } r

jω − λ r
+ . . . . . . . .

. (8.19)

The implication of this representation is that if only one column of the frequency response

function matrix is measured, the residue that will be estimated for the repeated modal

frequencies will be the linear combination represented by the summation in the above equation
[1]. Note that this linear combination is not unique; if a different column of the frequency
response function is used, the residue column for the repeated modal frequencies will not be the

same. This observation yields the simplest procedure for the detection of repeated or psuedo-

repeated modal frequencies. If the modal vectors that are estimated from different reference

positions (different inputs) are not the same, the modal vectors are probably the result of repeated

modal frequencies. Note that the modal vectors associated with the repeated modal frequencies

are independent of one another and not simply a scalar multiple of one another as would be the

case for a nonrepeated modal frequency.

Therefore, if the repeated modal frequency condition is not detected, the residue vector,

associated with the repeated modal frequency, that will be estimated from the frequency response

function data taken from only one reference will represent a linear combination of the modal

vectors associated with the repeated modal frequencies. If frequency response function data

from a second reference is observed without knowledge of the first reference (and the repeated

modal frequency condition is still not detected) the residue vector will again represent a linear

(8-9)
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combination of the modal vectors associated with the repeated modal frequencies.

Unfortunately, this residue vector will not represent the same modal vector when compared to the

previous estimate. This means that knowledge of any single reference set of data will be

insufficient to describe the repeated root situation.

Nevertheless, if data from several references is available, a characteristic of the modal vectors

associated with the repeated root is possible. In general, for a repeated root of orderNr , at least

Nr references will be required to make this determination. Unlike in the non-repeated condition,

though, the individual modal vectors determined by this process will not be unique. Only the

combination of vectors will represent a unique characteristic. For example, if a system contains

a repeated modal frequencyλ s of order 2, the two residue columns that will be estimated for

columns p and q can always be represented as follows:

For column p:

{ A } p = Q11ψ p1{ψ } 1 + Q22ψ p2{ψ } 2 (8.20)

For column q:

{ A } q = Q11ψ q1{ψ } 1 + Q22ψ q2{ψ } 2 (8.21)

Therefore, in matrix notation:



{ A } p{ A } q




= 

{ψ } 1{ψ } 2








Q11

0

0

Q22









ψ p1

ψ p2

ψ q1

ψ q2





(8.22)

The above equation states that, when the modal vectors,{ψ }1 and {ψ }2, are excited in

independentcombinations in columnp and columnq of the frequency response function matrix,

then the residue vectors,{ A } p and{ A }q, are independent and in turn define two independent

modal vectors that always can be normalized such that the modal scaling matrix, [Q ], is

diagonal.

For the general case of a repeated modal frequency of orderNr , there will be a set ofNr

(8-10)
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independent modal vectors that will satisfy Eq. 8.22. Note that any set ofNr modal vectors that

are independent linear combinations of the modal vectors defined by Eq. 8.22 can be used. In

this case, the modal scaling matrix, [Q ], will not be diagonal. This case is represented by the

following equation and will be demonstrated in a later example.



{ A } p{ A } q




= 

{ψ } 1{ψ } 2




[Q ]




ψ p1

ψ p2

ψ q1

ψ q2





(8.21)

8.4.1 Repeated Modal Frequency Example: Residue Synthesis

In order to fully understand the nature of the problem that can arise due to repeated modal

frequencies, a simple example may be used. Consider a repeated modal frequency,λ s, of order

two in a three degree of freedom system. The following represents two independent modal

vectors associated with the two repeated modal frequencies.

{ψ } 1 =







1

2

3







{ψ } 2 =







2

1

3







For this example, assume that the modal vectors given above hav ebeen scaled such that the

modal scaling matrix, [Q ], is diagonal with elements on the diagonal equal toj .

[Q ] =




j

0

0

j





For the following discussion, only the portion of the frequency response function matrix, [H ],

that depends upon the repeated modal frequencies will be synthesized.

To begin with, all of the columns of the frequency response function matrix will be synthesized

(8-11)
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from the theoretical modal data (Case 1, 2, 3). This data represents the true answer or the answer

that would be generated from the measured frequency response functions if the repeated root

condition was not detected.

Case Number One: Column 1 of[H ]

Case One represents the proper synthesis of the repeated root portion of Column 1 of the

frequency response function matrix.

{ H } 1 = . . . . . . . .+

j1







1

2

3





1

jω − λ s
+

j2







2

1

3





2

jω − λ s
+ . . . . . . . .

{ H } 1 = . . . . . . . .+

j







5

4

9







jω − λ s
+ . . . . . . . .

{ H } 1 = . . . . . . . .+

j √5









√5

4

√5
9

√5









jω − λ s
+ . . . . . . . .

Notice that if only this column of the frequency response function matrix is measured, there is no

reason to suspect that a repeated modal frequency exists. Therefore, the number of modal

frequencies and modal vectors would be reduced accordingly.
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Case Number Two: Column 2 of[H ]

Case Two represents the proper synthesis of the repeated root portion of Column 2 of the

frequency response function matrix.

{ H } 2 = . . . . . . . .+

j2







1

2

3





1

jω − λ s
+

j1







2

1

3





2

jω − λ s
+ . . . . . . . .

{ H } 2 = . . . . . . . .+

j







4

5

9







jω − λ s
+ . . . . . . . .

{ H } 2 = . . . . . . . .+

j √5









4

√5
√5
9

√5









jω − λ s
+ . . . . . . . .

Once again notice that if only this column of the frequency response function matrix is

measured, there is no reason to suspect that there is a repeated modal frequency. If the modal

vector for the modal frequencyλ s is compared to that found from column 1 of the frequency

response function matrix, it is obvious that a different modal vector has been estimated. This

comparison is the simplest method of detecting a repeated modal frequency.
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Case Number Three: Column 3 of[H ]

Case Three represents the proper synthesis of the repeated root portion of Column 3 of the

frequency response function matrix.

{ H } 3 = . . . . . . . .+

j3







1

2

3





1

jω − λ s
+

j3







2

1

3





2

jω − λ s
+ . . . . . . . .

{ H } 3 = . . . . . . . .+

j







9

9

18







jω − λ s
+ . . . . . . . .

{ H } 3 = . . . . . . . .+

j √18









9

√18
9

√18

√18









jω − λ s
+ . . . . . . . .

Notice that the modal vector determined from this column of the frequency response function is

once again different from either of the first two columns. This is a characteristic of the modal

vector resulting from a repeated modal frequency; if the repeated modal frequency is not

detected, the modal vector appears to be different as a function of the reference (input) location.

If only the first column of the frequency response function matrix[H ] has been measured and

the repeated modal frequency has not been identified, the synthesis of column 2 and column 3

can be attempted from the measured first column as follows:

(8-14)
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Case Number Four: Column 2 of[H ]

Case Four represents the improper synthesis Column 2 of the frequency response function if only

frequency response function data from Column 1 is used (repeated root not detected).

{ H } 2 = . . . . . . . .+

j
4

√5









√5

4

√5
9

√5









jω − λ s
+ . . . . . . . .

{ H } 2 = . . . . . . . .+

j









4

16

5
36

5









jω − λ s
+ . . . . . . . .

Note that this synthesis does not agree with Case 2 which is the theoretical result. Therefore, if

only column 1 of the frequency response function matrix is measured, the repeated modal

frequency cannot be detected and the proper dynamic characteristics of the system, when excited

at location 2, cannot be predicted.
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Case Number Five: Column 3 of[H ]

Case Five represents the improper synthesis Column 3 of the frequency response function if only

frequency response function data from Column 1 is used (repeated root not detected).

{ H } 3 = . . . . . . . .+

j
9

√5









√5

4

√5
9

√5









jω − λ s
+ . . . . . . . .

{ H } 3 = . . . . . . . .+

j









9

36

5
81

5









jω − λ s
+ . . . . . . . .

Once again the result for this case should compare to Case 3 (the theoretical case) but does not.

Therefore, if only column 1 of the frequency response function matrix is measured, the repeated

modal frequency cannot be detected and the proper dynamic characteristics of the system, when

excited at location 3, cannot be predicted.

8.4.2 Repeated Modal Frequency Example: Modal Vector Solution

Using the residue data generated from two independent columns of the frequency response

function matrix, the set of independent modal vectors for the repeated modal frequency can be

determined if the order of the repeated modal frequency is known. This can be estimated via

singular value decomposition techniques. For the previous example, assuming that the

multiplicity of the repeated modal frequency is 2, the results can be determined by using the first
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two columns of the frequency response function matrix (Case 1 and Case 2).



{ H } 1 { H } 2




= . . . . . . . .+

j





5

4

9

4

5

9






jω − λ s
+ . . . . . . . .

Since the residue columns found from the two columns are independent, these residue columns

can be used as the [ψ ] matrix in Eq. 8.21. In this case, though, there is no reason to assume that

the modal scaling matrix [Q ] is diagonal. With this in mind, Eq. 8.21 can be used in Eq. 8.2 as

follows:



{ H } 1 { H } 2




= . . . . . . . .+

j





5

4

9

4

5

9










5

4

4

5





−1




5

4

4

5





jω − λ s
+ . . . . . . . .

While it may not be immediately obvious, the modal scaling matrix in the above equation must

be chosen so that the product of the three matrices and the scalarj yields the proper residues for

the first two columns. The inverse of this matrix is the only matrix that satisfies this condition.



{ H } 1 { H } 2




= . . . . . . . .+

j





5

4

9

4

5

9










5/9

−4/9

−4/9

5/9









5

4

4

5





jω − λ s
+ . . . . . . . .

Now using these two residue columns and the modal scaling matrix [Q ] the synthesis of the

residue for column 3 is possible.

{ H } 3 = . . . . . . . .+

j





5

4

9

4

5

9










5/9

−4/9

−4/9

5/9









9

9





jω − λ s
+ . . . . . . . .

{ H } 3 = . . . . . . . .+

j





9

9

18







jω − λ s
+ . . . . . . . .
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This is the correct answer as previously defined by Case 3. Note that it is possible to find a set of

modal vectors such that the corresponding modal scaling matrix [Q ] is diagonal. This is done

by substituting the eigenvalue decomposition of [Q ] into the above equation. While this is

possible and makes the theory consistent, it is unnecessary as the previous example proved.

Question?

If the modal vectors corresponding to a repeated modal frequency with multiplicity of two are:

{ψ } 1 =







1

2

1







{ψ } 2 =







2

1

2







Is it possible to correctly identify the modal vectors from the first and third columns of the

frequency response function matrix if the multiplicity of the repeated modal frequency is known?

(Hint: Are the first and third columns of the frequency response function matrix independent?)

8.5 Left and Right Eigenvectors

The relationship between the modal participation vector and the modal vector is particularly

interesting when the theoretical matrix equation of motion is examined. For the case of a system

that obeys Maxwell’s reciprocity, the mass, stiffness, and damping matrices will be symmetric

matrices. With this in mind, the basic eigenvalue-eigenvector problem that is generated is of the

following form:




λ r
2[M ] + λ r [C ] + [K ] 


{ψ } r = { 0 } (8.22)

In the above equation, note that the dimension of{ ψ }r is the same as the dimension of the
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square mass, stiffness, or damping matrix. Since this theoretical problem is of dimensionN × N,

there is no difference betweenN, No, or Ni . Therefore, the modal participation vector is also of

the same dimension.

The eigenvector{ ψ }r is also referred to as the right eigenvector of the system. If the

eigenvalue-eigenvector problem is reformulated, the eigenvector is also the left eigenvector of the

system.

{ψ } r
T 


λ r

2[M ] + λ r [C ] + [K ] 


= { 0 } (8.23)

Note that in both Eqs. 8.22 and 8.23, the modal vector{ ψ }r could be replaced by the modal

participation vector{ L } r without loss of generality.

If the system does not satisfy reciprocity (the mass, stiffness, and/or damping matrices are not

symmetric), then the right and left eigenvectors will be different. For the right eigenvector, Eq.

8.24 will be appropriate.




λ r
2[M ] + λ r [C ] + [K ] 


{ψ } r = { 0 } (8.24)

For the left eigenvector, Eq. 8.25 will now be the appropriate form.

{ L } r
T 


λ r

2[M ] + λ r [C ] + [K ] 


= { 0 } (8.25)

Note that the modal participation vector is the same as the left eigenvector. At this point it is

important to note that the residue for a nonreciprocal system can still be defined by the product

of the modal vector and the modal participation factor as in Eqs. 8.8 and 8.9. For the

nonreciprocal case, the relationship between the modal vector and modal participation vector, as

defined by Eq. 8.10, no longer is true.

This concept of the relationship between left and right eigenvectors and modal vectors and modal

participation vectors is true for systems that have repeated modal frequencies as well.
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8.6 Summary/Conclusions

Whether a system contains repeated modal frequencies or nonreciprocal characteristics, the

general equations relating modal parameters to the measure frequency, or impulse, response

function matrices will properly predict the dynamics of the system as long as sufficient elements

of the matrix are measured. The extension of Eqs. 8.1 and 8.3 to Eqs. 8.12 and 8.13 provide the

generality and flexibility to describe these characteristics.
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