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7. MODAL SCALING

7.1 Proportionally Damped Systems (Modal Mass)

The modal matrix (matrix of modal vectors) has been previously used as a coordinate
transformation in order to diagonalize the mass, damping (if proportional), and stiffness matrices.
The diagonalization of these matrices leads to the analytical definition of modal mass, modal
damping, and modal stiffness. From an experimental view point, the mass, damping, and
stiffness matrices are generally not known. Therefore, this theoretical approach to the definition
of modal mass, modal damping, and modal stiffness is not useful. Even so, the modal mass,
modal damping, and modal stiffness can be computed directly from the measured frequency
response functions without the benefit of prior knowledge of the mass, damping, and stiffness
matrices. Note that the modal mass, modal damping, and modal stiffness are, in general, not
physical properties but are generalized, or normalized, properties related to the physical
properties.

Recall that, analytically, the value of the modal mass is completely dependent on the scaling
chosen for the modal vectors. Any development from the frequency response function
(experimental) must be consistent with this concept. The development in Section 4.7 (Equation
4.51) satisfies this constraint. Equation 4.51 is repeated here as Equation 7.1.
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The scaling coefficien®, in the alwve definition can only be found after the choice of modal
vector scaling is made.

Recal that for the-th mode of an N degree of freedom system:

[AL=Q{wv } {w ¥ (7.2)
Blﬂllﬂl ) : . : . : Y1¢m B
D‘/’z‘/’l o, 0
[A]L,=Q' O . 0] (7.3)
o . . . . . . .o
O O
Dwmwl . . . . . . YUmm P

(7-1)



+UC-SDRL-RJA CN-20-263-662 Revision: February 19, 1999 +

where:

+ Q, is the scaling constant that is a function of the scaling of the modal vectors.

Using only theg-th column of the residue matrix:
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The relationship between the residue, the scaling constant and the scaling of the modal vector is
most clear when the FRF measuremidpt ( w ) is utilized. Note thaH ., () is obtained by
exciting at pointg and measuring the response at pajntThis is typically referred to as the
driving pointfrequency response function. Therefore, g residue for all modes=1 - N

can be determined from ti,, ( @ ) measurement.

Now, note theag-th element of Equation 7.4:
Agqr = Qr War Wqr = Q Wi (7.5)

Therefore, the-th modal mass of a multi-degree of freedom system is defined as:

Modal Mass
M, = ! (7.6)
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where:
+ M, = Modal mass
« Q; = Modal scaling constant

+ w, = Damped natural frequency

While this concept of modal mass being a relative quantity (relative to scaling) is at odds with the
engineering view of mass being an absolute quantity, this is consistent with the analytical
definition of modal mass.

While many choices of modal vector scaling exist, choosing to scale the modal vector such that
the largest modal coefficient will be equal to 1.0 gives a result where the modal mass will always
be bounded between zero and the physical mass of the system. For the case where the modal
vector of the system describes the rigid body translation (bounce) of the system, this particular
choice will give the mass of the system as the modal nTds=efore, if the largest scaled modal
coefficient is equal to unity, Equation 7.7 will compute a quantity of modal mass that has
physical significance. The physical significance is that the quantity of modal mass computed
under these conditions will be a number between zero and the total mass of the system.
Therefore, under this scaling condition, the modal mass can be viewed as the amount of mass
that is participating in each mode of vibration.

Note that thenodal masslefined in Equation 7.6 or 7.7 is developed in terms of displacement
over force units. If measurements, and therefore residues are developed in terms of any other
units ( velocity over force or acceleration over force), either the measurements or Equation 7.6
and 7.7 will have to be altered accordingly.

Once the modal mass is known, the modal damping and stiffness can be obtained through the
following SDOF relationships:

Modal Damping

C, =20 M, (7.8)
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Modal Stiffness

Kr:(‘J'rz-l'(‘-’rz)Mr:Qr2 M, (7.9)
7.1.1 Modal Vector Scaling

There are many ways to scale the modal vectors, however the following approaches are typically
used:

+ Unity Modal Mass
+ Unity Modal Coefficient

« Unity Modal Vector Length

The scaling valug,, can be calculated for each of the three cases.

7.1.1.1 Unity Modal Mass

: 1 a 1
Cj2M e 2o

Q

The scaled modal coefficient at the driving point can now be computed as follows:

Qr wqr wqr = Aqqr
Dividing both sides b, :
War Yor = %“

The scaled modal coefficient at the driving point can now be found. For the proportionally
damped case, this is obviously trivial since the square root of both sides obtleeegbation
involves the square root of a real-valued number. For the general case, the modal coefficient can
be complex, and the abe equation must be solved for the complex modal coefficient. In this
case the square root cannot be used.
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Thus, the scaled modal vector is:

1
Qr l//qr

{y )= { Al

7.1.1.2 Unity Modal Coefficient

Assume that theth componeng; of a modal vector must be set equal to unity<1.0). Then:

(v} =21A},

Aq
Thus:
_ A
Qr wir l//qr
7.1.1.3 Unity Modal Vector Length
1
= A r
{¢ } ”{A}rllz{ }
where:
« |KA} |L = vector norm of A},
* ”{A}r||2 = i:Zl Aiqr A;qr
Thus:
_ A
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7.1.2 Modal Vector Scaling Example

Using the modal vectors from the example in Chapter 5, the modal vector scaling required for
unity modal mass can be determined.

The modal vectors for modes 1 and 2 are:
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For unity modal mass, the scaling factor can be evaluated from Equation 7.6.

1
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Thus, the scaled modal vector for mode 1 for a modal mass of unity is:
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The scaled modal vector for mode 2 for a modal mass of unity is:
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Notice that these modal vectors that have been scaled with respect to unity modal mass, are
identical to the modal vectors previously computed (Section 3.2). The important concept,
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though, is that these scaled modal vectors were determined directly from the frequency response
functions. In other words, the mass, damping, and stiffness of the system did not have to be
known in order to determine the same information.

The modal damping and modal stiffnesses can now be calculated using Equations 7.8.and 7.9.

C,=20, M, =2(1i0)1 :%
C,=20, M, =2(%)1 :%
Ki=(o2+ak)My = (o)1 =
Ke=(B+ad) My =(+1)1 =1

These are exactly the same parameters as those calculated previously.

7.2 Non-Proportionally Damped Systems (Modal A)

Consistent with the definition ehodal Aas the modal scaling factor used for the theoretical case

of nonproportionally damped systems, tmdal A scaling factor is also the basis for the
relationship between the scaled modal vectors and the residues determined from the measured
frequency response functions. In general, for most experimental wmadal Ais used as the

default scaling approach. If modal mass needs to be estimated, under the contraint of real
(normal) modes, modal mass can be estimated fraydal A. The following development
explains the relationship betwerrodal Aand modal mass. Starting with the anlytical definition

of modal mas# 2N space:

0 0
o] [M]D{w}r (7.10)
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Multiplying Equation 7.11 out in terms of N space vyields:
Mo =2 (g IMHut +A{e} [IMI{g} +{g} [Cl{g} (12

If the system is proportionally damped, the weighted orthogonality relationships between the
mass matrix and the modal vectors can now be applied.

Mp = A My + A, M, +C, =24, M, +C, (7.13)

Applying the SDOF relationship between the modal damping and modal Gass @, M,):

My =24 M, - 20, M, (7.14)
Ma =2 (0r + ] &) M, =20, M, (7.15)
Ma = 2w M, (7.16)

Equation 7.16 indicates that, for proportionally damped systems, if the modal vectors are scaled
to give real valued normal modes and the modal mass is, therefore, real valued, the associated
modal Afor a proportionally damped system is imaginary valued.

While Equation 7.16 is valid only for proportionally damped systems, another form of Equation
7.16 gives a more general result that includes any type of damping. Equation 4.51 is repeated
here for convenience.

1
= - (7.17)
" j20Q
Plugging Equation 7.17 into 7.16 yields:
My = ! (7.18)
M |

Since the basic development of the relationship between the residue and the modal vector
coefficients and associated modal scaliag,(= Q¢ &) did not depend upon the assumption
of proportional damping, Equation 7.18 is valid for any damping condition and is the most
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general form of modal scaling. Note that in generaddal Awill be complex valued. Equation
7.18 can also be written in an equivalent form that clearly expresses the dependeadal ¢t
on the modal vector scaling.

(7.19)

Note that the alive deelopment ofmodal Ais in terms of displacement over force units. If
measurements, and therefore residues are developed in terms of any other units ( velocity over
force or acceleration over force), Equation 7.19 or the FRF data will have to be altered
accordingly.

Consistent with thenodal Bscaling value defined previously from an analytical viewpoint,
modal Bcan be determined onogodal Ais known by way of the modal frequency.

MBr = _/‘I‘ MA,, (720)

7.3 Modal Mass, Modal A Units Discussion

In general, the modal vectors are considered to be dimensionless since they represent relative
patterns of motion. Therefore, the modal mass or modal A scaling terms are considered to carry
the units of the respective measurement. For example, the development of the frequency
response is based upon displacement over force units. The residue must therfore, have units of
length over force-seconds. Since the modal A scaling coefficient is inversely related to the
residue, modal A will have units of force-seconds over length. This unit combination is the same
as mass over seconds. Likewise since modal mass is related to modal A, for porportionally
damped systems, through a direct relationship involvinng the damped natural frequency, the units
on modal mass are mass units as expected.

The following table summarizes the units of modal A and modal mass for typical consistent unit
applications.

(7-9)



+UC-SDRL-RJA

CN-20-263-662

Revision: February 19, 1999 +

Consistent Units Relationships
Mass Force Length Modal AV(xr) Modal Mass M,)
M F L M/S M
KG NT Meter KG/S KG
KG KGf g-S-S KG/S KG
LBm LBf g-S-S LBm/S LBm
Slug LBf Feet Slug/S Slug

(7-10)




