
+UC-SDRL-RJA CN-20-263-662 Revision: Febr uary 19, 1999 +

7. MODAL SCALING

7.1 Proportionally Damped Systems (Modal Mass)

The modal matrix (matrix of modal vectors) has been previously used as a coordinate

transformation in order to diagonalize the mass, damping (if proportional), and stiffness matrices.

The diagonalization of these matrices leads to the analytical definition of modal mass, modal

damping, and modal stiffness. From an experimental view point, the mass, damping, and

stiffness matrices are generally not known. Therefore, this theoretical approach to the definition

of modal mass, modal damping, and modal stiffness is not useful. Even so, the modal mass,

modal damping, and modal stiffness can be computed directly from the measured frequency

response functions without the benefit of prior knowledge of the mass, damping, and stiffness

matrices. Note that the modal mass, modal damping, and modal stiffness are, in general, not

physical properties but are generalized, or normalized, properties related to the physical

properties.

Recall that, analytically, the value of the modal mass is completely dependent on the scaling

chosen for the modal vectors. Any dev elopment from the frequency response function

(experimental) must be consistent with this concept. The development in Section 4.7 (Equation

4.51) satisfies this constraint. Equation 4.51 is repeated here as Equation 7.1.

Mr =
1

j 2 Qr ω r
(7.1)

The scaling coefficientQr in the above definition can only be found after the choice of modal

vector scaling is made.

Recal that for ther -th mode of an N degree of freedom system:

[ A ]r = Qr { ψ } r { ψ } T
r (7.2)

[ A ]r = Qr
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where:

• Qr is the scaling constant that is a function of the scaling of the modal vectors.

Using only theq-th column of the residue matrix:
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(7.4)

The relationship between the residue, the scaling constant and the scaling of the modal vector is

most clear when the FRF measurementHqq ( ω ) is utilized. Note thatHqq ( ω ) is obtained by

exciting at pointq and measuring the response at pointq. This is typically referred to as the

driving pointfrequency response function. Therefore, theAqqr residue for all modesr = 1 → N

can be determined from theHqq ( ω ) measurement.

Now, note theq-th element of Equation 7.4:

Aqqr = Qr ψ qr ψ qr = Qr ψ 2
qr (7.5)

Therefore, ther -th modal mass of a multi-degree of freedom system is defined as:

Modal Mass

Mr =
1

j 2 Qr ω r
(7.6)

In general:

Mr =
ψ pr ψ qr

j 2 Apqr ω r
(7.7)
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where:

• Mr = Modal mass

• Qr = Modal scaling constant

• ω r = Damped natural frequency

While this concept of modal mass being a relative quantity (relative to scaling) is at odds with the

engineering view of mass being an absolute quantity, this is consistent with the analytical

definition of modal mass.

While many choices of modal vector scaling exist, choosing to scale the modal vector such that

the largest modal coefficient will be equal to 1.0 gives a result where the modal mass will always

be bounded between zero and the physical mass of the system. For the case where the modal

vector of the system describes the rigid body translation (bounce) of the system, this particular

choice will give the mass of the system as the modal mass.Therefore, if the largest scaled modal

coefficient is equal to unity, Equation 7.7 will compute a quantity of modal mass that has

physical significance. The physical significance is that the quantity of modal mass computed

under these conditions will be a number between zero and the total mass of the system.

Therefore, under this scaling condition, the modal mass can be viewed as the amount of mass

that is participating in each mode of vibration.

Note that themodal massdefined in Equation 7.6 or 7.7 is developed in terms of displacement

over force units. If measurements, and therefore residues are developed in terms of any other

units ( velocity over force or acceleration over force), either the measurements or Equation 7.6

and 7.7 will have to be altered accordingly.

Once the modal mass is known, the modal damping and stiffness can be obtained through the

following SDOF relationships:

Modal Damping

Cr = 2 σ r Mr (7.8)
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Modal Stiffness

Kr = ( σ 2
r + ω 2

r ) Mr = Ω2
r Mr (7.9)

7.1.1 Modal Vector Scaling

There are many ways to scale the modal vectors, however the following approaches are typically

used:

• Unity Modal Mass

• Unity Modal Coefficient

• Unity Modal Vector Length

The scaling value,Qr , can be calculated for each of the three cases.

7.1.1.1 Unity Modal Mass

Qr =
1

j 2 Mr ω r
=

1

j 2 ω r

The scaled modal coefficient at the driving point can now be computed as follows:

Qr ψ qr ψ qr = Aqqr

Dividing both sides byQr :

ψ qr ψ qr =
Aqqr

Qr

The scaled modal coefficient at the driving point can now be found. For the proportionally

damped case, this is obviously trivial since the square root of both sides of the above equation

involves the square root of a real-valued number. For the general case, the modal coefficient can

be complex, and the above equation must be solved for the complex modal coefficient. In this

case the square root cannot be used.
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Thus, the scaled modal vector is:

{ ψ } r =
1

Qr ψ qr
{ A } r

7.1.1.2 Unity Modal Coefficient

Assume that thei-th componentψ i of a modal vector must be set equal to unity (ψ i = 1.0). Then:

{ ψ } r =
1

Aiq
{ A } r

Thus:

Qr =
Aiqr

ψ ir ψ qr

7.1.1.3 Unity Modal Vector Length

{ ψ } r =
1

||{A}r ||2
{ A } r

where:

• ||{A}r ||2 = vector norm of{A}r

• ||{A}r ||2 = √ 
m

i=1
Σ Aiqr A*

iqr

Thus:

Qr =
Aiqr

ψ ir ψ qr
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7.1.2 Modal Vector Scaling Example

Using the modal vectors from the example in Chapter 5, the modal vector scaling required for

unity modal mass can be determined.

The modal vectors for modes 1 and 2 are:
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For unity modal mass, the scaling factor can be evaluated from Equation 7.6.

Qr =
1

j 2 ω r

Thus, the scaled modal vector for mode 1 for a modal mass of unity is:
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The scaled modal vector for mode 2 for a modal mass of unity is:
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Notice that these modal vectors that have been scaled with respect to unity modal mass, are

identical to the modal vectors previously computed (Section 3.2). The important concept,
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though, is that these scaled modal vectors were determined directly from the frequency response

functions. In other words, the mass, damping, and stiffness of the system did not have to be

known in order to determine the same information.

The modal damping and modal stiffnesses can now be calculated using Equations 7.8.and 7.9.

C1 = 2 σ1 M1 = 2 (
1

10
) 1 =

1

5

C2 = 2 σ2 M2 = 2 (
1

4
) 1 =

1

5

K1 = (σ 2
1 + ω 2

1 ) M1 = (
1

100
+

39

100
) 1 =

2

5

K2 = (σ 2
2 + ω 2

2 ) M2 = (
1

16
+

15

16
) 1 = 1

These are exactly the same parameters as those calculated previously.

7.2 Non-Proportionally Damped Systems (Modal A)

Consistent with the definition ofmodal Aas the modal scaling factor used for the theoretical case

of nonproportionally damped systems, themodal A scaling factor is also the basis for the

relationship between the scaled modal vectors and the residues determined from the measured

frequency response functions. In general, for most experimental work,modal Ais used as the

default scaling approach. If modal mass needs to be estimated, under the contraint of real

(normal) modes, modal mass can be estimated frommodal A. The following development

explains the relationship betweenmodal Aand modal mass. Starting with the anlytical definition

of modal massin 2N space:

MAr
= {φ } T

r
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Multiplying Equation 7.11 out in terms of N space yields:

MAr
= λ r {ψ } T

r [ M ] {ψ } r + λ r {ψ } T
r [ M ] {ψ } r + {ψ } T

r [ C ] {ψ } r (7.12)

If the system is proportionally damped, the weighted orthogonality relationships between the

mass matrix and the modal vectors can now be applied.

MAr
= λ r Mr + λ r Mr + Cr = 2 λ r Mr + Cr (7.13)

Applying the SDOF relationship between the modal damping and modal mass (Cr = − σ r Mr ):

MAr
= 2 λ r Mr − 2σ r Mr (7.14)

MAr
= 2 (σ r + j ω r ) Mr − 2σ r Mr (7.15)

MAr
= j2ω r Mr (7.16)

Equation 7.16 indicates that, for proportionally damped systems, if the modal vectors are scaled

to give real valued normal modes and the modal mass is, therefore, real valued, the associated

modal Afor a proportionally damped system is imaginary valued.

While Equation 7.16 is valid only for proportionally damped systems, another form of Equation

7.16 gives a more general result that includes any type of damping. Equation 4.51 is repeated

here for convenience.

Mr =
1

j2ω r Qr
(7.17)

Plugging Equation 7.17 into 7.16 yields:

MAr
=

1

Qr
(7.18)

Since the basic development of the relationship between the residue and the modal vector

coefficients and associated modal scaling (Apqr = Qrψ prψ qr) did not depend upon the assumption

of proportional damping, Equation 7.18 is valid for any damping condition and is the most

(7-8)



+UC-SDRL-RJA CN-20-263-662 Revision: Febr uary 19, 1999 +

general form of modal scaling. Note that in general,modal Awill be complex valued. Equation

7.18 can also be written in an equivalent form that clearly expresses the dependence ofmodal A

on the modal vector scaling.

MAr
=

1

Qr
=

ψ pr ψ qr

Apqr
(7.19)

Note that the above dev elopment ofmodal A is in terms of displacement over force units. If

measurements, and therefore residues are developed in terms of any other units ( velocity over

force or acceleration over force), Equation 7.19 or the FRF data will have to be altered

accordingly.

Consistent with themodal B scaling value defined previously from an analytical viewpoint,

modal Bcan be determined oncemodal Ais known by way of the modal frequency.

MBr
= − λ r MAr

(7.20)

7.3 Modal Mass, Modal A Units Discussion

In general, the modal vectors are considered to be dimensionless since they represent relative

patterns of motion. Therefore, the modal mass or modal A scaling terms are considered to carry

the units of the respective measurement. For example, the development of the frequency

response is based upon displacement over force units. The residue must therfore, have units of

length over force-seconds. Since the modal A scaling coefficient is inversely related to the

residue, modal A will have units of force-seconds over length. This unit combination is the same

as mass over seconds. Likewise since modal mass is related to modal A, for porportionally

damped systems, through a direct relationship involvinng the damped natural frequency, the units

on modal mass are mass units as expected.

The following table summarizes the units of modal A and modal mass for typical consistent unit

applications.
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Consistent Units Relationships

Mass Force Length Modal A (MAr) Modal Mass (Mr )

M F L M/S M

KG NT Meter KG/S KG

KG KGf g-S-S KG/S KG

LBm LBf g-S-S LBm/S LBm

Slug LBf Feet Slug/S Slug
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