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8. ADVANCED MODAL ANALYSIS CONCEPTS

8.1 Introduction

As the theoretical basis of expermental modal analysis is extended to real world problems,
several clarifications of the theory developed to the present time must be made. The
development of more general and/or concise models to represent the entire frequency response
function matrix H(w)] or impulse response function matrix{)] is the primary concern. These
models must be consistent with the single reference concepts developed previously but must be
compatible with multiple reference concepts as well. Therefore, the general concept of
measurement degree of freedom must be extended to account for the multiple input, multiple
output nature of the problem. Two other concepts must also be discussed in order to fully
develop the theoretical basis for experimental modal analysis. These concepts include systems
that have repeated modal frequencies (repeated roots) and systems that can not be considered
reciprocal.

8.2 Measurement Degrees of Freedom

For the general situation of a multiple input, multiple output model of a system, the experimental
definition of the mechanical system is generated from the frequency, or impulse, response
function matrix. The size of this matrix is a function of the locations where forces are applied to
the mechanical system (inputs) and a function of the locations where responses of the mechanical
system (outputs) are measured. This general concept is often referreddasasement degrees

of freedonto distinguish the size of the matrix from the number of modal frequeNciEsthe
mechanical system. Obviously, since there is no reason to assume that the number of inputs will
be the same as the number of outputs, this general concept of measurement degrees of freedom
needs to be extended to properly reflect that the dimension of the frequency, or impulse, response
function matrix is rectangular. With this in mind, the number of inputs can be defingdanyl

the number of outputs can be defined Ny, Therefore, the dimension of the frequency, or
impulse, response function matrixNg x N;.
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8.3 Mathematical Models

The mathematical model that represents the relationship between the modal parameters and the
measured frequency, or impulse, response functions can be represented as follows:

Frequency Response Function Model

Single Measurement:

3 o (1) Hiole) = 3 A (j0* 81)
Hi(a) = 3 20+ A : 2)
Multiple Measurement:
3 e (jo)GH@l = 3 Fad (i) §n ©3)
[H(@) Tpen, = 2. o, d's 8.4

= jw—A,  jw—Af
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Impulse Response Function Model

Single Measurement:

N x
hpq(t) = zl Apgr €'+ Ay, € (8.5)
r=
Multiple Measurement:
N N
h(t) Tnxn = Uetrt 4 U Ot (8.6)
[0(E) Ingen, = 2 (v (6 + o

where:
+ s= Laplace variable
+ S= 0 + jw = Angular damping variable (rad/sec)
+ w = Angular frequency variable (rad/sec)
+ p = Measured degree-of-freedom (response)
+ g = Measured degree-of-freedom (input)

r = Modal vector number

m = Number of poles or modal frequencies (2N)

» n = Number of zeroes (2N-2 or less)

N = Number of positive modal frequencies

* Ayqr = Residue= Q¢ ¢y

- Q; = Complex modal scaling coefficient for mode r

* Yo = Modal coefficient for measured degree-of-freedom p and mode r
+ [A/] = Residue matrix for mode r, x N; )

+ A, = System pole=o, + jw,

While these models are perfectly appropriate for the multiple input, multiple output case, by a
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slight alteration of these models a more appropriate form of the models can be developed which
will facilitate the development of parameter estimation algorithms.

First of all, the summation form of the equations can be simplified from two terms to one term as
follows:

D

[H(w) ] =Zl Py (8.7)
_ 2N ot
(h©]1=3 A e 88)

If these forms of the mathematical models are used, no assumption is made in the model
concerning the complex conjugate nature of the solution for modal frequentigso¢ modal

vectors ({¢, }). When the modal parameters are estimated, the evaluation of modal parameters

can include a comparison of these terms to determine whether the complex conjugate nature of
the solution is found.

Finally, the summation in the mathematical models can be eliminated completely if a different
form of the residue is used. In order to do this, the concapbdal participation facto L, )

is introduced. Physically, the modal participation factor is a relative indication of how well a
particular mode of vibration is excited from a specific measurement degree of freedom. If all of
the modal participation factors for a specific modal vector are represented in a row, this vector is
referred to as the modal participation vector and has dimensionxdf;1 The modal
participation vector is not unique (has properties of an eigenvector) but in combination with the
modal coefficient defines the residue in the following way.

Apgr = Qrtlprlor (8.9)
Apgr = Lartlpr (8.10)
{Aly =Lgle (8.11)
Lor = Qrtgr (8.12)
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Equations 8.10 and 8.11, therefore, are the general statements relating the residue, the modal
participation factor, and the modal coefficient. For the general case, the modal coefficient can be
thought of as an element from the right eigenvector of the system; the modal participation factor
can be thought of as an element from the left eigenvector of the system. With this in mind, when
a system obeys Maxwell's Reciprocity, the right and left eigenvectors represent the same modal
vector, Equations 8.9 and 8.12 are valid. For the general (nonsymmetric) case, though, only
Equations 8.10 and 8.11 will be valid.

From the abve equations it is important to note that only the residue can be absolutely and
uniquely defined. Both the modal coefficiesnt, and the modal participation factby, are a
function of one another and can take on any value; only the combination of the two terms is
unique.

Since the ternrmodal masgan be defined in terms of the modal scal@dpgthe modal mass can
also be defined in terms of the modal participation factpr

wqr

= (8.13)
2Jl—qra)r

r

If this simplification is made, the frequency response function model can now be written in the
following form:

H(w) 1y = U A Tonon [L Tonsne 8.14
[H(w) Tngxn, %ﬂ TN [A lonsen [L Tonsn, (8.14)
where:
1
0 0 0 0 o U
0 o - 0 0 0 0 H
O Jw=2A; O
Al O o0 o  ........ 0 0 0 O
xoN = [ 1 U]
T E 0 0 0o - 0 0 o
0 Jo=A 0
0 0 0 o  ........ 0
[l 1 U]
O o 0 0 0 — - 0
D j(L)—AZN D
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Likewise, a similar simplification can be developed for the impulse response function matrix:

MOl = # 5 o 5 G [ 1200 (8.15)
where:

et 0 0 0 0 0 O

o e 0 0 0 o U

0 _Eo 0 ... 0 0 0 B

%ﬂ Oneen OO0 0 0 et 0 0O

Eo 0 0 0 ... 0 E

0o 0 0 0 0 et g

Since the modal participation vectoL }, is unique only to within a complex scaling constant,
several other definitions of the modal participation factors are possible. One common form can
be defined by scaling the modal participation such that a specific element of the lvgcter,

unity. If this normalization is used, the following definition of modal participation factor will

apply:

Cog == 2 =20 (8.16)

This form of the definition of modal participation factor is used in the development of the theory
for the Polyreference Time Domain modal parameter estimation algorithm.

8.4 Repeated Modal Frequencies

Repeated modal frequenciescur whenever two or more modes of the system occur at exactly

the same modal frequencly;,. This condition is often also referred to as repeated roots or
repeated poles. Analytically, the presence of repeated roots is determined directly from the
characteristic equation just as in any other case. The modal vectors, associated with the repeated
roots, now come from a system of equations (the homogeneous equations evaluated at a repeated
root) which will be rank deficient by more than one. This means that rather than choosing one of
the physical coordinates, as is the case for the non-repeated root situation, a number of physical
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coordinates, equal to the number of repeated roots, must be assumed. This process is repeated
once for each of the repeated roots. Each of the vectors found in this manner will in general be
independent to one another and orthogonal to all other modal vectors. Each vector within this
set, however, will not necessarily be orthogonal to each other. While this is not a problem
mathematically, it may be more consistent to find a set of vectors that are also orthogonal to one
another. This can be accomplished by additionally imposing the cross-orthogonality constraints
between the vectors. Using any mathematical procedure to determine a set of orthogonal vectors
from a set of independent vectors will also work as long as the weighting matrix (mass and/or
stiffness) is utilized in the procedure. Note that there is an infinite number of modal vector sets
that will satisfy repeated root situation, whether the orthogonality constraint is enforced or not.

Experimentally, it is important to detect the presence of repeated roots in order to build a
complete modal model of the mechanical system that will accurately represent the dynamic
response of the mechanical system to any set of forcing conditions. The most common cause of
this situation is symmetry in the mechanical system. For example, in the case of a flagpole, there
are two modes of vibration occurring at the same frequency for each lateral bending mode of the
flagpole. Any time one or more axes of symmetry exist in the mechanical system, this condition
will exist. The important consideration, though, is that, in order to detect the repeated root
condition, more than one row or column of the frequency, or impulse, response function matrix
must be measured. Therefore, to detect a repeated root of order twodépendentows or
columns of the frequency, or impulse, response function matrix must be used. Note that it is
possible to choose two rows or columns that are not independent and thus miss the repeated root.

The modal vectors that are associated with repeated modal frequencies are independent of one
another and each is orthogonal (weighted) to the other modal vectors of the set. Even so, the
modal vectors associated with the repeated modal frequencies do not individually have fixed
patterns even in the relative sense that modal vectors associated with nonrepeated modal
frequencies do. Only when the set of modal vectors associated with repeated modal frequencies
are considered as a set, are the modal vectors unique in any way. In the case of a repeated modal
frequency of multiplicity two, two independent modal vectors will be required to describe the
modal space but any two independent modal vectors will do. An analogy in three dimensional
graphics involves using two vectors to define a plane. There is an infinite set of vectors that can
be used to describe the same plane. Any two vectors lying in that plane can be used to uniquely
define the plane and yet the two vectors are not unique but only independent from one another.
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In this case, independent simply means that the two vectors are not scalar multiples of one
another.

Therefore, there are an infinite number of combinations of modal vectors which will serve as the
modal vectors for the repeated modal frequencies. In this case, the exact characteristic of each
modal vector is unimportant since the set of modal vectors will always be considered together.
The modal vectors associated with the repeated modal frequencies often appear to be exactly the
same at first glance. This is due to the symmetry and on close inspection using physical
coordinates and directions, the distinction can be easily detected. Again consider the flagpole
example. Since there is no way to define a unique x and y direction with respect to the circular
cross section of the flagpole, there will not be a single set of modal vectors that will describe the
modal deformation at a repeated modal frequency.

At this point, repeated modal frequencies may seem to be only a theoretical concept that does not
have much impact on real structures that are not symmetric. Actually, due to the discrete nature
of the frequency response function, a very real problem often exists where several modal
frequencies occur between the frequency resolution that is used.aS$noe knowledge of the

modal density is not normally possible, this condition happens quite frequently. This is referred
to aspsuedo-repeated modal frequenci®ghile the modal vectors do not theoretically have the
same attributes as in the repeated root case, for all practical purposes, the result is the same.

For the case of a mechanical system with repeated roots, or psuedo-repeated roots, Eeuridan
has shown that the same mathematical model can be used to represent the relationship between
measured frequency, or impulse, response function data and modal parameters. For a mechanical
system with repeated modal frequencies of orberthe following basic relationship for
frequency response functions will apply.

2N A

H ()= —P9 8.17
pq() rgllw_/‘r ( )
H pg(w) = Ao, Ao +% Poas N S
P jo—Aq jo—2A, &1 jw—Ag jw—A
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With the alove model, several poles could be repeated; the multiplicity of any pole can be at
mostN.

In order to understand the implications of the repeated modal frequency on the residue
information, the abve equation can be rewritten in terms of column q of the frequency response
function matrix.

_ Quply }4 + Qw1

jC()_Al ja)_/‘z

{H 1},

+ % stqs{‘/l }s

s=1 Jw_/\s

+ Qr-wqr{‘// }H +
Jw— A

(8.19)

The implication of this representation is that if only one column of the frequency response
function matrix is measured, the residue that will be estimated for the repeated modal
frequencies will be the linear combination represented by the summation inotreseglation

M. Note that this linear combination is not unique; if a different column of the frequency

response function is used, the residue column for the repeated modal frequencies will not be the
same. This observation yields the simplest procedure for the detection of repeated or psuedo-
repeated modal frequencies. If the modal vectors that are estimated from different reference
positions (different inputs) are not the same, the modal vectors are probably the result of repeated
modal frequencies. Note that the modal vectors associated with the repeated modal frequencies
are independent of one another and not simply a scalar multiple of one another as would be the
case for a nonrepeated modal frequency.

Therefore, if the repeated modal frequency condition is not detected, the residue vector,
associated with the repeated modal frequency, that will be estimated from the frequency response
function data taken from only one reference will represent a linear combination of the modal
vectors associated with the repeated modal frequencies. If frequency response function data
from a second reference is observed without knowledge of the first reference (and the repeated
modal frequency condition is still not detected) the residue vector will again represent a linear
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combination of the modal vectors associated with the repeated modal frequencies.
Unfortunately, this residue vector will not represent the same modal vector when compared to the
previous estimate. This means that knowledge of any single reference set of data will be
insufficient to describe the repeated root situation.

Nevertheless, if data from several references is available, a characteristic of the modal vectors
associated with the repeated root is possible. In general, for a repeated root of, peddeast

N, references will be required to make this determination. Unlike in the non-repeated condition,
though, the individual modal vectors determined by this process will not be unique. Only the
combination of vectors will represent a unique characteristic. For example, if a system contains
a repeated modal frequengdy of order 2, the two residue columns that will be estimated for
columns p and g can always be represented as follows:

For column p:

{A}p = Quupiw }1 + Qupp{w }, (8.20)

For column q:

{A}q=Quuqiv }1 + Quuply }) (8.21)

Therefore, in matrix notation:

O DEQll 0 Dl:lﬂpl Yqr N
{AT{AY gw}l{w}zmgo Qe Bty g - 822)

The alove equation states that, when the modal vectfgs}, and {¢},, are excited in
independentombinations in columip and colummg of the frequency response function matrix,
then the residue vectoi§A }, and{ A },, are independent and in turn define two independent
modal vectors that always can be normalized such that the modal scaling m@tiixjs|
diagonal.

For the general case of a repeated modal frequency of didethere will be a set oN,
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independent modal vectors that will satisfy Eq. 8.22. Note that any $&trmbdal vectors that

are independent linear combinations of the modal vectors defined by Eq. 8.22 can be used. In
this case, the modal scaling matrbQ|, will not be diagonal. This case is represented by the
following equation and will be demonstrated in a later example.

0
gA}p{A}qugw}l{w}zg[Q]%”pl Y g

(8.21)
[ﬁUpZ ‘/lqz [l

8.4.1 Repeated Modal Frequency Example: Residue Synthesis

In order to fully understand the nature of the problem that can arise due to repeated modal
frequencies, a simple example may be used. Consider a repeated modal freqefayrder

two in a three degree of freedom system. The following represents two independent modal
vectors associated with the two repeated modal frequencies.

{p}h=12

(3
O

OoOodoono

{pl,=1

(3
O

OoOodoono

For this example, assume that the modal vectors givemeabavebeen scaled such that the
modal scaling matrix, Q ], is diagonal with elements on the diagonal equal to

o0
0
I'0

0j
[Q]=B0

For the following discussion, only the portion of the frequency response function madrik, [
that depends upon the repeated modal frequencies will be synthesized.

To begin with, all of the columns of the frequency response function matrix will be synthesized
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from the theoretical modal data (Case 1, 2, 3). This data represents the true answer or the answer

that would be generated from the measured frequency response functions if the repeated root
condition was not detected.

Case Number One: Column 1[of ]

Case One represents the proper synthesis of the repeated root portion of Column 1 of the
frequency response function matrix.

0 N
‘2o Bo
1120 120
(O (O
(H};=. o0 g4, g,
Jw=As Jw=As
%—)D
0
jH O
O
0o
{H}:=........ + jw—/13+ ........
0
75 3
_ 04 0O
J\/5D_—D
V5 g
n° o
_ 5 [0
{H}=........ + (oA, +.o

Notice that if only this column of the frequency response function matrix is measured, there is no
reason to suspect that a repeated modal frequency exists. Therefore, the number of modal
frequencies and modal vectors would be reduced accordingly.
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Case Number Two: Column 2[dd ]

Case Two represents the proper synthesis of the repeated root portion of Column 2 of the
frequency response function matrix.
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Once again notice that if only this column of the frequency response function matrix is
measured, there is no reason to suspect that there is a repeated modal frequency. If the modal
vector for the modal frequency, is compared to that found from column 1 of the frequency
response function matrix, it is obvious that a different modal vector has been estimated. This
comparison is the simplest method of detecting a repeated modal frequency.
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Case Number Three: Column 3[of ]

Case Three represents the proper synthesis of the repeated root portion of Column 3 of the
frequency response function matrix.

]
©

g

|
©
I

j Vis

e
|
A
n

Notice that the modal vector determined from this column of the frequency response function is
once again different from either of the first two columns. This is a characteristic of the modal
vector resulting from a repeated modal frequency; if the repeated modal frequency is not
detected, the modal vector appears to be different as a function of the reference (input) location.

If only the first column of the frequency response function mgHi} has been measured and

the repeated modal frequency has not been identified, the synthesis of column 2 and column 3
can be attempted from the measured first column as follows:
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Case Number Four: Column 2 gfl ]

Case Four represents the improper synthesis Column 2 of the frequency response function if only
frequency response function data from Column 1 is used (repeated root not detected).
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Note that this synthesis does not agree with Case 2 which is the theoretical result. Therefore, if
only column 1 of the frequency response function matrix is measured, the repeated modal
frequency cannot be detected and the proper dynamic characteristics of the system, when excited
at location 2, cannot be predicted.
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Case Number Five: Column 3 ]

Case Five represents the improper synthesis Column 3 of the frequency response function if only
frequency response function data from Column 1 is used (repeated root not detected).
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Once again the result for this case should compare to Case 3 (the theoretical case) but does not.
Therefore, if only column 1 of the frequency response function matrix is measured, the repeated
modal frequency cannot be detected and the proper dynamic characteristics of the system, when
excited at location 3, cannot be predicted.

8.4.2 Repeated Modal Frequency Example: Modal Vector Solution

Using the residue data generated from two independent columns of the frequency response
function matrix, the set of independent modal vectors for the repeated modal frequency can be
determined if the order of the repeated modal frequency is known. This can be estimated via
singular value decomposition techniques. For the previous example, assuming that the
multiplicity of the repeated modal frequency is 2, the results can be determined by using the first
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two columns of the frequency response function matrix (Case 1 and Case 2).

Since the residue columns found from the two columns are independent, these residue columns
can be used as they[] matrix in Eq. 8.21. In this case, though, there is no reason to assume that
the modal scaling matrix@ ] is diagonal. With this in mind, Eq. 8.21 can be used in Eg. 8.2 as
follows:

While it may not be immediately obvious, the modal scaling matrix in theeadguation must
be chosen so that the product of the three matrices and the jsgillals the proper residues for
the first two columns. The inverse of this matrix is the only matrix that satisfies this condition.

6 40

D4 D5/9 ~4/9 DEB 40
J —4/9 5/9 5 U
Ep 9 D DD4 N
gH 1. {HY,B=.. ..., + : o
Jw_/\s

Now using these two residue columns and the modal scaling ma&ixtfie synthesis of the
residue for column 3 is possible.

4
Eﬁ DDs/g _4/9 009 O
]

U, O

{H};=........ + _ +
: J(‘)_As
no U
Oa O
JD9 0
(817)D18B
{H}3= ........ + ...
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This is the correct answer as previously defined by Case 3. Note that it is possible to find a set of
modal vectors such that the corresponding modal scaling m&ixig diagonal. This is done

by substituting the eigenvalue decomposition & J[into the alove equation. While this is
possible and makes the theory consistent, it is unnecessary as the previous example proved.

Question?

If the modal vectors corresponding to a repeated modal frequency with multiplicity of two are:

O

O
{fvth=120
h O

0O

%D

O
{v},=1O
0O

0O

Is it possible to correctly identify the modal vectors from the first and third columns of the
frequency response function matrix if the multiplicity of the repeated modal frequency is known?
(Hint: Are the first and third columns of the frequency response function matrix independent?)

8.5 Left and Right Eigenvectors

The relationship between the modal participation vector and the modal vector is particularly
interesting when the theoretical matrix equation of motion is examined. For the case of a system
that obeys Maxwell’s reciprocity, the mass, stiffness, and damping matrices will be symmetric
matrices. With this in mind, the basic eigenvalue-eigenvector problem that is generated is of the
following form:

M+ ALCT +[K] g} ={0 ) 8.:22)

In the almve equation, note that the dimension{af }, is the same as the dimension of the
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square mass, stiffness, or damping matrix. Since this theoretical problem is of diniénsidn
there is no difference betweéh N, or N;. Therefore, the modal participation vector is also of
the same dimension.

The eigenvecto{ ¢ }, is also referred to as the right eigenvector of the system. If the

eigenvalue-eigenvector problem is reformulated, the eigenvector is also the left eigenvector of the
system.

W} gAdIM]+ AfC] +[K] 5={0} 623)

Note that in both Egs. 8.22 and 8.23, the modal vecgo}, could be replaced by the modal
participation vectof L }, without loss of generality.

If the system does not satisfy reciprocity (the mass, stiffness, and/or damping matrices are not

symmetric), then the right and left eigenvectors will be different. For the right eigenvector, Eq.
8.24 will be appropriate.

AAMI+ALCT +[K] Sy ), ={0) (8:24)

For the left eigenvector, Eq. 8.25 will now be the appropriate form.

{L}T A% M]+[C] +[K] 5={0} (8.25)

Note that the modal participation vector is the same as the left eigenvector. At this point it is
important to note that the residue for a nonreciprocal system can still be defined by the product
of the modal vector and the modal participation factor as in Egs. 8.8 and 8.9. For the
nonreciprocal case, the relationship between the modal vector and modal participation vector, as
defined by Eq. 8.10, no longer is true.

This concept of the relationship between left and right eigenvectors and modal vectors and modal
participation vectors is true for systems that have repeated modal frequencies as well.
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8.6 Summary/Conclusions

Whether a system contains repeated modal frequencies or nonreciprocal characteristics, the
general equations relating modal parameters to the measure frequency, or impulse, response
function matrices will properly predict the dynamics of the system as long as sufficient elements
of the matrix are measured. The extension of Egs. 8.1 and 8.3 to Eqgs. 8.12 and 8.13 provide the
generality and flexibility to describe these characteristics.
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