
5. GENERAL DAMPED SYSTEMS

5.1 Non-Proportionally Damped Systems

In reality, physical structures or systems are generally comprised of many substructures tied

together in various fashions. These substructures can be made-up of a variety of materials, i.e.

metals, plastics, and wood. Furthermore, these substructures may be connected to one another

by rivets, bolts, screws, dampers, springs, weldments, friction, etc. Also, the spatial geometry of

the structure may be very complicated, such as an exhaust system of an automobile. All of these

factors influence the inherent dynamical properties of the structure. For these structures, mass,

damping, and stiffness distribution (matrices) of the system are rather complicated. In general,

for real life structures, the damping matrix for such a system will not always be proportional to

the mass and/or stiffness matrix. Therefore, the damping of this system can be classified as non-

proportional.

In an analytical sense, modal analysis of this general type of damped system cannot be described

using the formulation of the eigenvalue problem as discussed previously for an undamped

system. Remember, that in an analytical sense, the purpose of modal analysis is to find a

coordinate transformation that uncoupled the original equations of motion. This coordinate

transformation turned out to be a matrix comprised of the modal vectors of the system. These

modal vectors were determined from the solution of the eigenvalue problem for that system. The

coordinate transformation diagonalized the system mass, damping, and stiffness matrices, for an

undamped or proportionally damped system. When a system contains non-proportional

damping, the previously used formulation of the eigenvalue problem will not yield modal vectors

(eigenvectors) that uncouple the equations of motion of the system. A technique used to

circumvent this problem was first documented by Duncan and Collar and involves the

reformulation of the original equations of motion, for an N -degree of freedom system, into an

equivalent set of 2 N first order differential equations known as Hamilton’s Canonical

Equations. The solution of these equations can be carried out in a similar manner that has been

discussed previously.

For nonproportional damping, the coordinate transformation discussed previously, that

diagonalizes the system mass and stiffness matrices, will not diagonalize the system damping

matrix. Therefore, when a system with nonproportional damping exists, the equations of motion

are coupled when formulated in N dimension physical space. Fortunately, the equations of

motion can be uncoupled when formulated in 2N dimension state space. This is accomplished
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by augmenting the original N dimension physical space equation by a N dimension identity as

follows.

Assume a viscous, nonproportionally damped system can be represented by Equation 5.1.

[ M ] { ẍ } + [ C ] { ẋ } + [ K ] { x } = { f } (5.1)

This system of equations can be augmented by the identity shown in Equation 5.2:

[ M ] { ẋ } − [ M ] { ẋ } = { 0 } (5.2)

Equations 5.1 and 5.2 can be combined as follows to yield a new system of 2N equations. Note

that all the matrices in Equation 5.3 are symmetric and Equation 5.3 is now in a classical

eigenvalue solution form. The notation used in Equation 5.3 is consistent with the notation used

in many mathmatics and/or controls textbooks.

[ A ] { ẏ } + [ B ] { y } =




f ´




(5.3)

where:

• [A ] =




[ 0 ]

[ M ]

[ M ]

[ C ]





[B ] =




−[ M ]

[ 0 ]

[ 0 ]

[ K ]





• { ẏ } =




{ẍ}

{ẋ}





{ y } =




{ẋ}

{x}









f ´




=




{0}

{ f }





Forming the homogeneous equation from Equation 5.3 yields:

[ A ] { ẏ } + [ B ] { y } = { 0 } (5.4)

The solution of Equation 5.4 yields the complex-valued natural frequencies (eigenvalues) and

complex-valued modal vectors (eigenvectors) for the augmented 2N equation system. Note that

in this mathematical form, the eigenvalues will be found directly (not the square of the
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eigenvalue) and the 2N eigenvectors will be 2N in length. The exact form of the eigenvectors

can be seen from the eigenvector matrix (state space modal matrix) for the 2N equation system.

Note that the notation { φ } is used for an eigenvector in the 2N equation system and that the

notation { ψ } is used for an eigenvector of the original N equation system.

The state space modal matrix [ φ ] for this nonproportionally damped system can now be

assembled.



φ 


= 


{φ }1 {φ }2 {φ }3 {. . . } {φ }r {. . . } {φ }2N




(5.5a)

Based upon the change of coordinate applied in Equation 5.3, each column of the eigenvector

matrix (each eigenvector) is made up of the derivative of the desired modal vector above the

desired modal vector. This structure is shown in Equation 5.5b.



φ 


=





λ1{ψ }1

{ψ }1

λ2{ψ }2

{ψ }2

λ3{ψ }3

{ψ }3

. . .

. . .
λ r{ψ }r

{ψ }r

. . .

. . .
λ2N {ψ }2N

{ψ }2N





(5.5b)

5.1.1 Weighted Orthogonality of the Eigenvectors

Similar to the case for undamped systems, a set of weighted orthogonality relationships are valid

for the system matrices [A] and [B].

{φ }r
T [A ] {φ }s = 0 (5.6)

{φ }r
T [B ] {φ }s = 0 (5.7)

The terms modal A and modal B can now be defined as follows. Note that these quantities have

the same properties as modal mass and modal stiffness for the undamped and proportionally

damped cases.

{φ }r
T [A ] {φ }r = M Ar

(5.8)

{φ }r
T [B ] {φ }r = MBr

(5.9)
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The terms modal A and modal B are modal scaling factors for the nonproportional case just as

modal mass and modal stiffness can be used for the undamped and proportionally damped cases.

Whenever complex modal vectors are present, modal A and modal B should be used to provide

the modal scaling. Note that modal A and modal B could be used to provide modal scaling even

for the undamped and proportionally damped cases.

Note that the eigenvector matrix (state space modal matrix) provides a coordinate transformation

from the physical state space coordinate system to the uncoupled principl state space coordinate

system.

[ A ] { ẏ } + [ B ] { y } =




f ´




(5.10)

[ A ] 


φ 


{ q̇ } + [ B ] 


φ 


{ q } =




f ´




(5.11)




φ 


T

[ A ] 


φ 


{ q̇ } + 


φ 


T

[ B ] 


φ 


{ q } = 


φ 


T 



f ´




(5.12)

For the r − th eigenvalue/eigenvector:

M Ar
q̇r + MBr

= f ´
r (5.13)

This uncoupled equation has a characteristic equation of the form:

M Ar
s + MBr

= 0 (5.14)

This means that Modal A and Modal B for each mode are related.

M Ar
λ r + MBr

= 0 (5.15)

M Ar
λ r = − MBr

(5.16)

This concept will not be pursued further here. The interested reader is referred to Chapter 6 of

Mechanical Vibrations by Tse, Morse and Hinkle or Chapter 9 of Analytical Methods in
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Vibrations by Leonard Meirovitch.

In an experimental sense, the approach to the problem is the same for non-proportionally damped

system as for an undamped or a proportionally damped system. No matter what type of damping

a structure has, proportional or non-proportional, the frequency response functions of the system

can be measured. For this reason, the modal vectors of the system can be found by using the

residues determined from the frequency response function measurements. While the approach is

the same as before, the results in terms of modal vectors will be somewhat more complicated for

a system with non-proportional damping. As an example of the differences that result for the

non-proportional case, the same two degree of freedom system, used in previous examples, will

be used again except that the damping matrix will be made non-proportional to the mass and/or

stiffness matrices.

5.2 Proportionally Damped Systems

For the class of physical damping mechanisms that can be mathematically represented by the

proportional damping concept, the coordinate transformation discussed previously for the

undamped case, that diagonalizes the system mass and stiffness matrices, will also diagonalize

the system damping matrix. Therefore, when a system with proportional damping exists, that

system of coupled equations of motion can be transformed as before to a system of equations that

represent an uncoupled system of single degree of freedom systems that are easily solved. The

procedure to accomplish this follows.

Assume a viscously damped system can be represented by Equation 5.17.

[ M ] { ẍ } + [ C ] { ẋ } + [ K ] { x } = { f } (5.17)

The eigenvalue problem associated with the undamped system can be solved as a first step to

understanding the problem.

[ M ] { ẍ } + [ K ] { x } = { 0 }

This yields the system’s natural frequencies (eigenvalues) and modal vectors (eigenvectors).

(5-5)
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The modal matrix [ψ ] for this undamped system can now be assembled.




ψ 


= 


{ ψ }1 { ψ }2 . . . { ψ }N



The coordinate transformation can now be applied to Equation 5.10:

[ x ] = 


ψ 


{ q }

[ M ] 


ψ 


{ q̈ } + [ C ] 


ψ 


{ q̇ } + [ K ] 


ψ 


{ q } = { f }

Now pre-multiply Equation 5.18 by [ψ ]T .




ψ 


T

[ M ] 


ψ 


{ q̈ } + 


ψ 


T

[ C ] 


ψ 


{ q̇ }

+ 


ψ 


T

[ K ] 


ψ 


{ q } = 


ψ 


T

{ f } (5.19)

Due to the orthogonality properties of the modal vectors :




ψ 


T

[ M ] 


ψ 


= M 




ψ 


T

[ K ] 


ψ 


= K 

Since the assumed form of the damping matrix is proportional to the mass and/or stiffness

matrix, the damping matrix will also be diagonalized.

[ C ] = α [ M ] + β [ K ]

The application of the orthogonality condition yields:




ψ 


T

[ C ] 


ψ 


= 


ψ 


T

{ α [ M ] + β [ K ] } 


ψ 

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


ψ 


T

[ C ] 


ψ 


= α 


ψ 


T

[ M ] 


ψ 


+ β 


ψ 


T

[ K ] 


ψ 





ψ 


T

[ C ] 


ψ 


= α M  + β K 

Therefore:




ψ 


T

[ C ] 


ψ 


= C 

where:

• C  is a diagonal matrix.

Therefore, Equation 5.19 becomes:

M  { q̈ } + C  { q̇ } + K  { q } = 


ψ 


T

{ f (t) } (5.20)

Equation 5.20 represents an uncoupled set of damped single degree of freedom systems. The r-

th equation of Equation 5.20 is:

Mr q̈r + Cr q̇r + Kr qr = f ′
r (t) (5.21)

Equation 5.21 is the equation of motion for a system represented below.

(5-7)



+UC-SDRL-RJA CN-20-263-662 Revision: March 2, 2000 +

Mr

Kr

Cr

f ′
r(t)

qr(t)

Figure 5-1. Proportional Damped SDOF Equivalent Model

The solution of this damped single degree of freedom system has been discussed previously.

5.3 Example with Proportional Damping

In order to understand the concept of proportional damping, the same two degree of freedom

example, worked previously for the undamped case, can be reworked for the proportionally

damped case.
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2

1

2

1

4

2

f1(t)

x1(t)

f2(t)

x2(t)

Figure 5-2. Tw o Degree of Freedom Model with Proportional Damping





5

0

0

10









ẍ1

ẍ2





+




2

−1

−1

3









ẋ1

ẋ2





+




4

−2

−2

6









x1

x2





=




f1

f2





Note that the damping matrix [ C ] is proportional to the stiffness matrix [ K ]:

[ C ] = 


1

2



[ K ]

While this form of the damping matrix is quite simple, the solution that will result will yield a

general characteristic that is common to all problems that can be described by the concept of

proportional damping.

Using the previously calculated modal vectors and natural frequencies for the undamped system,

a coordinate transformation can be performed:
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{ x } = 


ψ 


{ q }

Noting the results of the previous example in Section 3.6, the uncoupling of the equations of

motion for the mass and stiffness matrices has already been shown. Therefore, for the damping

matrix:




ψ 


T

[ C ] 


ψ 


=





√ 1 / 15

√ 2 / 15

√ 1 / 15

−
1

2
√ 2 / 15










2

−1

−1

3










√ 1 / 15

√ 1 / 15

√ 2 / 15

−
1

2
√ 2 / 15









ψ 


T

[ C ] 


ψ 


=




1 / 5

0

0

1 / 2





The transformed system in terms of modal coordinates would be:





1

0

0

1









q̈1

q̈2





+




1 / 5

0

0

1 / 2









q̇1

q̇2





+




2 / 5

0

0

1









q1

q2





=




f ′
1(t)

f ′
2(t)





or pictorially:

(5-10)



+UC-SDRL-RJA CN-20-263-662 Revision: March 2, 2000 +

1

2/5

1/5

f ′
1(t)

q1(t)

1

1

1/2

f ′
2(t)

q2(t)

Figure 5-3. Proportionally Damped MDOF Equivalent Model

5.3.1 Frequency Response Function Implications

This same problem can be evaluated from a transfer function point of view by determining the

modal frequencies and modal vectors. The transfer function matrix of the system is:

[ H(s) ] =





(M22 s2 + C22 s + K22)

− (M21 s2 + C21 s + K21)

− (M12 s2 + C12 s + K12)

(M11 s2 + C11 s + K11)





| B (s) |

| B (s) | = 

M11 s2 + C11 s + K11






M22 s2 + C22 s + K22




− 

M21 s2 + C21 s + K21






M12 s2 + C12 s + K12



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Upon substituting the values for the mass, damping, and stiffness matrices from the example

problem:

[ H(s) ] =








10 s2 + 3 s + 6


(s + 2)

(s + 2)


5 s2 + 2 s + 4








50 s4 + 35 s3 + 75 s2 + 20 s + 20

The roots of the characteristic equation are:

λ1 = −
1

10
+ j

√39

10
( rad/sec ) λ*

1 = −
1

10
− j

√39

10
( rad/sec )

λ2 = −
1

4
+ j

√15

4
( rad/sec ) λ*

2 = −
1

4
− j

√15

4
( rad/sec )

Note that the poles of a damped system now contain a real part. The pole of a transfer function

has been previously defined (Chapter 2) as:

λ r = σ r + j ω r

where:

• σ r = damping factor

• ω r = damped natural frequency.

Remember that in the previous undamped case, the poles could be written in the following form:

λ r = j ω r

where:

• ω r = damped natural frequency = undamped natural frequency

The system modal vectors can be determined by just using the minimum transfer function data,

assuming that all elements of the row or column are not perfectly zero. If this is true, then the

(5-12)
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modal vectors can be found by using one row or column out of the system transfer function

matrix. For example, choose H11 (s) and H21 (s), which amounts to the first column.

First, H11 (s) and H21 (s) can be expanded in terms of partial fractions.

H11 (s) =
10 s2 + 3 s + 6

50 ( s − λ1 ) ( s − λ*
1 ) ( s − λ2 ) ( s − λ*

2 )

After some work:

H11 (s) =
− j

√39

117
( s − λ1 )

+
j

√39

117
( s − λ*

1 )
+

− j
4 √15

225
( s − λ2 )

+
j

4 √15

225
( s − λ*

2 )

H21 (s) =
s + 2

50 ( s − λ1 ) ( s − λ*
1 ) ( s − λ2 ) ( s − λ*

2)

H21 (s) =
− j

√39

117
( s − λ1 )

+
j

√39

117
( s − λ*

1 )
+

j
2 √15

225
( s − λ2 )

+
− j

2 √15

225
( s − λ*

2 )

Recall that the residues have been shown to be proportional to the modal vectors. Since only a

column of the transfer function has been used from the transfer function matrix, only a column of

the residue matrix for each modal frequency has been calculated.

Thus, by looking at the residues for the first pole λ1, the modal vector that results is:





ψ 1

ψ 2



1

→







− j √39

117
− j √39

117





1

=




1

1



1

(5.23)

For the modal frequency λ2, the modal vector that results is:





ψ 1

ψ 2



2

→







− j 4 √15

225
2 j √15

225





2

=




1

−1/2



2

(5.24)
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Thus, the modal vectors calculated from the transfer function matrix of this proportionally

damped system are the same as for the undamped system. This will always be the case as long

as the system under consideration exhibits proportional type of damping.

Notice that for the undamped and proportionally damped systems studied, not only were their

modal vectors the same, but their modal vectors, when normalized, are real valued. This may not

be the case for real systems. Since the modal vectors are real valued, they are typically referred

to as real modes or normal modes.

5.3.2 Impulse Response Function Considerations

The impulse response function of a proportionally damped multiple degree of freedom system

can now be discussed. Remember that the impulse response function is the time domain

equivalent to the transfer function. Once the impulse response function for a multiple degree of

freedom system has been formulated, it can be compared to the previous single degree of

freedom system. Recall Equation 4.24.

H pq (s) =
N

r = 1
Σ

Apqr

( s − λ r )
+

A*
pqr

( s − λ*
r )

(5.25)

Recall the definition of H pq(s):

H pq (s) =
X p (s)

Fq (s)

Therefore:

X p (s) = Fq (s)
N

r = 1
Σ

Apqr

( s − λ r )
+

A*
pqr

( s − λ*
r )

(5.26)

If the force used to excite the DOF (q) is an impulse, then the Laplace transform will be unity.

While this concept is used to define the impulse response function, once the transfer function is

formulated and the system is considered to be linear, this type of assumption can be made with

complete generality.
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Fq (s) = 1

Thus the system impulse response at DOF ( p) is the inverse Laplace transform of Equation 5.19.

h pq (t) = L−1




X p (s)




= L−1




N

r = 1
Σ

Apqr

( s − λ r )
+

A*
pqr

( s − λ*
r )





If p = q, this would be the driving point impulse response function. For simplicity, Equation

5.27 can be expanded for the two degree of freedom case (N = 2).

X p (s) =
App1

( s − λ1 )
+

A*
pp1

( s − λ*
1 )

+
App2

( s − λ2 )
+

A*
pp2

( s − λ*
2 )

(5.28)

h pp (t) = L−1




X p (s)




= App1 eλ1 t + A*
pp1 eλ*

1 t + App2 eλ2 t + App2 eλ*
2 t (5.29)

Recall that:

λ r = σ r + j ω r

λ*
r = σ r − j ω r

Also, since the system is proportionally damped, the residues are all purely imaginary.

Therefore, the following definition can be made arbitrarily. This definition will make certain

trigonometric identities obvious in a later equation.

App1 =
Rpp1

2 j

App2 =
Rpp2

2 j

(5-15)
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Using Euler’s formula, Equation 5.22 then becomes:

h pp (t) =
Rpp1

2 j



e( σ1 + j ω1 ) t − e( σ1 − j ω1 ) t 


+
Rpp2

2 j



e( σ2 + j ω2 ) t − e( σ2 − j ω2 ) t 


h pp (t) = Rpp1 eσ1 t ( e j ω1 t − e j −ω1 t )

2 j
+ Rpp2 eσ2 t ( e j ω2 t − e− j ω2 t )

2 j

h pp (t) = Rpp1 eσ1 t sin ( ω 1 t ) + Rpp2 eσ2t sin ( ω 2 t )

Finally:

h pp (t) = Rpp1 eσ1 t sin( ω 1 t ) + Rpp2 eσ2 t sin( ω 2 t ) (5.30)

Comparing this to the single degree of freedom case done previously, note that the impulse

response function is nothing more than the summation of two single degree of freedom

responses. Note also that the amplitude of the impulse response function is directly related to the

residues for the two modal vectors. This means that the impulse response function amplitude is

directly related to the modal vectors of the two modes, since the residues have been shown to be

directly proportional to the modal vectors.

In summary, a transfer function, and therefore a frequency response function, can be expressed as

a sum of single degree of freedom systems (Equation 4.24). A typical frequency response

function is illustrated in Figure (5-4), in terms of its real and imaginary parts. This frequency

response function represents the response of the system at degree of freedom 1 due to a force

applied to the system at degree of freedom 2 H1 2(ω ). Figure (5-5) is the equivalent impulse

response function of Figure (5-4). Likewise, this impulse response function represents the

response of the system at degree of freedom 1 due to a unit impulse applied to the system at

degree of freedom 2 h1 2(t). Notice that the impulse response function starts out at zero for t = 0

as it should for a system with real modes of vibration. Since the transfer function is the sum of

single degree of freedom systems, the frequency response functions for each of the single degree

of freedom systems can be plotted independently as is illustrated in Figures (5-6) and (5-8).
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Note that by adding together Figures (5-6) and (5-8), the same plot as in Figure (5-4) would

result. In Figures (5-6) and (5-8) the imaginary parts peak where the real parts cross zero, where

as, in Figure (5-4) this is not exactly true. Similarly, the impulse response functions for each

single degree of freedom system can be plotted separately as in Figures (5-7) and (5-9). The sum

of these two figures would be the same as Figure (5-5). Therefore, the impulse response of a two

degree of freedom system is just the sum of two damped sinusoids.
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Figure 5-4. FRF, 2 DOF System, Proportionally Damped
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Figure 5-5. IRF, 2 DOF System, Proportionally Damped
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Figure 5-6. FRF, 2 DOF System, Proportionally Damped, First Mode
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Figure 5-7. IRF, 2 DOF System, Proportionally Damped, First Mode
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Figure 5-8. FRF, 2 DOF System, Proportionally Damped, Second Mode
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Figure 5-9. IRF, 2 DOF System, Proportionally Damped, Second Mode

5.4 Non-Proportional Damping Example

The same two degree of freedom system, in terms of mass and stiffness, as before will now be

used to explain the effect of non-proportional damping.
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Figure 5-10. Tw o Degree of Freedom System

The damping coefficients have been chosen such that they are not proportional to the mass and/or

stiffness. Using Equation 5.22, the transfer function matrix of the resulting system is:

[ H(s) ] =





10s2 + 5s + 6

4s + 2

4s + 2

5s2 + 6s + 4





50[s4 + (17/10) s3 + (42/25) s2 + (4/5) s + 2/5]
(5.31)

The poles of the transfer function are the roots of the characteristic equation:

s4 +
17

10
s3 +

42

25
s2 +

4

5
s +

2

5
= 0 (5.32)
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The roots are:

λ1 = − 0. 095363 + j 0. 629494 ( rad/sec )
λ*

1 = − 0. 095363 − j 0. 629494 ( rad/sec )

λ2 = − 0. 754635 + j 0. 645996 ( rad/sec )
λ*

2 = − 0. 754635 − j 0. 645996 ( rad/sec )

These poles are the damping and frequency parameters for the system’s two modes of vibration.

Recall: λ r = σ r + j ω r .

As before, the modal vectors of the system can be determined by evaluating one row or column

of the transfer function matrix in terms of partial fractions. In a previous example, the first

column of the transfer function matrix was utilized in order to determine the modal vectors. This

time, to illustrate the pervasiveness of the modal vectors with respect to all elements of [ H (s) ],

the last row of the transfer function matrix will be utilized. That is:

H21 (s) and H22 (s)

H21 (s) can be measured by exciting the system at mass 1 and measuring the response at mass 2.

Similarly, H22 (s) can be measured by exciting the system at mass 2 and measuring the response

at mass 2. H22(s) and H21 (s) can now be expanded in terms of partial fractions.

H22 (s) =
5s2 + 6s + 4

50 (s − λ1) (s − λ*
1) (s − λ2) (s − λ*

2)

After some work:

H22 (s) =
0. 003707 − j 0. 058760

(s − λ1)
+

0. 003707 + j 0. 058760

(s − λ*
1)

+
−0. 003707 − j 0. 016358

(s − λ2)
+

−0. 003702 + j 0. 016358

(s − λ*
2)

Also:
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H21 (s) =
4s2 + 2

50 (s − λ1) (s − λ*
1) (s − λ2) (s − λ*

2)

After some more work:

H21 (s) =
− 0. 003473 − j 0. 050100

(s − λ1)
+

− 0. 003473 + j 0. 050100

(s − λ*
1)

+
0. 003473 + j 0. 045270

(s − λ2)
+

0. 003473 − j 0. 045280

(s − λ*
2)

Using the residues as the modal vectors directly (without any normalization or scaling), the

following vectors result:

Mode 1: λ1 = - 0.095363 + j 0.629494





ψ 1

ψ 2



1

=




− 0. 003473 − j 0. 050100

+ 0. 003707 − j 0. 058760





Mode 2: λ2 = - 0.754635 + j 0.645996





ψ 1

ψ 2



2

=




+ 0. 003473 + j 0. 045270

− 0. 003707 − j 0. 016358





The modal vectors are obviously no longer purely real. In both modal vectors, regardless of how

the modal vectors are normalized, the description of the modal vector will now require a vector

of complex numbers. This will in general be true for any system with non-proportional damping.

The above modal vectors can be converted to amplitude and phase.

Thus, for modal vector one:





ψ 1

ψ 2



1

=




0. 050220,

0. 058877,

− 93. 96°
− 86. 39°



1
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For modal vector two:





ψ 1

ψ 2



2

=




0. 045403,

0. 016765,

+ 85. 61°
− 102. 77°



2

For mode one, as in the previous examples, the two masses are moving approximately in phase.

Likewise, for mode two, as in the previous examples, the two masses are moving approximately

out of phase. Thus, the non-proportionally damped system, which resulted in complex mode

shapes, has phase terms which are not generally 0° or 180°.

Another way of comparing the differences between real modal vectors and complex modal

vectors is as follows: A real modal vector represents a mode of vibration where all the points on

the structure pass through their equilibrium positions at the same time. A complex modal vector

represents a mode of vibration where the points tested do not pass through their equilibrium

positions at the same time. In other words, a real mode appears as a standing wav e and a

complex mode appears as a traveling wav e with respect to the structure. The nodal point or line

for real modes will be stationary with respect to the structure. Conversely, the nodal point or line

for a complex mode will be non-stationary with respect to the structure.

Many structures tested will have nearly real mode shapes, that is, the phase term will be very

close to being 0° or 180°. Structures in general can have both real and complex mode shapes. In

the previous example, the first modal vector is within ± 4° of being totally real, whereas the

second modal vector is within ± 13° of being real. Thus, the second modal vector is more

complex than the first modal vector.

5.4.1 Impulse Response Function Example

The impulse response function is computed in a similar fashion as for the proportionally damped

system. From Equation 5.27, the basic definition of the impulse response function is:

H pq (t) = L−1




N

r=1
Σ

Apqr

(s − λ r)
+

A*
pqr

(s − λ*
r )





(5.33)
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The only difference now is that the residues Apqr are no longer purely imaginary but are, in

general, complex. For a two-degree of freedom system, the impulse response function becomes:

h pq (t) = Apq1 e λ1 t + A*
pq1 eλ*

1 t + Apq2 eλ2 t + A*
pq2 eλ*

2 t (5.34)

The only difference between the impulse response function of a system with complex modal

vectors (Equation 5.34) and a system with real modal vectors (Equation 5.29 and 5.30) is that the

individual contributions from each mode of vibration to the total impulse response function do

not begin with a value of zero response at time zero. Note that the sum of these individual

contributions must total zero at time zero for the system to be causal. Again note that the

residues, which are proportional to the product of the modal coefficients of the input and

response degrees of freedom, appear as the amplitude of the damped sinusoids.

A typical frequency response function is once again illustrated in Figure (5-11), in terms of its

real and imaginary parts. This frequency response function represents the response of the system

at degree of freedom 1 due to a force applied to the system at degree of freedom 2 H1 2(ω ).

Figure (5-12) is the equivalent impulse response function of Figure (5-11). Likewise, this

impulse response function represents the response of the system at degree of freedom 1 due to a

unit impulse applied to the system at degree of freedom 2 h1 2(t). Figure (5-11) depicts a

frequency response function of a two degree of freedom system that has complex modal vectors.

The only difference between this plot and that of Figure (5-4) is that the residues in this case

have a phase angle of other than 0° or 180°. The impulse response function of this system is

shown in Figure (5-11). Notice that the impulse response function does start at zero for t=0. This

is always the case for any causal system with or without complex modal vectors. Notice, though,

that the impulse response function contribution from each individual mode does not start at zero

for this case of complex modal vectors. Nevertheless, for a causal system, the sum of the

residues, and therefore the combination of magnitudes and phase angles in Equation 5.27, will

always yield an impulse response function that is zero at time zero. (The sum of the residues

will be equal to zero for any system where the order of the numerator polynomial is two or more

less than the order of the denominator polynomial.) As before, the frequency response function

can be represented as (Figure (5-11)) is the sum of two single degree of freedom systems

(Figures (5-13) and (5-15)). Another indication of a complex modal vector is the asymmetric

characteristic of the imaginary part of the frequency response function for such a simple system.

In Figure (5-6) and (5-8), note that the imaginary parts are symmetrical, whereas in Figures
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(5-13) and (5-15) the imaginary parts are not symmetrical. The degree to which they are not

symmetrical is an indication of how complex that particular component of the modal vector is.

Figures (5-14) and (5-16) are the impulse response functions of Figures (5-13) and (5-15).

The modal vectors and modal frequencies of the undamped, proportionally damped, and non-

proportionally damped system can now be compared for the simple two degree of freedom

system used in all the examples. Remember that the stiffnesses and masses are the same

throughout the examples. Therefore, the modal vectors and modal frequencies can only be

different as a result of the damping elements. For comparison purposes, the unscaled residues

from the standard form of the transfer function will be used as the modal vectors for each case.
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Figure 5-11. FRF, 2 DOF System, Non-Proportionally Damped
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Figure 5-12. IRF, 2 DOF System, Non-Proportionally Damped
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Figure 5-13. FRF, 2 DOF System, Non-Proportionally Damped, First Mode
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Figure 5-14. IRF, 2 DOF System, Non-Proportionally Damped, First Mode
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Figure 5-15. FRF, 2 DOF System, Non-Proportionally Damped, Second Mode
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Figure 5-16. IRF, 2 DOF System, Non-Proportionally Damped, Second Mode
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5.5 Summary of Modal Parameters (Undamped and Damped Systems)

Recalling the modal vectors from the previous examples:

Mode 1 Mode 2

Undamped Case:

λ1 = j √ 2 / 5 λ2 = j

ψ 1 =







− j
√ 2/5

12

− j
√ 2/5

12







ψ 2 =







− j
1

15

j
1

30







Proportionally Damped Case:

λ1 =
1

10
+ j (

√39

10
) λ2 = −

1

4
+ j (

√15

4
)

ψ 1 =







− j
√39

117

− j
√39

117







ψ 2 =







− j
4√15

225

j
2√15

225







Non-proportionally Damped Case:

λ1 = − 0. 095363 + j 0. 629494 λ2 = − 0. 754635 + j 0. 645996

ψ 1 =




−0. 008569 − j 0. 041970

−0. 003473 − j 0. 050100





ψ 2 =




0. 008569 − j 0. 122700

0. 003473 + j 0. 045270




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Note that for the non-proportional damped case, the residues given in the table are for the same

frequency response functions used in the undamped and proportionally damped cases (the first

column of the frequency response function matrix). This required the computation of the

residues for H11 (s).

Recall that a pole (λ r) may be written as:

λ r = σ r + j ω r = (− ζ r + j √ 1 − ζ 2
r ) Ωn (5.35)

where:

• ζ r = damping ratio

• Ωr = undamped natural frequency

• σ r = damping factor

• ω r = damped natural frequency

From Equation 5.35, the following relationships can also be noted:

ζ r =
− σ r

√ ω 2
r + σ 2

r

Ωr =
− σ r

ζ r

The first modal vector for the 3 different cases can now be compared. Note that the modal

vectors have been converted to amplitude and phase.
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For modal vector one ( λ1 ):

Undamped Prop. Damped Non-prop. Damped





0. 052705, −90°
0. 052705, −90°



1





0. 053376, −90°
0. 053376, −90°



1





0. 042836, −101. 53°
0. 050220, −93. 96°



1

Ω1 = 0. 632456 Ω1 = 0. 632456 Ω1 = 0. 63667

ζ 1 = 0% ζ 1 = 15.8114% ζ 1 = 14.9782%

For modal vector two ( λ2 ):

Undamped Prop. Damped Non-prop. Damped





0. 066667, −90°
0. 033333, +90°



2





0. 068853, −90°
0. 034427, +90°



2





0. 122999, −86. 00°
0. 045403, +85. 61°



2

Ω2 = 1.0 Ω2 = 1.0 Ω2 = 0.99337

ζ 2 = 0% ζ 2 = 25% ζ 2 = 75.9671%

In conclusion, note that the addition of damping (proportional and non-proportional) has not

affected the undamped natural frequencies for either modal vector. This will always be the case.

Furthermore, the overall behavior of the modal vectors remained the same. That is, in the first

mode the 2 masses are moving in the same direction and in the second mode they are moving in

opposite directions. The major difference arises in the phase of the mode shapes. Note that for

the non-proportionally damped system, the phase of the components is other than 0° or 180°.

These types of modes are again referred to as complex modes. How much the phase differs from

0° or 180° is directly related to the systems mass, damping, and stiffness distributions. Note that

as the phase approaches 0° or 180° for a particular mode, the modal vector can be approximated

as a real or normal mode by setting the phase equal to 0° or 180°.
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